
Applications Note 113 Using ModelSim PE 5.X With Xilinx Alliance
Software

1

Applications Note – 113

Using ModelSim PE 5.X With Xilinx
Alliance Software

22 January 1999 Revision 1.0

Using ModelSim PE 5.X With Xilinx Alliance Software... 1
Section 1. ModelSim RTL Flow ... 2
Section 2. Synthesis and Place and Route. .. 10
Section 3. Compiling Gate Level Libraries for Simulation .. 14

Compiling the VHDL gate level libraries with the ModelSim UI... 14
UNISIM ... 14
SIMPRIM... 16

Compiling the VHDL gate level library using the command line ... 17
UNISIM ... 17
SIMPRIM... 18

Compiling the Xilinx Verilog gate level library with the ModelSim UI.................................... 18
UNISIM ... 18
SIMPRIM... 20

Compiling the Xilinx Verilog gate level library using the command line 21
UNISIM ... 21
SIMPRIM... 22

Section 4. Compile and Timing Simulation of the VHDL Gate Level Source Files 23
Section 5. Compile and Timing Simulation of the Verilog Gate Level Source Files 27
Section 6. Using LogiBLOX and CoreGen Models ... 31

LogiBLOX... 31
CoreGEN... 33

For more information ... 35

ModelSim is a single kernel, dual language simulator. You are able to run either Verilog
or VHDL separately or mixed in the same design. You can have Verilog modules
instantiated in VHDL architectures or VHDL entities instantiated in Verilog Modules.
You can even mix languages at any level of abstraction and with any number of
hierarchical levels i.e Verilog module instantiated by a VHDL architecture called from a
Verilog module. One simulator, one interface, two languages. Xilinx Alliance software is
capable of outputting both Verilog and VHDL netlists, there are no restrictions on which
language you choose. ModelSim uses compiled HDL libraries, you must first compile the
Xilinx supplied libraries. The Xilinx Alliance ModelSim flow for each language is
slightly different and is described in this document. Each language flow will be described
with command line and User Interface examples. A language label will be attached to the
text detailing the appropriate language. It is possible to skip the sections for the language
that you do not use.

 Using ModelSim PE 5.X With Xilinx Alliance Software Applications Note
113

2

Section 1. ModelSim RTL Flow
The design used in this example is very simple and easy to understand. It is a simple ring
buffer from a data communications application. Transmit Data is input into the buffer at a
constant rate clocked by the transmit clock (txc). The storage location address of the
incoming data for transmission, transmit data (txda) is pointed to by a counter. Each
location of the buffer is pointed to in turn in a sequential fashion. The output pointer logic
is driven by the output of lower order bits of the same counter and an output strobe. This
generates a valid output location address for the receive data. This results in the data being
output in a burst fashion, a diagram of the design is shown below.

The design has been decomposed into three blocks, these three blocks are connected by a
netlist. The design itself is driven by a testbench that provides both stimulus and some self
checking routines. The complete set of files are available in both VHDL and Verilog.
VHDL files have the .vhd extension and Verilog files have the .v extension. The size of
the design can be controlled by two parameters / constants that are set at the top level.
counter_size defines the size of the counter necessary to address the buffer and buffer_size
defines the length of the storage buffer. The testbench generates data for the ring buffer
with a Pseudo random data pattern generator. The Pseudo random data is generated using
a 20 bit Linear Feedback Shift Register, the LFSR is set up to produce a 220 Pseudo
random patterns. The testbench also includes self checking routines that analyse the data
output from the ring buffer and print messages to warn of any differences.

Transmit Data (txda)
Transmit CLK (txc)

Clock

Pointer

Receive Data (rxda)Output
Strobe

Input Pointer Logic

Output Pointer Logic

Buffer Storage

Applications Note 113 Using ModelSim PE 5.X With Xilinx Alliance
Software

3

ModelSim can be used in batch mode, command line, or with the User Interface (UI).
Batch mode is the typical method when running regression tests. Command line mode is
very similar to batch mode in the fact that the UI is not displayed, the only interface is a
command line console. The user interface mode can accept both command line, and UI
input. The following commands can be used in any mode. Note that the view * (view all
windows) and the add wave /* (add all signals at top level to wave form window) will
show results only when in UI mode. If you save these commands in a file ("xilinx_rtl.do"
is a common macro file naming convention) it can be used in UI mode, command, or
batch modes.

cd <design directory>
vlib work
vmap work work
vcom control.vhd retrieve.vhd store.vhd Ringrtl.vhd
vcom Testring.vhd config_rtl.vhd
vsim work.test_bench_rtl
view *
add wave /*
run 1000000000

cd <design directory>
vlib work
vmap work work
vlog control.v retrieve.v store.v Ringrtl.v
vlog Testring.v
vsim work.test_ringbuf
view *
add wave /*
run 1000000000

The steps above are explained below and should be carried out using the UI in the
following way. Start ModelSim by double clicking the icon or modelsim.exe.

1. Change into the design directory. Select File ⇒ Change Directory, use the file
browser to locate the desired directory. This directory becomes the working directory.
Any library that is now created will be placed into this directory by default.

2. Create a working library. Select Library ⇒ Create A New Library, ensure that "a
new library and logical mapping to it" is selected, enter work in the library box as
shown below.

VHDL User

Verilog User

 Using ModelSim PE 5.X With Xilinx Alliance Software Applications Note
113

4

3. Select OK to except the entry, this will execute both the vlib and vmap commands
shown in the command line script listing above.

4. Compile the design files. Select the Compile button. This is the first button on the left
hand side and will start the Compile HDL Source Files menu. This menu will
automatically select the correct language compiler based upon the source file
selected. (vcom for VHDL source files and vlog for Verilog source files).

For the VHDL design select the lower level blocks, control.vhd, retrieve.vhd,
store.vhd and then select the Compile button. (Multiple select is achieved by holding
down the control key and selecting with the mouse button). Then compile the
following files in the order stated by selecting the file and then selecting the Compile
button. Select the top level design block Ringrtl.vhd, the testbench file Testring.vhd
and finally the configuration file config_rtl.vhd. It is also possible to compile a single
file by simply double clicking with the mouse on the desired file. For the Verilog
design select all the .v files and then select the Compile button.

5. Loading the simulator. Select File ⇒ Load New Design or select the Load Design
button. This will display the Load Design dialog box, which displays the design units
available in each of the libraries. Ensure that the design tab is highlighted. Ensure that
the work library is visible in the library section. Each of the units in the work library
should be displayed along with a description of the type of unit. The description will
be entity, architecture, config or package for VHDL units and module for Verilog
units. Each unit type is also highlighted with a different colour. At the beginning of
the line with a VHDL entity there in a '+' sign. Toggling this '+' sign with the mouse
shows the architectures that have been compiled for the entity. For the VHDL design
select the configuration test_bench_rtl and then the load button. For the Verilog
design select the test bench module test_ringbuf and then the load button. This will
load each of the design units needed for the simulation of either the VHDL
configuration or the Verilog testbench module. Note that the cursor line in the
ModelSim main window changes to VSIM > this indicates that simulation mode in
active.

6. Opening debug windows. Select View ⇒ All, this will open all of the debug windows.
To make sure that all of the windows are positioned without any overlap select
Window ⇒ Initial Layout. The complete screen should be filled with the nine
windows including the main ModelSim window. Each of these windows are
explained in the following text.

Applications Note 113 Using ModelSim PE 5.X With Xilinx Alliance
Software

5

The structure window can be used to explore the design hierarchy, each of the squares
represent a VHDL design unit. A plus sign inside the square shows that there are
child units and by clicking with the mouse the hierarchy can be expanded and
collapsed. The signal window lists the signals at the level of hierarchy pointed to by
the structure window. Using these two windows together any signal in the design
hierarchy can be added to the wave window.

