Model Technology

2.

Mhe Programmable Logie Campany

Applications Note — 113

Using ModelSim PE 5.X With Xilinx
Alliance Software

22 January 1999 Revision 1.0

Using ModelSim PE 5.X With Xilinx Alliance SOftWare...........cccoeceeieiinii e 1
Section 1. MOl SIM RTL FIOW ...ccviiiiiieeiieieereeeese ettt nne e 2
Section 2. Synthesis and Place and ROULE.ooiueiiiiiiiieeic et 10
Section 3. Compiling Gate Level Librariesfor SImulationccooeeeiieeiiiiiiiniiiiesee e 14
Compiling the VHDL gate leve librarieswith the ModelSIm Ulccooooiiiiiiiiiiiiiieee, 14
UNTSIM ¢ttt ettt bbb bt bt e b e s bt sb e e bt e besb e s beeaeeebesbesbeennenee e 14
SIMPRIM ..ottt bbb bbbt b e s b sb e e ae e besbesbe e e e sbesbesaeene e 16
Compiling the VHDL gate level library using the command line...........ccoccoevieeiieniiininieenenen, 17
UNTSIM ¢ttt et b bt e bt b e h e e b e b e sb e e bt e beeb e s b e e ne e besbesbeeneenee e 17
SIMPRIM ..ottt bbbt bt he et e s b e eb e e ae e b e sbesbe e e e sbesbesanenennen 18
Compiling the Xilinx Verilog gate level library with the ModelSIm Ul..........cccoociiiiiiiinnnnnen. 18
UNTSIM <ttt bbb bbbt h e b e bt s b e e he et e eb e s beeseesbesbesbeenseneeee 18
SIMPRIM ..ottt bbb bt bt a e b e s b e eb e s ae e b e sbesbe e e e sbesbesaeene e 20
Compiling the Xilinx Verilog gate leve library using the command line............cccooceiiineenen. 21
UNTSIM <ttt bbbt b e bt ekt e b e bt sb e e bt e besbe s beeae e besbesbeeneenreee 21
SIMPRIM ..ottt bbbt bt s h e et e s b sb e e ae et e sbesbe e e e sbesbesaeene e 22
Section 4. Compile and Timing Simulation of the VHDL Gate Level Source Files...........cc..c... 23
Section 5. Compile and Timing Simulation of the Verilog Gate Level Source Files..................... 27
Section 6. Using LogiBLOX and CoreGen MOGEIS.........oueeiiiiiieieie et 31
(0o 1 =11 @) TR P TP 31
COMEGEN ...ttt et bbbt b e bt b e bt e bt e ae et e s b e e b e e aeeabesbesbe e b e sbesbesaeennenrens 33
FOr MOI€ INFOMMEBLIONeeteeteeiteest ettt sb bbb bbb e beesneenneesaeas 35

ModelSim is a single kerndl, dual language simulator. You are able to run ether Verilog
or VHDL separately or mixed in the same design. You can have Verilog modules
instantiated in VHDL architectures or VHDL entities instantiated in Verilog Modules.
You can even mix languages at any level of abstraction and with any number of
hierarchical levels i.e Verilog module instantiated by a VHDL architecture called from a
Verilog module. One simulator, one interface, two languages. Xilinx Alliance software is
capable of outputting both Verilog and VHDL netlists, there are no restrictions on which
language you choose. Model Sim uses compiled HDL libraries, you must first compile the
Xilinx supplied libraries. The Xilinx Alliance ModdSim flow for each language is
dightly different and is described in this document. Each language flow will be described
with command line and User Interface examples. A language labdl will be attached to the
text detailing the appropriate language. It is possible to skip the sections for the language
that you do not use.

Applications Note 113 Using Moddel Sim PE 5.X With Xilinx Alliance 1

[

Section 1. ModelSim RTL Flow

The design used in this example is very smple and easy to understand. It isa simplering
buffer from a data communications application. Transmit Data is input into the buffer at a
constant rate clocked by the transmit clock (txc). The storage location address of the
incoming data for transmission, transmit data (txda) is pointed to by a counter. Each
location of the buffer is pointed to in turn in a sequential fashion. The output pointer logic
is driven by the output of lower order bits of the same counter and an output strobe. This
generates a valid output location address for the receive data. This resultsin the data being
output in a burst fashion, a diagram of the design is shown below.

Clock

Transmit CLK (tXc)

R Transmit Data (txda)

B T A

Input Pointer Logic

Pointer

> Buffer Storage

Output Pointer Logic

Output l Receive Data (rxda)

Strobe |-| |-| |-|

The design has been decomposed into three blocks, these three blocks are connected by a
netlist. The design itsalf is driven by a testbench that provides both stimulus and some self
checking routines. The complete set of files are available in both VHDL and Verilog.
VHDL files have the .vhd extension and Verilog files have the .v extension. The size of
the design can be controlled by two parameters / constants that are set at the top leve.
counter_size defines the size of the counter necessary to address the buffer and buffer_size
defines the length of the storage buffer. The testbench generates data for the ring buffer
with a Pseudo random data pattern generator. The Pseudo random data is generated using
a 20 bit Linear Feedback Shift Register, the LFSR is set up to produce a 2° Pseudo
random patterns. The testbench also includes self checking routines that analyse the data
output from the ring buffer and print messages to warn of any differences.