All of the signals at a particular level of the hierarchy can be added by dragging the
square from the structure window across and dropping it into the wave window. To
add all of the signals at the top level select the test_ringbuf square and while holding
the select mouse key down (left hand button) drag it across and drop it into the wave
window. The source window can also be used to locate signals and ports and add
them to the waveform window. When a level of hierarchy is selected by the Structure
window, the associated source file will be displayed in the source window. It is
possible to add signals in the architecture or ports in the entity to the wave window by
double clicking the desired signal/port and then dragging and dropping it into the
wave window.
It is also possible to drop any of the signals or ports into the list window. The List
window displays the results of your simulation run in tabular format. The window is
divided into two adjustable panes, which allow you to scroll horizontally through the
listing on the right, while keeping time and delta visible on the left. Note that
constants, generics, parameters, and memories are not viewable in the List or Wave
windows.
The last three windows are the Process, Variables and Dataflow windows. The
Process window displays a list of processes and indicates the pathname of the
instance in which the process is located. There are two views possible in the process
window. The first is a list of the active processes, this is the default view. Select View
⇒ In Region in the Process window, the second view is a list of the processes in the
region selected by the Structure window.

VHDL User

 Using ModelSim PE 5.X With Xilinx Alliance Software Applications Note
113

6

Select block3_inst in the Structure window, the process window should show the two
processes in this instance. Select the retriever process in the Process window. The
process is displayed in the source window, with an arrow pointing to the first
executable line in the process. The Variables window displays the variables in the
architecture selected by the structure window, in this case the architecture is RTL and
the generics counter_size and buffer_size are displayed. It also displays the variable
address in the retriever process. The variable address can be dragged and dropped
into the list window.
Finally, the Dataflow window allows you to trace VHDL signals through the design.
A process is displayed with all the signals read by the process shown as inputs on the
left of the window, and all the signals driven by the process on the right. A signal
displays in the center of the window with all the processes that drive the signal on the
left, and all the processes that read the signal on the right. With the retriever process
selected by the Process window, the retriever process will be displayed in the
dataview window. Buffers and ramadrs are the inputs to the process displayed on the
left hand side of the box and rd0a is the output displayed on the right hand size of the
box. Double click on the signal rd0a this will change the view in the Dataview
window to show what the signal is driving. In this case it is driving a single process,
double click the right hand process name and the Dataflow window will display the
new process. The source window also points to the new process, in this case it is a
concurrent signal assignment that drives the rxda port.

The structure window can be used to explore the design hierarchy, each of the circles
represent a Verilog design unit. A plus sign inside the circle shows that there are child
units and by clicking with the mouse the hierarchy can be expanded and collapsed.
The signal window lists the wires and registers at the level of hierarchy pointed to by
the structure window. Using these two windows together any wire or register in the
design hierarchy can be added to the wave window.
All of the signals at a particular level of the hierarchy can be added by dragging the
circle from the structure window across and dropping it into the wave window. To
add all of the signals at the top level select the test_ringbuf circle and while holding
the select mouse key down (left hand button) drag it across and drop it into the wave
window. The source window can also be used to locate wires and registers and add
them to the waveform window. When a level of hierarchy is selected by the Structure
window, the associated source file will be displayed in the source window. It is
possible to add wires and registers in a module to the wave window by double
clicking the desired wire/register and then dragging and dropping it into the wave
window.

Verilog User

Applications Note 113 Using ModelSim PE 5.X With Xilinx Alliance
Software

7

It is also possible to drop any of the wires or registers into the list window. The List
window displays the results of your simulation run in tabular format. The window is
divided into two adjustable panes, which allow you to scroll horizontally through the
listing on the right, while keeping time and delta visible on the left. Note that
constants, generics, parameters, and memories are not viewable in the List or Wave
windows.
The last three windows are the Process, Variables and Dataflow windows. The
Process window displays a list of always blocks and indicates the pathname of the
instance in which the block is located. There are two views possible in the process
window. The first is a list of the active always blocks, this is the default view. Select
View ⇒ In Region in the Process window, the second view is a list of the always
blocks in the region selected by the Structure window.

Select test_ringbuf in the Structure window, the process window should show all of
the always blocks in this instance. Select the print_restore always block in the
Process window. The always block is displayed in the source window, with an arrow
pointing to the first executable line in the always block. The Variables window

 Using ModelSim PE 5.X With Xilinx Alliance Software Applications Note
113

8

displays the variables in the module selected by the structure window. The variables
can be dragged and dropped into the list window.

7. Running the simulation. There are two ways of running the simulation for a specified
time using the GUI. The first one is to type run 10000000 for VHDL or run
1000000000 for Verilog at the VSIM prompt in the main window. The other is to
enter the time value into the run window in the set of menu icons at the top of the
main window, and then hitting the Run button as shown below.

At the end of the run time the wave window will display the results of the simulation.
It can be seen from the display that txda is a steady pseudo-random data stream and
rxda represents the same data in a burst of eight bits. The number of bits is set by the
value of the buffer_size parameter / constant.

8. Running the simulation again. If it is necessary to re-run the simulation due to the fact
that the design needs to change or it is necessary to single step the design then the
simulator can be returned to time zero by using the restart command. Select the
toplevel design in the structure window, so that the source is displayed in the source
window. Select Edit ⇒ Read Only in the source window menu and ensure that the
tick in removed. This allows modifications to be made to the source file. Find the
instantiation of the ringbuf and modify the Verilog parameters or VHDL constants to
increase the size of the buffer. Increase the counter size to 6 and the buffer size to 64.

Verilog Code VHDL Code

9. Select File ⇒ Save in the source window menu to save the source file. Select the
Compile button. This is the first button on the left hand side and will start the
Compile HDL Source Files menu. For the VHDL design compile ringrtl.vhd,
followed by testring.vhd and config_rtl.vhd. For the Verilog design compile ringrtl.v.

module ringbuf (clock ,reset , txda,
rxda, txc, outstrobe);
// Design Parameters Control Design
 parameter counter_size = 6;
 parameter buffer_size = 64;

outstrobe : OUT std_logic
);
 constant counter_size : integer := 6;
 constant buffer_size : integer := 64;
END ringbuf;

VHDL & Verilog User

Applications Note 113 Using ModelSim PE 5.X With Xilinx Alliance
Software

9

Select File ⇒ Restart in the main window menu, this will display the restart menu.
The restart command allows the simulation to be restarted with the same list format,
wave format, breakpoints and logged signals. Each one of these can be disabled and a
new set of signals or breakpoints used. Select the Restart button and then hit the Run
button to run for the same period as before. It is possible to toggle through the history
of commands by using the up and down arrows in the main window.

10. Setting break points. It is possible to add breakpoints to source code at any time
during a simulation. Select the top level block in the structure window, this will load
the testbench into the source window. On the left hand side of the source window the
line numbers are displayed. The simulator can be broken on any line number
displayed in green. Line numbers displayed in black are either non-executable or have
been optimised away during compilation. Move down to the generate_data process
or always block and place a breakpoint on the pseudo-random assignment.
Breakpoints are set by clicking on the line that you wish to break the simulator, by the
line number. This will display a circle next to the selected line, breakpoints can be
removed by clicking on the line again. Click on the line of code shown below, this
will break the simulator in the pseudo-random data generator.

VHDL User :
The line reads pseudo <= pseudo(18 DOWNTO 0) & NOT (pseudo(2) XOR pseudo(19));

Verilog User :
The line reads pseudo <= {pseudo[18:0],pseudo[2] ^~ pseudo[19]};

11. Select Run ⇒ Run -all in the main window, simulation will be broken on the line
selected. It is now possible to single step through the simulation using the step and
step over buttons in either the source or main window. All windows are updated as
you step through the simulation.

 Using ModelSim PE 5.X With Xilinx Alliance Software Applications Note
113

10

Section 2. Synthesis and Place
and Route.

This section details how to run the M1 tool-set and output the files necessary to use in a
post layout simulation. As ModelSim can be used with any Synthesis tool the
implementation steps have not been included in this document. It is possible to use any of
the available Synthesis tools to produce an EDIF file to use as input to the place and route
tool. The VHDL and Verilog source files for this Application Note are available on the
Model Technology Web site along with an EDIF file to use as input to this section if you
do not have access to a synthesis tool. The following section details the options when
using the Design Manager GUI. The details on which programs need to be run to
implement the design using the command line are shown at the end of this section.

1. Start the Xilinx Design Manager and select File ⇒ New Project. This will display the
New Project dialog box. Select the Browse button on the input design line and find
the input EDIF file, this will be the output generated from your synthesis tool or the
supplied EDIF file called ringrtl.edf. If your synthesis tool has output an ncf file, this
file includes constraints passed by the Synthesis tool, then ensure that it is in the same
directory as the EDIF netlist. The working directory will be automatically filled out,
creating by default an xproj directory in the directory of the input netlist file. This
directory will contain all of the working files and report files used for the design
during place and route. Select the OK button.

2. Once the EDIF netlist has been parsed, the next step is to implement the design.
Select Design ⇒ Implement, this will display the implement dialog box. Most

Applications Note 113 Using ModelSim PE 5.X With Xilinx Alliance
Software

11

synthesis tools will pass on the details of which device and package you are using so
the part information will have been automatically filled out. If it has not then select
the Select button next to the part selection box and locate the device you wish to use.
This design example will fit the smallest XC4000 part, as long as the parameters /
constants are kept to the size stated in the last section, so select XC4005XL-09-PC84.

3. To set up the options for this implementation select the Options button at the bottom
of the dialog box. This displays the options menu. Under the Program Options
Templates there is a Simulation section, by default this is set to Generic EDIF.

 Select the down pointing triangle on the right side of the Simulation box. This will
display a list of output netlist formats. If you require a Verilog netlist select
ModelSim Verilog, and if you require a VHDL netlist select ModelSim VHDL. This
automatically adjusts the Simulation Template to the settings required for each
ModelSim product. Select the Edit Template option next to simulation, this will
display the template edit dialog box. There are three tabs on this dialog box, the first
is General. Here the Simulation netlist type will have been set to either Verilog or
VHDL depending on last selection.

4. There are two other options on the General tab, the first is Correlate Simulation Data
input to design. With this option selected the resulting netlist will attempt to mimic
the same logic gates and net names as those in the original input EDIF netlist. De-
selection of this option will create netlist that contains the same logic gates and net
names as those in the optimised implemented netlist. There is a possibility that gates
implemented by the Synthesis tool maybe optimised out during any stage of
implementation. This means that often some gates disappear or their function gets
implemented by other gates. Make sure this option is deselected to save processing
time if correlation is not required. If this option is selected, warnings will be reported
if there are any mis-matches between the input and implemented netlists. The
Simulation Netlist Name can be set to the desired name, by default it is time_sim.
Select the VHDL/Verilog tab, by default all of the check boxes are deselected. Each
of theses options are described below:

 Using ModelSim PE 5.X With Xilinx Alliance Software Applications Note
113

12

Bring Out Global Set/Reset as a Port - If this is de-selected the Global Set/Reset
will be implemented in the netlist as a VHDL statement when targetting VHDL. At
the top of the netlist file there is a statement that waits for 100nSecs and then removes
reset. This time delay can be changed by modifying the output netlist. Selecting this
option creates a Global Set/Reset port on the top-level simulation module or entity.
This port is connected to all flip-flop and latch primitives in the design. Stimulating
this port automatically sets or resets every flip-flop and latch to its initial state, as
determined in the design. The Port Name field can be used to change the default port
name.

Bring Out Global Tristate as a Port - The option does the same as the last but for
the global tri-state pin.

Generate Test Fixture/Testbench File - This option writes out a Verilog test fixture
file or a VHDL test bench file depending on the chosen language. The test fixture file
has a .tv extension and the test bench file has a .tvhd extension. The file includes an
instantiation of the implemented design.

Include `uselib Directive in Verilog File -This is a Verilog option and writes a
library path pointing to the SIMPRIM library into the output Verilog (.v) file. The
path is written as follows :

`uselib dir=$XILINX/verilog/data libext=.vmd

where $XILINX is the location of the Xilinx software. The Xilinx gate level libraries
are explain in the following section.

Generate Pin File - This option writes out a netlist signal to physical pin mapping
file that can be useful during Simulation debug.

Retain Hierarchy in Netlist -This option writes out a Verilog HDL or VHDL file
that retains the hierarchy in the original input design netlist, grouping logic based on
the original design hierarchy.

Select the options that are required for the output netlist and Select OK. For
information, the EDIF tab in the simulation options template is for setting EDIF only
options

Applications Note 113 Using ModelSim PE 5.X With Xilinx Alliance
Software

13

5. On the Optional Targets section of the options dialog box there is a Produce Timing
Simulation Data check box. Check this box to output the netlist configured to the
options that have been chosen. Note without this checkbox selected no netlist files
will be written. If required then change the options in the implementation and
configuration templates. Select OK on the options dialog box and then RUN on the
implement dialog box. The will open the flow engine the design will be translated,
mapped, placed and routed, timing generated and finally a configuration bit map will
be produced. The time_sim.v or time_sim.vhd netlist file will be placed in the
working directory along with the back annotation file, time_sim.sdf.
The following is a script that can be used on the PC to implement the device in batch
mode. All of the commands needed are shown.

REM Build The NGD Database
ngdbuild -p xc4005xl-09-pc84 -uc ringrtl.ucf ringrtl.edf ringrtl.ngd
REM Map Logic To Device
map -p xc4005xl-09-pc84 -o map.ncd ringrtl.ngd ringrtl.pcf
REM Place And Route Design
par -w -ol 2 -d 0 map.ncd ringrtl.ncd ringrtl.pcf
REM Static Timing
trce ringrtl.ncd ringrtl.pcf -e 3 -o ringrtl.twr
REM Extact Timing Data
ngdanno ringrtl.ncd
REM Write Netlist And SDF Data
Verilog User : ngd2ver -w ringrtl.nga time_sim.v
VHDL User : ngd2vhdl -w ringrtl.nga time_sim.vhd
REM Create Bitmap File
bitgen ringrtl.ncd -l -w -f bitgen.ut

Note typing ngd2ver OR ngd2vhdl at the command line will return all the options for
these programs. This will allow the options explained in the simulation options to be
set on the command line.