2

Using Modd Sim PE 5.X With Xilinx Alliance Software Applications Note

171N

ModelSim can be used in batch mode, command line, or with the User Interface (Ul).
Batch mode is the typical method when running regression tests. Command line mode is
very similar to batch mode in the fact that the Ul is not displayed, the only interface is a
command line console. The user interface mode can accept both command line, and Ul
input. The following commands can be used in any mode. Note that the view * (view all
windows) and the add wave /* (add all signals at top level to wave form window) will
show results only when in Ul mode. If you save these commands in afile ("xilinx_rtl.do"
is a common macro file naming convention) it can be used in Ul mode, command, or
batch modes.

VHDL User

cd <design directory>

vlib work

vmap work work

vcom control.vhd retrieve.vhd store.vhd Ringrtl.vhd
vcom Testring.vhd config_rtl.vhd

vsim work.test_bench_rtl

view *

add wave /*

run 1000000000

Verilog User

cd <design directory>

vlib work

vmap work work

vlog control.v retrieve.v store.v Ringrtl.v
vlog Testring.v

vsim work.test_ringbuf

view *

add wave /*

run 1000000000

The steps above are explained below and should be carried out using the Ul in the
following way. Start Model Sim by doubl e clicking the icon or modelsim.exe.

1. Change into the design directory. Select File P Change Directory, use the file
browser to locate the desired directory. This directory becomes the working directory.
Any library that is now created will be placed into this directory by default.

2. Create aworking library. Select Library P Create A New Library, ensure that "a
new library and logical mapping to it" is selected, enter work in the library box as
shown below.

7. Create a Mew Library

Create

& anew library and & logical mapping to it

i~ anewlibrar only (ho mapping)

™ amap to an exizting librany

Library: Ewnrk

Mapsz lo: |W|:urk ﬂ Browsae,

k. | Cancel

Applications Note 113 Using Moddel Sim PE 5.X With Xilinx Alliance 3

[

3.

4.

Select OK to except the entry, this will execute both the vlib and vmap commands
shown in the command line script listing above.

Compilethe design files. Select the Compile button. Thisisthe first button on the left
hand side and will start the Compile HDL Source Files menu. This menu will
automatically select the correct language compiler based upon the source file
selected. (veom for VHDL source files and vliog for Verilog source files).

Compile HDL Source Files

Librany: Iwurk

Lookin: |4 al

,J config_rtl. vhd ,ﬂ Ringrtl.«hd

_] contral.v [2] store.w
@ share.vhd
|j Hetrleve Y @ Testring. v

é] Testring. vhd

@ retrneve

.j Hlngl:uuf W

File name: i"stnre.vhd" "retrieve.vhd" "control vhd' Carmpile I
Filez of tppe: IHDL Files [#.whd;* v __'_! Dane |

Drefault Options. .. | Edit Source |

For the VHDL design select the lower level blocks, control.vhd, retrieve.vhd,
store.vhd and then select the Compile button. (Multiple select is achieved by holding
down the control key and sdlecting with the mouse button). Then compile the
following files in the order stated by selecting the file and then selecting the Compile
button. Select the top level design block Ringrtl.vhd, the testbench file Testring.vhd
and finally the configuration file config_rtl.vhd. It is also possible to compile a single
file by smply double clicking with the mouse on the desired file. For the Verilog
design sdlect all the .v files and then select the Compile button.

Loading the simulator. Select File P Load New Design or sdlect the Load Design
button. Thiswill display the Load Design dialog box, which displays the design units
availablein each of thelibraries. Ensure that the design tab is highlighted. Ensure that
the work library isvisible in the library section. Each of the units in the work library
should be displayed along with a description of the type of unit. The description will
be entity, architecture, config or package for VHDL units and module for Verilog
units. Each unit type is also highlighted with a different colour. At the beginning of
the line with a VHDL entity there in a'+' sign. Toggling this '+' sign with the mouse
shows the architectures that have been compiled for the entity. For the VHDL design
sdlect the configuration test_bench_rtl and then the load button. For the Verilog
design sdlect the test bench module test_ringbuf and then the load button. This will
load each of the design units needed for the simulation of either the VHDL
configuration or the Verilog testbench module. Note that the cursor line in the
Mode Sim main window changes to VSIM > this indicates that smulation mode in
active,

Opening debug windows. Select View b All, thiswill open all of the debug windows.
To make sure that all of the windows are positioned without any overlap select
Window b Initial Layout. The complete screen should be filled with the nine
windows including the main ModeddSm window. Each of these windows are
explained in the following text.