 Using ModelSim PE 5.X With Xilinx Alliance Software Applications Note
113

14

Section 3. Compiling Gate Level
Libraries for Simulation

This section details where to find the source files for the Xilinx gate level libraries and
how to compile them ready for simulation in ModelSim. It covers the four options created
by the ability to use either the GUI or command line in ModelSim for either VHDL or
Verilog. Xilinx have models to support HDL designs at three different points in the design
flow. It is important to understand which libraries are used at each stage of the design
flow. Simulation is supported at the RTL level by being able to instantiate UNISIM library
components, LogiBLOX modules and CoreGEN models. Gate level post synthesis
simulation is supported by the UNISIM library components. Pre-route simulation and post
implementation back-annotated timing simulation is supported by the SIMPRIM library.
Both the UNIPRIM and SIMPRIM libraries adhere to IEEE-STDs. The VHDL libraries
use the VITAL IEEE-STD-1076.4 standard, and the Verilog library uses the IEEE-STD-
1364 standard. ModelSim fully accelerates the VITAL_Timing and primitive VITAL
libraries.
The UNISIM Library is used for functional simulation only, and contains default unit
delays. This library includes all the Xilinx Unified Library components that are inferred
by most popular synthesis tools. In addition, the UNISIM Library includes components
that are commonly instantiated, such as IOs and memory cells. The cells in the UNISIM
library are device dependant.
The SIMPRIM models have the appropriate functionality to allow back-annotation of
timing information using an SDF (Standard Delay Format) File. The netlist output by
ngd2ver and ngd2vhdl contain instantiations of SIMPRIMs models that can be annotated
with the generated SDF file containing the appropriate block and net delay data from the
place and route process. The SIMPRIM library is completely device independent, it is
purely a method of modeling the timing within the silicon.
The use of LogiBLOX and CoreGEN models is covered in the section titled 'Using
LogiBLOX and CoreGen Models'.

If the Xilinx A1 software is loaded on the same machine as ModelSim there will be an
environment variable called XILINX. This environmental variable will be set and pointing
to the Xilinx A1 tools installation. This variable is used in the next sections to reference
where to find the appropriate source files.

NB – The logical library names used for both the VHDL and Verilog sections are the
same for each library therefore attempting to follow both language sections
consecutively will cause the Model’s to be overwritten.

Compiling the VHDL gate level libraries with the ModelSim UI

UNISIM

The UNISIM (UNIfied SIMulation) libraries are only used for simulating at the RTL
level, and pre-NGDBUILD stage of the design flow. The cells contained in the library are
device dependant and only include unit delay timing. The VHDL source code for the
libraries can be found at : $XILINX/vhdl/src/unisims. This directory contains the
following files.

unisim_VCOMP.vhd (component declaration file)
unisim_VCOMP52K.vhd (substitution component declaration file for XC5200 designs)
unisim_VPKG.vhd (package file)
unisim_VITAL.vhd (model file)
unisim_VITAL52K.vhd (additional model file for XC5200 designs)
unisim_VCFG4K.vhd (configuration file for XC4K edge decoders)
unisim_VCFG52K.vhd (configuration file for XC5200 internal decoders)

Applications Note 113 Using ModelSim PE 5.X With Xilinx Alliance
Software

15

As can be seen there are device specific files due to the fact that some models within the
difference families have slightly different functionality. For this reason , not all of these
files can be compiled into the same library. To be able to use both 4K and 52K family
libraries, they have to be compiled into separate directories as a UNISIM library. Then for
each design the mapping of the UNISIM logical name would need to be changed to the
appropriate directory.
1. Change into the directory in which you wish to store the compiled libraries. Select

File ⇒ Change Directory, use the file browser to locate the desired directory. Any
library that is now created will be placed into this directory by default.

2. Create a unisim library. Select Library ⇒ Create A New Library, ensure that "a
new library and logical mapping to it" is selected, enter ‘unisim’ in the library box as
shown below.

3. Select OK to except this entry, this will execute both the vlib and vmap commands to
create a unisim library and directory with the same name in the working directory.

4. Compile the unisim source files. Select the Compile button. This will display the
Compile HDL Source Files dialog box. Set the library to unisim using the pull down
menu. Use the ‘Look in’ selection to locate the UNISIM source files. These will be

 Using ModelSim PE 5.X With Xilinx Alliance Software Applications Note
113

16

found in the Xilinx installation in $XILINX/vhdl/src/unisims.

The order of compilation is important for VHDL, the files and the compilation order
for each of the families is shown below. Compile each file in turn by selecting and
pressing compile or double clicking on the file.

unisim_VCOMP52K.vhd unisim_VCOMP.vhd
unisim_VPKG.vhd unisim_VPKG.vhd
unisim_VITAL.vhd unisim_VITAL.vhd
unisim_VITAL52K.vhd unisim_VCFG4K.vhd
unisim_VCFG52K.vhd

The UNISIM library is now ready to be used for simulation. If both families are required
then these two sets of files can be compiled into two separate UNISIM libraries, each
located in a different directory. Then use the ‘a map to an existing library’ option in the
create library dialog.

SIMPRIM

The SIMPRIM libraries are used for simulations post-implementation, the design stages
include post-NGDBuild, post-MAP and full timing simulation post place and route. The
SIMPRIM VHDL libraries are written using VITAL libraries, the packages defined by the
standard are fully accelerated by ModelSim. VITAL libraries include some overhead for
timing checks and back-annotation of timing data. The SIMPRIM back-annotation library
keeps these checks on by default; however, you or your system administrator can turn
them off. You must edit and re-compile the SIMPRIM components file after setting the
generics. The VHDL source code for the libraries can be found at :
$XILINX/vhdl/src/simprims. This directory contains the following files.

simprim_Vcomponents.vhd (VITAL Component Package)
simprim_Vpackage.vhd (VITAL Table Package)
simprim_VITAL.vhd (Architecture(VITAL) and Configurations)

These libraries are completely design independent therefore are used for the timing
simulation of any Xilinx device family.
1. Change into the directory in which you wish to store the compiled libraries. Select

File ⇒ Change Directory, use the file browser to locate the desired directory. Any
library that is now created will be placed into this directory by default.

2. Create a simprim library. Select Library ⇒ Create A New Library, ensure that "a

XC5200 Devices All Devices Except XC5200

Applications Note 113 Using ModelSim PE 5.X With Xilinx Alliance
Software

17

new library and logical mapping to it" is selected, enter ‘simprim’ in the library box
as shown below.

3. Select OK to except this entry, this will execute both the vlib and vmap commands to
create a simprim library and directory with the same name in the working directory.

4. Compile the simprim source files. Select the Compile button. This will display the

Compile HDL Source Files dialog box. Set the library to simprim using the pull down
menu. Use the ‘Look in’ selection to locate the SIMPRIM source files. These will be
found in the Xilinx installation in $XILINX/vhdl/src/simprims. The files need to be
compiled in the following order Vcomponents, Vpackage and VITAL as shown in the
list above. The SIMPRIM library is now ready to be used for simulation.

Compiling the VHDL gate level library using the command line

UNISIM

The following commands need to be executed on the command line to compile each of
the UNISIM source files. The cells contained in the library are device dependant and
only include unit delay timing. This means that there is a different set of files that need
to be compiled to allow simulation of the XC5200 or the XC4000 families. Below are
the two scripts for each family.

cd <directory storage location>
vlib unisim
vmap unisim unisim
vcom -work unisim {$XILINX/vhdl/src/unisims/unisim_VCOMP52K.vhd }
vcom -work unisim {$XILINX/vhdl/src/unisims/unisim_VPKG.vhd }
vcom -work unisim {$XILINX/vhdl/src/unisims/unisim_VITAL.vhd }
vcom -work unisim {$XILINX/vhdl/src/unisims/unisim_VITAL52K.vhd }
vcom -work unisim {$XILINX/vhdl/src/unisims/unisim_VCFG52K.vhd }

XC5200 Devices

 Using ModelSim PE 5.X With Xilinx Alliance Software Applications Note
113

18

cd <directory storage location>
vlib unisim
vmap unisim unisim
vcom -work unisim {$XILINX/vhdl/src/unisims/unisim_VCOMP.vhd }
vcom -work unisim {$XILINX/vhdl/src/unisims/unisim_VPKG.vhd }
vcom -work unisim {$XILINX/vhdl/src/unisims/unisim_VITAL.vhd }
vcom -work unisim {$XILINX/vhdl/src/unisims/unisim_VCFG4K.vhd }

SIMPRIM

The following commands need to be executed on the command line to compile each of
the SIMPRIM source files. The SIMPRIM VHDL libraries are written using VITAL
libraries, the packages defined by the standard are fully accelerated by ModelSim. These
commands can be saved in a ‘do’ to run as a script.

cd <directory storage location>
vlib simprim
vmap simprim simprim
vcom -work simprim {$XILINX/vhdl/src/simprims/simprim_Vcomponents.vhd}
vcom -work simprim {$XILINX/vhdl/src/simprims /simprim_Vpackage.vhd}
vcom -work simprim {$XILINX/vhdl/src/simprims /simprim_VITAL.vhd}

If the SIMPRIM library exists already compiled in a shared area then only the following
line needs to be executed, the vmap command maps the logical library to the physical
directory.

vmap simprim F:/some_directory/vendors/xilinx/simprim

Compiling the Xilinx Verilog gate level library with the ModelSim UI

UNISIM

The UNISIM (UNIfied SIMulation) libraries are only used for simulating at the RTL
level, and pre-NGDBUILD stage of the design flow. The cells contained in the library are
device dependant and only include unit delay timing. The Verilog source code model files
for the libraries can be found at : $XILINX/verilog/src/uni<technology>, where the
technologies are as follows;

Uni3000 (XC3000 families) Uni4000e (XC4000E families)
Uni4000x (XC4000X families) Uni5200 (XC5200 family)
Uni9000 (XC9000 families) UNISPARTAN (Spartan families)
UNISPARTANXL (Spartan XL families) UNIVIRTEX (Virtex families)

Each of these directories contain <model>.v files for their associated family. Because
there are a few cells with functional differences between Xilinx devices, a separate library
is provided for each supported device. For example, decoders contain pull-ups in some
devices and not in others. Also the global reset simulation mechanism differs across
certain families

9500 – Global reset is labeled “EPRLD”.
5200 – Global reset is labeled “GR” and is active high.
3000 – Global reset is labeled “GR” and is active low.
4000, 4000X, SPARTAN & VIRTEX – Global reset is labeled “GSR”.

All Devices Except XC5200

Applications Note 113 Using ModelSim PE 5.X With Xilinx Alliance
Software

19

To be able to use more than one device family libraries, they have to be compiled into
separate directories as a UNISIM library. Then for each design the mapping of the
UNISIM logical name would need to be changed to the appropriate directory.
1. Change into the directory in which you wish to store the compiled libraries. Select

File ⇒ Change Directory, use the file browser to locate the desired directory. Any
library that is now created will be placed into this directory by default.

2. Create a unisim library. Select Library ⇒ Create A New Library, ensure that "a
new library and logical mapping to it" is selected, enter ‘unisim’ in the library box as
shown below.

3. Select OK to except this entry, this will execute both the vlib and vmap commands to
create a unisim library and directory with the same name in the working directory.

4. Compiling the unisim Verilog source files. If the GSR signal needs to be controlled

NB
9500 +define+EPRLD_SIGNAL
3000, 5200 +define+GR_SIGNAL
Others +define+GSR_SIGNAL

 Using ModelSim PE 5.X With Xilinx Alliance Software Applications Note
113

20

during simulation then the following set up is required before compiling the library.
The library must be compiled with a special switch specific to your design. Select the
Compile button. This will display the compile dialog box, at the bottom select the
Default Options button. This will display the compiler options dialog box, select the
Verilog tab. This will display the dialog box above.
Select the Add Macro button and add a macro name of GR/EPRLD/GSR_SIGNAL
and a value of testbench_model_name.design_instance_name.GSR. Where the
testbench_model_name is the name of your test bench and the design_instance_name
is the name of the instantiation of your design. Note this has to be done on a project
by project basis if the control of the GSR is necessary. Select the OK button on this
dialog box.

5. Using the ‘Look in’ browser, locate the directory
$XILINX/verilog/src/uni<technology> where technology is the device family that
you are using. Select the complete list of .v files, by selecting the first file in the list
with the mouse and then selecting the last file in the list with the mouse while holding
down the shift key. Select the Compile button, this will compile the compile library.

SIMPRIM

The SIMPRIM libraries are used for simulations post-implementation, the design stages
include post-NGDBuild, post-MAP and full timing simulation post place and route. They
are also used in RTL simulations using models generated by LogiBLOX. The SIMPRIM
Verilog libraries are written using Verilog language primitives and UPD’s which are fully
accelerated by ModelSim. Verilog libraries include the overhead of runtime timing checks.
These checks can be disabled at simulation time by using the ‘disable timing checks in
specify blocks’ in the Verilog options menu of the load design dialog box. The Verilog
source code can be found at : $XILINX/verilog/src/simprims. This directory contains the
all the .vmd model files for the simprim library.

These libraries are completely design independent and therefore are used for the timing
simulation of any Xilinx device family.

1. Change into the directory in which you wish to store the compiled libraries. Select
File ⇒ Change Directory, use the file browser to locate the desired directory. Any
library that is now created will be placed into this directory by default.

2. Create a simprim library. Select Library ⇒ Create A New Library, ensure that "a
new library and logical mapping to it" is selected, enter ‘simprim’ in the library box
as shown below.

3. Select OK to except this entry, this will execute both the vlib and vmap commands to
create a simprim library and directory with the same name in the working directory.

Applications Note 113 Using ModelSim PE 5.X With Xilinx Alliance
Software

21

4. Compile the simprim source files. Select the Compile button. Select the Compile
button. This will display the Compile HDL Source Files dialog box. Set the library to
simprim using the pull down menu. Use the ‘Look in’ selection to locate the

SIMPRIM source files. These will be found in the Xilinx installation in
$XILINX/verilog/src/simprims.

Change the files of type to All files (*.*). Select the complete list of .vmd files, by
selecting the first file in the list with the mouse and then selecting the last file in the
list with the mouse while holding down the shift key. Select the Compile button, this
will compile the compile library. The SIMPRIM library is now ready to be used for
simulation.

Compiling the Xilinx Verilog gate level library using the command line

UNISIM

The following commands need to be executed on the command line to compile each of
the UNISIM source files. The cells contained in the library are device dependant and
only include unit delay timing. This means that there is a different set of files that need
to be compiled to allow simulation of each of the Xilinx technology families. If the GSR
signal needs to be controlled during simulation then it is necessary to compile the library
with a macro defined. This is done on a design by design basis due to the fact that the
GSR needs to be connected via a hierarchical name. There is an example below with and
without the GSR connected. Note that GSR is for 4000, 4000X, SPARTAN and
VIRTEX devices, see above for global names for other device families.

cd <directory storage location>
vlib unisim
vmap unisim unisim
vlog –work unisim \
+define+GSR_SIGNAL=testbench_module_name.design_instance_name.GSR \
$XILINX/verilog/src/technology_name/*.v

• testbench_model_name = The name of your test bench module.

With GSR

 Using ModelSim PE 5.X With Xilinx Alliance Software Applications Note
113

22

• design_instance_name = The instance name of your design.
• technology_name = The technology used in your design.

cd <directory storage location>
vlib unisim
vmap unisim unisim
vlog –work unisim $XILINX/verilog/src/technology_name/*.v

• technology_name = The technology used in your design.