4

171N

Using Modd Sim PE 5.X With Xilinx Alliance Software Applications Note

VHDL User

The structure window can be used to explore the design hierarchy, each of the squares
represent a VHDL design unit. A plus sign inside the square shows that there are
child units and by clicking with the mouse the hierarchy can be expanded and
collapsed. The signal window lists the signals at the level of hierarchy pointed to by
the structure window. Using these two windows together any signal in the design
hierarchy can be added to the wave window.

E® structure [_ O]

File Edit ‘window

g'signa}s !EE

File: Edit Miew ‘Window

(]
L]
L]
(]
|

EIEE B E

dataeror = L

Atest_ringbut

All of the signals at a particular level of the hierarchy can be added by dragging the
square from the structure window across and dropping it into the wave window. To
add all of the signals at the top level select thetest_ringbuf sguare and while holding
the select mouse key down (left hand button) drag it across and drop it into the wave
window. The source window can also be used to locate signals and ports and add
them to the waveform window. When a level of hierarchy is selected by the Structure
window, the associated source file will be displayed in the source window. It is
possible to add signalsin the architecture or portsin the entity to the wave window by
double clicking the desired signal/port and then dragging and dropping it into the
wave window.

It is also possible to drop any of the signals or ports into the list window. The List
window displays the results of your simulation run in tabular format. The window is
divided into two adjustable panes, which allow you to scroll horizontally through the
listing on the right, while keeping time and ddta visible on the left. Note that
constants, generics, parameters, and memories are not viewable in the List or Wave
windows.

The last three windows are the Process, Variables and Dataflow windows. The
Process window displays a list of processes and indicates the pathname of the
instance in which the process is located. There are two views possible in the process
window. Thefirst isalist of the active processes, thisisthe default view. Select View
P In Region in the Process window, the second view is alist of the processesin the
region selected by the Structure window.

Applications Note 113 Using Moddel Sim PE 5.X With Xilinx Alliance 5

[

B process = File Windaw

File Edit Wiew ‘Window

" <Readys line_ 44 -
- Sresl M B3] E variables

ffeag:lp refrieyers Tptlats —
== File Edit Wiew ‘window

_ |

Stest ringbufdnng st

buffers

rdla

== dataflow

U
— il

i
<]

Er

test_ringbulfing_inst /bl

[counter_size = & nadr: {li

retriever

Select block3_ingt in the Structure window, the process window should show the two
processes in this instance. Select the retriever process in the Process window. The
process is displayed in the source window, with an arrow pointing to the first
executable line in the process. The Variables window displays the variables in the
architecture selected by the structure window, in this case the architecture is RTL and
the generics counter_size and buffer_size are displayed. It also displays the variable
address in the retriever process. The variable address can be dragged and dropped
into the list window.

Finally, the Dataflow window allows you to trace VHDL signals through the design.
A processis displayed with all the signals read by the process shown as inputs on the
left of the window, and all the signals driven by the process on the right. A signal
displays in the center of the window with all the processes that drive the signal on the
left, and al the processes that read the signal on the right. With the retriever process
selected by the Process window, the retriever process will be displayed in the
dataview window. Buffers and ramadrs are the inputs to the process displayed on the
left hand side of the box and rd0a is the output displayed on the right hand size of the
box. Double click on the signal rdOa this will change the view in the Dataview
window to show what the signal is driving. In this case it is driving a single process,
double click the right hand process name and the Dataflow window will display the
new process. The source window also points to the new process, in this case it is a
concurrent signal assignment that drives the rxda port.

Verilog User

The structure window can be used to explore the design hierarchy, each of the circles
represent a Verilog design unit. A plus sign inside the circle shows that there are child
units and by clicking with the mouse the hierarchy can be expanded and collapsed.
The signal window lists the wires and registers at the level of hierarchy pointed to by
the structure window. Using these two windows together any wire or register in the
design hierarchy can be added to the wave window.

All of the signals at a particular level of the hierarchy can be added by dragging the
circle from the structure window across and dropping it into the wave window. To
add all of the signals at the top level select the test_ringbuf circle and while holding
the select mouse key down (left hand button) drag it across and drop it into the wave
window. The source window can also be used to locate wires and registers and add
them to the waveform window. When alevel of hierarchy is selected by the Structure
window, the associated source file will be displayed in the source window. It is
possible to add wires and registers in a module to the wave window by double
clicking the desired wirelregister and then dragging and dropping it into the wave
window.

6

171N

Using Modd Sim PE 5.X With Xilinx Alliance Software Applications Note

Estlucture
File Edit “window
Ul tezt ringbuf test_ringbuf
ment data_gen Flo Edit Wiew ‘Window

taternent data out :
Flln-'r-l data oL I:|I:|I:k_|:IEr||:||:| — 00 B

rrar = [

=_|:||:|1 0o 01130707 00111
1011110101010007 1000

J'l |_|r

Ahest_ringbuf

It is also possible to drop any of the wires or registers into the list window. The List
window displays the results of your simulation run in tabular format. The window is
divided into two adjustable panes, which allow you to scroll horizontally through the
listing on the right, while keeping time and ddta visible on the left. Note that
constants, generics, parameters, and memories are not viewable in the List or Wave
windows.