SIMPRIM

The following commands need to be executed on the command line to compile each of
the SIMPRIM source files. The SIMPRIM Verilog libraries are written using Verilog
language primitives and UPD’s which are fully accelerated by ModelSim. These
commands can be saved in a ‘do’ to run as a script.

cd <directory storage location>
vlib simprim
vmap simprim simprim
vlog -work simprim {$XILINX/verilog/src/simprims/*.vmd}

If the SIMPRIM library exists already compiled in a shared area then only the following
line needs to be executed, the vmap command maps the logical library to the phyiscal
directory.

vmap simprim F:/some_directory/vendors/xilinx/simprim

Without GSR

Applications Note 113 Using ModelSim PE 5.X With Xilinx Alliance
Software

23

Section 4. Compile and Timing
Simulation of the VHDL Gate Level
Source Files

This section details how to use ModelSim to run a full timing gate level simulation using
Xilinx SIMPRIM’s. This section includes a step by step guide on how to use the GUI to
run the gate level simulations, however it does assume two important steps prior to
starting. The first is that a VHDL VITAL structural netlist and SDF file has been exported
from the place and route process, see section 2 of this document for full details. Secondly,
the SIMPRIM’s library source files are compiled into a library named ‘simprim’, see
section 3 of this document for full details. ModelSim fully accelerates the VITAL timing
and primitive packages, this means that there are built in routines that implement the
behavior of these functions, the VHDL is not evaluated line by line. The VITAL packages
are pre-compiled and ready to use when the product is installed. Xilinx use these timing
and primitive packages to construct the cells from their technology and therefore benefit
from the acceleration. As part of the VITAL standard there is a method set down to allow
timing information to be taken from an SDF (Standard Delay Format) file and annotated
onto the models. ModelSim reads an SDF file output from the place and route process and
annotates the timing values in the file onto the generics of the model. A simulator is said
to be VITAL compliant when it accelerates the VITAL packages and allows SDF data to
be annotated onto VITAL models.
1. Ensure that the simprim library has been compiled and that there is a correct mapping

to the library. For full details of how the compile the library see section 3 of this
document. Select Library ⇒ Browse Libraries.., select the simprim line and hit the
view button, this will display the library dialog boxes as below.

 Using ModelSim PE 5.X With Xilinx Alliance Software Applications Note
113

24

Close both of the dialog boxes after ensuring the correct mapping.
2. Compile the netlist output from M1, if the default name was unchanged then the file

name for this file will be time_sim.vhd. The structural netlist can be compiled directly
into the work library used for the RTL simulations, however this does have an effect
on the set up for running RTL simulations. The reason for this is the fact that the
entity that is produced by M1 has the same name as the entity used for RTL
simulations. This is a requirement to allow the use of the same testbench without
modification. However the library use clauses are not the same in the two entities and
the dependency rules of VHDL mean that all files from the entity upwards have to be
re-compiled. The best solution to get around this problem is to compile the structural
netlist into a newly created library. A new configuration can then be written to bind
the new structural design into the existing testbench. Select Library ⇒ Create A
New Library, ensure that "a new library and logical mapping to it" is selected, enter
‘gates’ in the library box and then select OK. Select the Compile button. This is the
first button on the left hand side and will start the Compile HDL Source Files menu.
This menu will automatically select the correct language compiler based upon the
source file selected. Locate the time_sim.vhd file using the file browser. Ensure that
the library is set to ‘gates’. Select the compile button.
Note : time_sim.vhd includes the structural netlist for the design and two components
ROC (Reset On Configuration) and TOC (Tri-state On Configuration) The delay for
these actions to occur can be modified by changing the time generic on each of these
components, the default is 100ns for ROC and 0ns for TOC.
Change the library in the compile dialog window back to ‘work’ and compile the
config_gate.vhd source file. Cancel the compile dialog box.

3. Loading the simulator. Select File ⇒ Load New Design or select the Load Design
button. This will display the Load Design dialog box, which displays the design units
available in each of the libraries. Ensure that the design tab is highlighted. Ensure that
the work library is visible in the library section. Each of the units in the work library
should be displayed along with a description of the type of unit, select the

Applications Note 113 Using ModelSim PE 5.X With Xilinx Alliance
Software

25

configuration named test_bench_gate. Select the SDF tab, this will display the SDF
options. This menu sets up the annotation of the SDF file, it allows multiple SDF files
to be annotated into different regions of a model. Select Add… , this will display the
specify an SDF file dialog box.

Use the browse button to locate the SDF file that was generated by the place and
route process. The default name of this file will be time_sim.sdf. The Apply to region
selection needs to be set to the instantiated name of the device, in this case the name
of the instantiation is ring_INST. Select the OK button, and re-select the design tab.
Ensure that the test_bench_gate is still selected and hit load design. It is possible to
run the simulation without the SDF file. This is done by not selecting the SDF file,
simulations in this case have no net loading information and only have internal gate
timing.

4. This will load all the units necessary to run the gate level simulation and will read the
SDF file and annotate them onto the generics of the gate level cells. Open both the

structure and wave windows, select View ⇒ Structure and View ⇒ Wave. Notice
that the structure window shows each of the gates in the design. Select the test bench
test_ringbuf and drag it over and drop it into the waveform viewer.

5. Run the simulation. There are two ways of running the simulation for a specified time
using the GUI. The first one is to type run 10000000 at the VSIM prompt in the main
window. The other is to enter the time value into the run window in the set of menu

 Using ModelSim PE 5.X With Xilinx Alliance Software Applications Note
113

26

icons at the top of the main window, and then hitting the Run button. At the end of
the run time the wave window will display the results of the simulation. It can be seen
from the display that txda is a steady pseudo-random data stream and rxda represents
the same data in a burst of bits.

The following is a script file that can be used to run the gate level simulation with
SDF back annotation.

cd <design directory>
vlib gates
vmap gates gates
vcom –work gates time_sim.vhd
vcom –work work config_gate.vhd
vsim -sdftyp /ring_INST=F:/time_sim.sdf -multisource_delay \
latest work.test_bench_gate
view *
add wave /*
run 10000000

To run without the delays annotated from the SDF file then the vsim line above
should be replaced with the following line.

vsim latest work.test_bench_gate

In this case simulation time will be shorter but the model will not be a complete
representation of the place and routed device. This is just a functional type simulation
and can be used to verify that the Synthesis tool has correctly implemented the
design.

Applications Note 113 Using ModelSim PE 5.X With Xilinx Alliance
Software

27

Section 5. Compile and Timing
Simulation of the Verilog Gate
Level Source Files

This section details how to use ModelSim to run a full timing gate level simulation using
Xilinx SIMPRIM’s. This section includes a step by step guide on how to use the GUI to
run the gate level simulations, however it does assume two important steps prior to
starting. The first is that a Verilog structural netlist and SDF file has been exported from
the place and route process, see section 2 of this document for full details. Secondly, the
SIMPRIM’s library source files are compiled into a library named ‘simprim’, see section
3 of this document for full details. ModelSim fully accelerates the Verilog primitives and
UDP’s (User Defined Primitives), this means that there are built in routines that
implement the behavioral of these functions, the Verilog is not evaluated line by line.
Xilinx use these primitives and UDP’s to construct the cells from their technology and
therefore benefit from the acceleration. As part of the an OVI (Open Verilog
International) standard there is a method set down to allow timing information to be taken
from an SDF (Standard Delay Format) file and annotated onto the models. ModelSim
reads an SDF file output from the place and route process and annotates the timing values
in the file onto the parameters (specparam’s) of the model.
1. Ensure that the simprim library has been compiled and that there is a correct mapping

to the library. For full details of how the compile the library see section 3 of this
document. Select Library ⇒ Browse Libraries, select the simprim line and hit the
view button, this will display the library dialog boxes.

 Using ModelSim PE 5.X With Xilinx Alliance Software Applications Note
113

28

Close the library contents dialog box after ensuring the correct mapping.
2. Compiling the netlist output from M1, if the default name was unchanged then the

file name for this file will be time_sim.v. The module name by default will be the
same name as used by the RTL version of the device. This means if the new structural
netlist is compiled into the library used for the RTL simulations, the top level of the
RTL version will be over-written. This is not too much of a problem if the RTL
design is small and quick to compile, but if you wish to switch between RTL and gate
level simulations then this can become monotonous. A solution to this is to compile
this new netlist into a separate library and to delete the top level design from the work
library. The top level RTL version can then be re-compiled into a new library and the
two versions can be selected using the –L switch in the simulator. The following
instructions will detail this method. If it is not important to switch between gate and
RTL simulations then the new netlist can be compiled into the work library. The
simulator switch –L is then only needed to select the simprim library. Select the work
library in the library browser and press the View button, this will show the contents of
the work library. Select the RTL top level module ringbuf and then press the delete
button at the bottom of the dialog box. Answer yes to verify the deletion of the
module. Close the library browser using the close button.

3. Before compiling the netlist it is important to understand how the global reset and tri-
state are controlled. Every storage cell in the simprim library has a GSR (Global Set
Reset) pin. On the device during power on, the complete device is reset. There is a net
within the netlist that allows the designer to connect some stimulus to simulate the
action of both the GSR and the GTS (Global Tri-state). In the test bench file there are
two initial blocks that produce the stimulus for the GSR and GTS signals, the GSR is
shown below.

To connect the gsr signal from the test bench into the netlist it is necessary to compile
the netlist file with the GSR_SIGNAL and/or GTS_SIGNAL macros defined and
pointing to the drivers in the testbench. Note that the GSR is normally active high, in
this design the reset is active low therefore is inverted. These steps are shown in the
following instructions.

4. Create a new library to hold the gate level netlist. Select Library ⇒ Create A New
Library, enter the library name ‘gates’ and then press OK. Select the Compile
button. This is the first button on the left hand side and will start the Compile HDL
Source Files menu. Change the library to the newly created gates library. Select the
default options button at the bottom of the dialog and then select the verilog tab.
Select the add macro button and enter GSR_SIGNAL as the macro name and
test_ringbuf.gsr as the value, press OK. If the gts signal needs to be added then select
add macro again and enter GTS_SIGNAL as the macro name and test_ringbuf.gts as
the value, press OK. Press the OK button on the options dialog.

Select the time_sim.v file and press the compile button. This will compile the netlist
into the gates library. Cancel the compile dialog box.

5. Loading the simulator. Select File ⇒ Load New Design or select the Load Design
button. This will display the Load Design dialog box, which displays the design units

reg gsr, gts;
 initial begin gsr = 1'b0;
 #100 gsr = 1'b1;
 end

Applications Note 113 Using ModelSim PE 5.X With Xilinx Alliance
Software

29

available in each of the libraries. Ensure that the design tab is highlighted. Ensure that
the work library is visible in the library section. Each of the units in the work library
should be displayed along with a description of the type of unit, select the module
called test_ringbuf. There is an SDF tab on the compile dialog for setting up where
the SDF file can be found and which region to apply the file. The nelist that is output
by Xilinx has the $sdf_annotate task included therefore it is not necessary to locate
the file from the dialog box. If control is needed over the annotation process, for
example you wish to simulate with and without the annotation, then it is necessary to
comment out the annotation task from the generated netlist. The line in the
time_sim.v file that needs commenting out is as follows.

If the SDF file needs to be applied using the dialog box then select the SDF tab and
the then the Add button. Locate the SDF file and apply it to the ring_INST region,
which is the instantiation of the device. Note. When using the $sdf_annotate task the
time_sim.sdf file must either be in the working directory or have a absolute path.

Now select the Verilog tab on the compile dialog. It is necessary to detail the search
paths for ModelSim to find modules that are not located in the work library.

// initial $sdf_annotate("time_sim.sdf");

 Using ModelSim PE 5.X With Xilinx Alliance Software Applications Note
113

30

Enter ‘simprim’ in the additional search libraries box and press return, the enter
‘gates’ and press return.
Return to the Design tab and ensure that the test_ringbuf module is still selected, and
then press Load. If the netlist has not been compiled into the gates library then it is
not necessary to include the gates library in the search paths.

6. This will load all the units necessary to run the gate level simulation and will read the
SDF file and annotate them onto the specprams of the gate level cells. Open both the
structure and wave windows, select View ⇒ Structure and View ⇒ Wave. Notice
that the structure window shows each of the gates in the design. Select the test bench
test_ringbuf and drag it over and drop it into the waveform viewer.

7. Run the simulation. There are two ways of running the simulation for a specified time
using the GUI. The first one is to type run 10000000000 at the VSIM prompt in the
main window. The other is to enter the time value into the run window in the set of
menu icons at the top of the main window, and then hitting the Run button. At the end
of the run time the wave window will display the results of the simulation. It can be
seen from the display that txda is a steady pseudo-random data stream and rxda
represents the same data in a burst of bits.

The following is a script file that can be used to run the gate level simulation with
SDF back annotation.

cd <design directory>
vlib gates
vmap gates gates
vlog +define+GSR_SIGNAL=test_ringbuf.gsr \
 +define+GTS_SIGNAL=test_ringbuf.gts \
 -work gates {F:/testcases/ringbuffer/golden/time_sim.v}
vsim -sdftyp /ring_INST=F:/time_sim.sdf -multisource_delay \
latest –L simprim –L gates work.test_bench_gate
view *
add wave /*
run 10000000000

If it is not necessary to use the GSR or GTS then the +define lines can be removed
from the vlog command line. If the $sdf_annotate task is being used within the Xilinx
netlist then the –sdftyp and –multisource_delay switches can be removed from the
vsim command line.
Note : To run the RTL simulations again the top level RTL module needs to be re-
compiled in the work library or into a new library pointed to by the vsim –L switch.

Applications Note 113 Using ModelSim PE 5.X With Xilinx Alliance
Software

31

Section 6. Using LogiBLOX and
CoreGen Models
LogiBLOX

LogiBLOX is a graphical interactive design tool that you can use to create high-level
modules such as counters, shift registers, and multiplexers. LogiBLOX includes both a
library of generic modules and a set of tools for customizing them. Using the LogiBLOX
graphical user interface (GUI) you can create and process high-level LogiBLOX modules
that fit into either a schematic-based design or HDL synthesis-based design.

The solution to simulation is slightly different between the two languages. There is a
LogiBLOX library written in VHDL which is used by the behavioral models generated by
LogiBLOX. For Verilog a structural netlist is generated using the UNISIM library. The
following instructions detail how to set up the simulation environment to simulate using
either language.
1. Start the LogiBLOX GUI. If this is the first time it has been started then the setup

dialog box will be displayed. If it is not the first time select the setup button. Select
the vendor tab and set the vendor to ‘other’ and the bus notation to ‘BI’. Select the
project directory and set it using the browse button to a working directory. Select the
device family tab and select a family, for example XC4000XL. Select the options tab
and select behavioral VHDL netlist and structural Verilog netlist in the simulation
netlist section. Select the VHDL template and Verilog template in the component
declaration section. Finally press the OK button to apply the settings.

2. Back in the module selector set the module type to counters. Select the bit width to 8.
De-select the tick in the D_IN check box and select the tick in the terminal count
check box. Select the OK button to confirm all settings and generate the module.

 Using ModelSim PE 5.X With Xilinx Alliance Software Applications Note
113

32

3. This will generate four files that can be used for simulation. <module>.vhd is a
behavioral VHDL model that uses the VHDL LogiBLOX libraries. <module>.v is a
Verilog structural netlist that uses the UNISIM gate level library. <module>.vhi
includes a template component declaration and a template component instantiation of
the generated module. <module>.vei includes a template module declaration and a
template module instantiation of the generated module.