The last three windows are the Process, Variables and Dataflow windows. The
Process window displays a list of always blocks and indicates the pathname of the
instance in which the block is located. There are two views possible in the process
window. Thefirst isalist of the active always blocks, this is the default view. Select
View P In Region in the Process window, the second view is a list of the aways
blocksin the region sdected by the Structure window.

Iy aniables _ |0

File Edit View Window

E PIocess : ! E

File Edt Vi

4]

Arest_ringbuf

R Lpats

Select test_ringbuf in the Structure window, the process window should show all of
the always blocks in this instance. Select the print_restore always block in the
Process window. The always block is displayed in the source window, with an arrow
pointing to the first executable line in the always block. The Variables window

Applications Note 113 Using Modd Sim PE 5.X With Xilinx Alliance 7

CAfbinimv~

displays the variables in the module selected by the structure window. The variables
can be dragged and dropped into the list window.

VHDL & Verilog User

7. Running the smulation. There are two ways of running the smulation for a specified
time using the GUI. The first one is to type run 10000000 for VHDL or run
1000000000 for Verilog at the VSIM prompt in the main window. The other is to
enter the time value into the run window in the set of menu icons at the top of the
main window, and then hitting the Run button as shown below.

FI|E Edit Cursor Zoom Prop Swindow

SEILDB DK e QAQ® G

1640 usz

1606 uz to 1648300 nz

At the end of the run time the wave window will display the results of the smulation.
It can be seen from the display that txda is a steady pseudo-random data stream and
rxda represents the same data in a burst of eight bits. The number of bitsis set by the
value of the buffer_size parameter / constant.

8. Running the smulation again. If it is necessary to re-run the simulation due to the fact
that the design needs to change or it is necessary to single step the design then the
simulator can be returned to time zero by using the restart command. Select the
toplevel design in the structure window, so that the source is displayed in the source
window. Select Edit P Read Only in the source window menu and ensure that the
tick in removed. This allows modifications to be made to the source file. Find the
instantiation of the ringbuf and modify the Verilog parameters or VHDL constants to
increase the size of the buffer. Increase the counter size to 6 and the buffer size to 64.

Verilog Code VHDL Code
module ringbuf (clock ,reset , txda, outstrobe : OUT std_logic
rxda, txc, outstrobe););
I/l Design Parameters Control Design constant counter_size: integer := 6;
parameter counter_size = 6; constant buffer_size: integer .= 64,
parameter buffer _size = 64, END ringbuf;

9. Sdect File P Save in the source window menu to save the source file. Sdlect the
Compile button. This is the first button on the left hand side and will dart the
Compile HDL Source Files menu. For the VHDL design compile ringrtl.vhd,
followed by testring.vhd and config_rtl.vhd. For the Verilog design compile ringrtl.v.

8 Using Modd Sim PE 5.X With Xilinx Alliance Software Applications Note

171N

Select File b Restart in the main window menu, this will display the restart menu.
The restart command allows the simulation to be restarted with the same list format,
wave format, breakpoints and logged signals. Each one of these can be disabled and a
new set of signals or breakpoints used. Select the Restart button and then hit the Run
button to run for the same period as before. It is possible to toggle through the history
of commands by using the up and down arrowsin the main window.

.| Restart

—Keep:
v List Format

¥ ‘Wave Format
¥ Breakpoints

¥ Logged Signals

Restart | Cancel

10. Setting break points. It is possible to add breakpoints to source code at any time
during a smulation. Select the top level block in the structure window, this will load
the testbench into the source window. On the left hand side of the source window the
line numbers are displayed. The smulator can be broken on any line number
displayed in green. Line numbers displayed in black are either non-executable or have
been optimised away during compilation. Move down to the generate data process
or aways block and place a breakpoint on the pseudo-random assignment.
Breakpoints are set by clicking on the line that you wish to break the smulator, by the
line number. This will display a circle next to the sdected line, breakpoints can be
removed by clicking on the line again. Click on the line of code shown below, this
will break the smulator in the pseudo-random data generator.

VHDL User :
The line reads pseudo <= pseudo(18 DOWNTO 0) & NOT (pseudo(2) XOR pseudo(19));

Verilog User :
The line reads pseudo <= { pseudo[18:0],pseudo[2] *~ pseudo[19]};

11. Select Run P Run -all in the main window, simulation will be broken on the line
selected. It is now possible to single step through the simulation using the step and
step over buttons in either the source or main window. All windows are updated as
you step through the simulation.

T

Applications Note 113 Using Moddel Sim PE 5.X With Xilinx Alliance 9

[

Section 2. Synthesis and Place
and Route.

This section details how to run the M1 tool-set and output the files necessary to use in a
post layout simulation. As ModeddSm can be used with any Synthesis tool the
implementation steps have not been included in this document. It is possible to use any of
the available Synthesis tools to produce an EDIF file to use as input to the place and route
tool. The VHDL and Verilog source files for this Application Note are available on the
Mode Technology Web site along with an EDIF file to use as input to this section if you
do not have access to a synthesis tool. The following section details the options when
using the Design Manager GUI. The details on which programs need to be run to
implement the design using the command line are shown at the end of this section.

1. Start the Xilinx Design Manager and sdect Fileb New Project. Thiswill display the
New Project dialog box. Select the Browse button on the input design line and find
the input EDIF file, this will be the output generated from your synthesis tool or the
supplied EDIF file called ringrtl.edf. If your synthesis tool has output an ncf file, this
file includes constraints passed by the Synthesistool, then ensurethat it isin the same
directory as the EDIF netlist. The working directory will be automatically filled out,
creating by default an xproj directory in the directory of the input netlist file. This
directory will contain all of the working files and report files used for the design
during place and route. Select the OK button.

Hew Project I
|rput Design; IF:"-.ringl:uuffer"-.gu:ulden"uringrtl.eu:lf Browse... |
ok Directony: IF:'\ringbuffer'\guldenhxprni Browse... |

Comment; IHing Buffer Design

] I Cancel | Help

2. Once the EDIF netlist has been parsed, the next step is to implement the design.
Select Design P Implement, this will display the implement dialog box. Most

Implement i

Bart: iKEdDDEKL-DEI-F'EE# Select... |

] e gtiaedata oo eetelpheans

I | opuitooplardatate proect clpboand

I | [erbnte Jast versnmn

e version narme: Iveﬂ

Hew revision name; !reﬂ

Help |

R Cancel |

10 Using Modd Sim PE 5.X With Xilinx Alliance Software Applications Note

171N

synthesis tools will pass on the details of which device and package you are using so
the part information will have been automatically filled out. If it has not then select
the Select button next to the part selection box and locate the device you wish to use.
This design example will fit the smallest XC4000 part, as long as the parameters /
constants are kept to the size stated in the last section, so select XC4005XL-09-PC84.
3. To st up the options for this implementation select the Options button at the bottom
of the dialog box. This displays the options menu. Under the Program Options
Templates thereis a Simulation section, by default thisis set to Generic EDIF.

Options i

— Ilzer File

[RETSIR BT ETaled | Lt ases ingbuffergoldentsprojhringrt]. uck Browsze. . I

— Program Option T ernplates

Implementation: IDefauIt :_! Edit Template..._l
Sirnulation: |Generiu: EDIF __vJ Edit Template. .. |
Configuration: IDefauIt _V_! Edit Template... |

~ Optional Tarngets

[Produce Timing Simulation Data

W Produce Configuration Data

F, I Cancel Help

Select the down pointing triangle on the right side of the Simulation box. This will
display a list of output netlist formats. If you require a Verilog netlist select
ModelSim Verilog, and if you require a VHDL netlist select ModelSim VHDL. This
automatically adjusts the Simulation Template to the settings required for each
ModelSim product. Select the Edit Template option next to simulation, this will
display the template edit dialog box. There are three tabs on this dialog box, the first
is General. Here the Simulation netlist type will have been set to either Verilog or
VHDL depending on last selection.

4. There are two other options on the General tab, the first is Correlate Simulation Data
input to design. With this option selected the resulting netlist will attempt to mimic
the same logic gates and net names as those in the original input EDIF netlist. De-
selection of this option will create netlist that contains the same logic gates and net
names as those in the optimised implemented netlist. There is a possibility that gates
implemented by the Synthesis tool maybe optimised out during any stage of
implementation. This means that often some gates disappear or their function gets
implemented by other gates. Make sure this option is deselected to save processing
time if correlation is not required. If this option is selected, warnings will be reported
if there are any mismatches between the input and implemented netlists. The
Simulation Netlist Name can be set to the desired name, by default it is time_sm.
Select the VHDL/Verilog tab, by default all of the check boxes are desdlected. Each
of theses options are described below:

Applications Note 113 Using Moddel Sim PE 5.X With Xilinx Alliance 11

[

Bring Out Global Set/Reset as a Port - If this is de-selected the Global Set/Reset
will be implemented in the netlist as a VHDL statement when targetting VHDL. At
the top of the netlist file there is a statement that waits for 100nSecs and then removes
reset. This time delay can be changed by modifying the output netlist. Selecting this
option creates a Global Set/Reset port on the top-level simulation module or entity.
This port is connected to all flip-flop and latch primitives in the design. Stimulating
this port automatically sets or resets every flip-flop and latch to its initial state, as
determined in the design. The Port Name field can be used to change the default port
name.

XC4000 Simulation Options: Generic EDIF

General WHDLAerlog I EDIF I

™ iBring Dut Global Set/Fieset et as a Port Port Mame: IGSH

[Bring Out Global Tristate Met as a Port Faort Hame: |GTS
[Generate Test Fisture/T esthench File

[Include ‘uselb Directive in %erilog File

[Generate Pin File

™ Retain Hisrarchy in Metlist

()4 I Cancel Drefault Help

Bring Out Global Tristate as a Port - The option does the same as the last but for
the global tri-state pin.