4. Change into the directory in which you wish to store the LogiBLOX libraries. Select
File ⇒ Change Directory, use the file browser to locate the desired directory. Create
a logiblox library. Select Library ⇒ Create A New Library, ensure that "a new
library and logical mapping to it" is selected, enter ‘logiblox’ in the library box and
select OK. Select the Compile button. Change the library to the newly created
‘logiblox’ library. Change directory to $XILINX/vhdl/src/logiblox and compile the
VHDL files in the following order, mvlutil.vhd, mvlarith.vhd and logiblox.vhd. Select
the done button.

5. If no work library exists, select Library ⇒ Create A New Library, ensure that "a
new library and logical mapping to it" is selected, enter ‘work’ in the library box and
select OK.

6. Select the Compile button. Change the library to the newly created ‘work’ library. If
the module name has been kept to the default and the file output from LogiBLOX
will be acc.vhd. Compile the acc.vhd file followed by the testacc.vhd file into the
work library.

7. Loading the simulator. Select File ⇒ Load New Design or select the Load Design
button. This will display the Load Design dialog box, which displays the design units
available in each of the libraries. Ensure that the design tab is highlighted. Ensure that
the work library is visible in the library section. Select the test_counter entity and
press the load button.

8. Select View ⇒ Structure and View ⇒ Wave, select the top level block in the
structure window and drag and drop it into the wave window.

9. Type 10000000 in the Run box in the main window and then hit the run for button as
shown below.

4. Ensure that there is a mapping to the UNISIM Verilog library, the UNISIM library
will have to be re-compiled to connect to the gsr and gts, see section 3 of this
document for details. The GSR_SIGNAL macro should be set to test_counter.gsr and
the GTS_SIGNAL macro should be set to test_counter.gts. If no work library exists,
select Library ⇒ Create A New Library, ensure that "a new library and logical
mapping to it" is selected, enter ‘work’ in the library box and select OK.

5. Select the Compile button. Change the library to the newly created ‘work’ library. If
the module name has been kept to the default and the file output from LogiBLOX
will be acc.v. Compile the acc.v file followed by the testacc.v file into the work
library.

6. Loading the simulator. Select File ⇒ Load New Design or select the Load Design
button. This will display the Load Design dialog box, which displays the design units
available in each of the libraries. Ensure that the design tab is highlighted. Ensure that
the work library is visible in the library section. Select the test_counter module and
then the Verilog tab. Add uniprim into the additional search library box and then
select the load button.

7. Select View ⇒ Structure and View ⇒ Wave, select the top level block in the
structure window and drag and drop it into the wave window.

VHDL User

Verilog User

Applications Note 113 Using ModelSim PE 5.X With Xilinx Alliance
Software

33

8. Type 100000000 in the Run box in the main window and then hit the run for button
as shown below.

The output from both the VHDL and Verilog simulations should show a simple binary
count which will count up and down as shown below.

CoreGEN

The Xilinx CORE Generator System (CoreGEN) provides the designer with a catalog of
ready-made functions ranging in complexity from simple arithmetic operators such as
adders, accumulators and multipliers, to system-level building blocks including filters,
transforms and memories. CoreGEN outputs both VHDL and Verilog behavioral models
for simulation. The following section details how to set up the VHDL library and how to
simulate using either a VHDL or Verilog model.
1. Start the CoreGEN GUI, the product will start and the core generator options will be

displayed. In the output products select, VHDL behavioral simulation model, VHDL
instantiation template, Verilog behavioral simulation model and Verilog instantiation
template options. Select a target technology, leaving it at default is fine for this
exercise. Select the OK button to apply the selections.

2. Back in the CoreGEN GUI there is a browser that allows the selection of a library of
modules that can be generated. The core generator library is made up of the
AllianceCore and LogiCore libraries. The AllianceCore library includes models from
Xilinx’s Alliance partners and includes various models for applications such as ATM,
USB and standard microprocessors. The LogiCore library includes models for
standard building blocks such as DSP Filters, standard math’s functions and Xilinx’s
own PCI functions. Select Options ⇒ System Options and set the working directory,
this is the directory that all files will be written.

3. Double click the LogiCORE folder, than open the Math’s folder and finally the
Adders and Subtracters. This will display a number of models, select the Registered
Adder by double clicking. This will open the Registered Adder model builder dialog
box. Enter a component name of ‘adder’ and change the width to 8 bit unsigned,
finally hit the Generate button.

4. This will generate four files that can be used for simulation. <module>.vhd is a
behavioral VHDL model that uses the VHDL CoreGEN libraries. <module>.v is a
self contained Verilog behavioral model. <module>.vhi includes a template
component declaration and a template component instantiation of the generated
module. <module>.vei includes a template module declaration and a template module
instantiation of the generated module.

 Using ModelSim PE 5.X With Xilinx Alliance Software Applications Note
113

34

5. In ModelSim, change into the directory in which you wish to store the CoreGen
utilitities library. Select File ⇒ Change Directory, use the file browser to locate the
desired directory. Create a ‘xul’ library. Select Library ⇒ Create A New Library,
ensure that "a new library and logical mapping to it" is selected, enter ‘xul’ in the
library box and select OK. Select the Compile button. Change the library to the
newly created ‘xul’ library. Change directory to
<installed_directory>\COREGen\coregen\ip\xilinx\xul and compile the ul_utils.vhd
file. Select the done button.

6. If no work library exists, select Library ⇒ Create A New Library, ensure that "a
new library and logical mapping to it" is selected, enter ‘work’ in the library box and
select OK.

7. Select the Compile button. Change the library to the newly created ‘work’ library.
The model file output from CoreGEN is adder.vhd. Compile this model followed by
the testadder.vhd test bench file.

8. Loading the simulator. Select File ⇒ Load New Design or select the Load Design
button. This will display the Load Design dialog box, which displays the design units
available in each of the libraries. Ensure that the design tab is highlighted. Ensure that
the work library is visible in the library section. Select the test_adder entity and press
the load button.

VHDL User

Applications Note 113 Using ModelSim PE 5.X With Xilinx Alliance
Software

35

9. Select View ⇒ Structure and View ⇒ Wave, select the top level block in the
structure window and drap and drop it into the wave window.

10. Type 20000 in the Run box in the main window and then hit the run for button as
shown below.

5. If no work library exists, select Library ⇒ Create A New Library, ensure that "a
new library and logical mapping to it" is selected, enter ‘work’ in the library box and
select OK.

6. Select the Compile button. Change the library to the newly created ‘work’ library.
Compile the file output by coreGEN, adder.v into the work library. Compile the
testadder.v file into the work library.

7. Loading the simulator. Select File ⇒ Load New Design or select the Load Design
button. This will display the Load Design dialog box, which displays the design units
available in each of the libraries. Ensure that the design tab is highlighted. Ensure that
the work library is visible in the library section. Select the test_adder module and
then select the load button.

8. Select View ⇒ Structure and View ⇒ Wave, select the top level block in the
structure window and drag and drop it into the wave window.

9. Type 20000000 in the Run box in the main window and then hit the run for button as
shown below.

The output from both the VHDL and Verilog simulations should show the addition of the
three vector values.

For more information
Consult the other technical notes under the support pages of http://www.model.com and
your Synthesis and FPGA vendor's documentation for more information on HDL
simulation for FPGA design. You can also visit Xilinx’s Web page, where there is a
technical note on HDL simulation which can be found at
www.xilinx.com/techdocs/1923.htm.

Verilog User