Generate Test Fixture/Testbench File - This option writes out a Verilog test fixture
file or a VHDL test bench file depending on the chosen language. The test fixture file
has a .tv extension and the test bench file has a .tvhd extension. The file includes an
instantiation of the implemented design.

Include "uselib Directive in Verilog File -This is a Verilog option and writes a
library path pointing to the SIMPRIM library into the output Verilog (.v) file. The
path iswritten asfollows :

“uselib dir=$XILINX/verilog/data libext=.vmd

where $XILINX is the location of the Xilinx software. The Xilinx gate level libraries
are explain in the following section.

Generate Pin File - This option writes out a netlist signal to physical pin mapping
file that can be useful during Simulation debug.

Retain Hierarchy in Netlist -This option writes out a Verilog HDL or VHDL file
that retains the hierarchy in the original input design netlist, grouping logic based on
the original design hierarchy.

Select the options that are required for the output netlist and Select OK. For
information, the EDIF tab in the simulation options template is for setting EDIF only
options

12

171N

Using Modd Sim PE 5.X With Xilinx Alliance Software Applications Note

5. On the Optional Targets section of the options dialog box there is a Produce Timing
Simulation Data check box. Check this box to output the netlist configured to the
options that have been chosen. Note without this checkbox selected no netlist files
will be written. If required then change the options in the implementation and
configuration templates. Select OK on the options dialog box and then RUN on the
implement dialog box. The will open the flow engine the design will be trandated,
mapped, placed and routed, timing generated and finally a configuration bit map will
be produced. The time sm.v or time sm.vhd netlist file will be placed in the
working directory along with the back annotation file, time_sim.sdf.

Thefollowing is a script that can be used on the PC to implement the device in batch
mode. All of the commands needed are shown.

REM Build The NGD Database

ngdbuild -p xc4005x1-09-pc84 -uc ringrtl.ucf ringrtl.edf ringrtl.ngd
REM Map Logic To Device

map -p xc4005x1-09-pc84 -0 map.ncd ringrtl.ngd ringrtl.pcf
REM Place And Route Design

par -w -ol 2 -d 0 map.ncd ringrtl.ncd ringrtl.pcf

REM Static Timing

trce ringrtl.ncd ringrtl.pcf -e 3 -o ringrtl.twr

REM Extact Timing Data

ngdanno ringrtl.ncd

REM Write Netlist And SDF Data

Verilog User : ngd2ver -w ringrtl.nga time_sim.v

VHDL User : ngd2vhdlI -w ringrtl.nga time_sim.vhd

REM Create Bitmap File

bitgen ringrtl.ncd -l -w -f bitgen.ut

Note typing ngd2ver OR ngd2vhdl at the command line will return all the options for
these programs. This will allow the options explained in the smulation options to be
set on the command line.

Applications Note 113 Using Moddel Sim PE 5.X With Xilinx Alliance 13

[

Section 3. Compiling Gate Level
Libraries for Simulation

This section details where to find the source files for the Xilinx gate leve libraries and
how to compile them ready for simulation in Model Sim. It covers the four options created
by the ability to use either the GUI or command line in ModelSim for either VHDL or
Verilog. Xilinx have models to support HDL designs at three different pointsin the design
flow. It is important to understand which libraries are used at each stage of the design
flow. Simulation is supported at the RTL level by being able to instantiate UNISIM library
components, LogiBLOX modules and CoreGEN models. Gate level post synthesis
simulation is supported by the UNISIM library components. Pre-route simulation and post
implementation back-annotated timing simulation is supported by the SIMPRIM library.
Both the UNIPRIM and SIMPRIM libraries adhere to IEEE-STDs. The VHDL libraries
use the VITAL |IEEE-STD-1076.4 standard, and the Verilog library uses the IEEE-STD-
1364 standard. ModelSim fully accelerates the VITAL_Timing and primitive VITAL
libraries.

The UNISIM Library is used for functional simulation only, and contains default unit
delays. This library includes all the Xilinx Unified Library components that are inferred
by most popular synthesis tools. In addition, the UNISIM Library includes components
that are commonly instantiated, such as |Os and memory cells. The cdls in the UNISIM
library are device dependant.

The SIMPRIM models have the appropriate functionality to allow back-annotation of
timing information using an SDF (Standard Delay Format) File. The netlist output by
ngd2ver and ngd2vhdl contain instantiations of SIMPRIMs models that can be annotated
with the generated SDF file containing the appropriate block and net delay data from the
place and route process. The SIMPRIM library is completely device independent, it is
purely a method of modeling the timing within the silicon.

The use of LogiBLOX and CoreGEN models is covered in the section titled 'Using
LogiBLOX and CoreGen Models.

If the Xilinx Al software is loaded on the same machine as Modd Sm there will be an
environment variable called XILINX. This environmental variable will be set and pointing
to the Xilinx Al toodls ingallation. This variable is used in the next sections to reference
where to find the appropriate sourcefiles.

NB — The logical library names used for both the VHDL and Verilog sections are the
same for each library therefore attempting to follow both language sections
consecutively will cause the Model’sto be overwritten.

Compiling the VHDL gate level libraries with the ModelSim Ul

UNISIM

The UNISIM (UNIfied SIMulation) libraries are only used for smulating at the RTL
level, and pre-NGDBUILD stage of the design flow. The cells contained in the library are
device dependant and only include unit delay timing. The VHDL source code for the
libraries can be found at : $XILINX/vhdl/src/lunisms. This directory contains the
following files.

unism_VCOMP.vhd (component declaration file)

unism_VCOMP52K.vhd (substitution component declaration file for XC5200 designs)
unism_VPKG.vhd (package file)

unism_VITAL.vhd (mode file)

unism_VITALS52K.vhd (additional mode file for XC5200 designs)
unism_VCFG4K .vhd (configuration file for XC4K edge decoders)

unisim_VCFG52K .vhd (configuration file for XC5200 internal decoders)

14

171N

Using Modd Sim PE 5.X With Xilinx Alliance Software Applications Note

As can be seen there are device specific files due to the fact that some models within the
difference families have dightly different functionality. For this reason , not all of these
files can be compiled into the same library. To be able to use both 4K and 52K family
libraries, they have to be compiled into separate directories as a UNISIM library. Then for
each design the mapping of the UNISIM logical name would need to be changed to the
appropriate directory.

1. Change into the directory in which you wish to store the compiled libraries. Select

File P Change Directory, use the file browser to locate the desired directory. Any
library that is now created will be placed into this directory by default.

Create a unism library. Select Library b Create A New Library, ensure that "a
new library and logical mapping to it" is selected, enter ‘unism’ in the library box as
shown below.

] Create a New Library

Create

anew library and a logical mapping to it
£ anew library only [ho mapping]

™ amap to an exizting librany

Library: iunisin‘l

Maps to: Iunisim

k. | Cancel

3. Select OK to except this entry, thiswill execute both the vlib and vmap commands to

4.

create aunisim library and directory with the same name in the working directory.

Compile the unism source files. Sdlect the Compile button. This will display the
Compile HDL Source Files dialog box. Set the library to unism using the pull down
menu. Use the ‘Look in’ selection to locate the UNISIM source files. These will be

Compile HDL Source Files |

Librany: lunisim

Look, in: I 5] unizima

[ZJurisim_VCFGAK vhd 2] unisim_YPKG.vhd
2] uriisim_VCFGE2K.vhd

2] uriisim_ITAL vhd

2] uriisim_WI TALS2K. vhd

2] urisir_YCOMP. vhd

2] uriisim_YCOMPS2K, vhd

File name: I Compile I
Filez of type: !HDL Files [*.vhd:*.v) _"'_1 [ione |

Crefault Dptions... | Edit Source |

Applications Note 113 Using Moddel Sim PE 5.X With Xilinx Alliance 15

[

found in the Xilinx installation in $XILINX/vhdl/src/unisms.

The order of compilation is important for VHDL, the files and the compilation order
for each of the families is shown below. Compile each file in turn by selecting and
pressing compile or double clicking on thefile.

XC5200 Devices All Devices Except XC5200
unisim_VCOMP52K .vhd unisim_VCOMP.vhd
unism_VPKG.vhd unism_VPKG.vhd
unism_VITAL.vhd unism_VITAL.vhd
unism_VITAL52K.vhd unism_VCFG4K.vhd

unism_VCFG52K.vhd

The UNISIM library is now ready to be used for simulation. If both families are required
then these two sets of files can be compiled into two separate UNISIM libraries, each
located in a different directory. Then use the ‘a map to an existing library’ option in the
create library dialog.

SIMPRIM

The SIMPRIM libraries are used for smulations post-implementation, the design stages
include post-NGDBuild, post-MAP and full timing simulation post place and route. The
SIMPRIM VHDL libraries are written using VITAL libraries, the packages defined by the
standard are fully accelerated by ModeddSm. VITAL libraries include some overhead for
timing checks and back-annotation of timing data. The SIMPRIM back-annotation library
keeps these checks on by default; however, you or your system administrator can turn
them off. You must edit and re-compile the SIMPRIM components file after setting the
genericss. The VHDL source code for the libraries can be found at
$XILINX/vhdl/src/simprims. This directory contains the following files.

simprim_Vcomponents.vhd (VITAL Component Package)
simprim_Vpackage.vhd (VITAL Table Package)
simprim_VITAL.vhd (Architecture(VITAL) and Configurations)

These libraries are completely design independent therefore are used for the timing

simulation of any Xilinx device family.

1. Change into the directory in which you wish to store the compiled libraries. Select
File P Change Directory, use the file browser to locate the desired directory. Any
library that is now created will be placed into this directory by default.

2. Createa smprim library. Sdlect Library b Create A New Library, ensure that "a

] Create a New Library

—Create

" anew library and a logical mapping to it
£ amew librane only [ha mapping]

" amap to an exizting librany

Library: Esimprin‘l

Maps to: |sim|:urim g Blrowss..

[k, | Cancel |

16

171N

Using Modd Sim PE 5.X With Xilinx Alliance Software Applications Note

new library and logical mapping to it" is selected, enter ‘simprim’ in the library box
as shown below.

Select OK to except this entry, thiswill execute both the vlib and vmap commands to

create asimprim library and directory with the same name in the working directory.
Compile the simprim source files. Select the Compile button. Thiswill display the

Compile HDL Source Files I

Lok j: I 3 simprims

Library:]simprim

File narne: l Compile I
Files of type: IHDL Files [*.vhd % v) _:] Dione |

E] simprim_Voomponentz. vhd:

(2] simprim_VITAL vhd
Iﬂ gimprirn_Ypackage vhd

D efault Optionz... | Edit Source |

Compile HDL Source Files dialog box. Set the library to smprim using the pull down
menu. Use the ‘Look in” selection to locate the SIMPRIM source files. These will be
found in the Xilinx installation in $XILINX/vhdl/src/smprims. The files need to be
compiled in the following order VVcomponents, Vpackage and VITAL as shown in the
list above. The SIMPRIM library is now ready to be used for simulation.

Compiling the VHDL gate level library using the command line

UNISIM

The following commands need to be executed on the command line to compile each of
the UNISIM source files. The cells contained in the library are device dependant and
only include unit delay timing. This means that there is a different set of files that need
to be compiled to alow simulation of the XC5200 or the XC4000 families. Below are
the two scripts for each family.

XC5200 Devices

cd <directory storage location>
vlib unisim

vmap
vcom
vcom
vcom
vcom
vcom

unisim unisim

-work unisim {$XILINX/vhdl/src/unisims/unisim_VCOMP52K.vhd }
-work unisim {$XILINX/vhdl/src/unisims/unisim_VPKG.vhd }
-work unisim {$XILINX/vhdl/src/unisims/unisim_VITAL.vhd }
-work unisim {$XILINX/vhdl/src/unisims/unisim_VITAL52K.vhd }
-work unisim {$XILINX/vhdl/src/unisims/unisim_VCFG52K.vhd }

Applications Note 113 Using Moddel Sim PE 5.X With Xilinx Alliance

[

17

All Devices Except XC5200

cd <directory storage location>

vlib unisim

vmap unisim unisim

vcom -work unisim {$XILINX/vhdl/src/unisims/unisim_VCOMP.vhd }
vcom -work unisim {$XILINX/vhdl/src/unisims/unisim_VPKG.vhd }
vcom -work unisim {$XILINX/vhdl/src/unisims/unisim_VITAL.vhd }
vcom -work unisim {$XILINX/vhdl/src/unisims/unisim_VCFG4K.vhd }

SIMPRIM

The following commands need to be executed on the command line to compile each of
the SIMPRIM source files. The SIMPRIM VHDL libraries are written using VITAL
libraries, the packages defined by the standard are fully accelerated by ModelSm. These
commands can be saved in a‘do’ torun asascript.

cd <directory storage location>

vlib simprim

vmap simprim simprim

vcom -work simprim {$XILINX/vhdl/src/simprims/simprim_Vcomponents.vhd}
vcom -work simprim {$XILINX/vhdl/src/simprims /simprim_Vpackage.vhd}
vcom -work simprim {$XILINX/vhdl/src/simprims /simprim_VITAL.vhd}

If the SIMPRIM library exists already compiled in a shared area then only the following
line needs to be executed, the vmap command maps the logical library to the physical
directory.

vmap simprim F:/some_directory/vendors/xilinx/simprim

Compiling the Xilinx Verilog gate level library with the ModelSim Ul

UNISIM

The UNISIM (UNIfied SIMulation) libraries are only used for smulating at the RTL
level, and pre-NGDBUILD stage of the design flow. The cells contained in the library are
device dependant and only include unit delay timing. The Verilog source code modd files
for the libraries can be found at : $XILINX/verilog/src/uni<technology>, where the
technologies are as follows;

Uni3000 (XC3000 families) Uni4000e (X C4000E families)
Uni4000x (XC4000X families) Uni5200 (X C5200 family)
Unig000 (X C9000 families) UNISPARTAN (Spartan families)

UNISPARTANXL (Spartan XL families) UNIVIRTEX (Virtex families)

Each of these directories contain <model>.v files for their associated family. Because
there are a few cells with functional differences between Xilinx devices, a separate library
is provided for each supported device. For example, decoders contain pull-ups in some
devices and not in others. Also the global reset smulation mechanism differs across
certain families

9500 — Global reset islabeled “EPRLD”.

5200 — Global reset islabeled * GR” and is active high.

3000 — Global reset islabeed “ GR” and is active low.

4000, 4000X, SPARTAN & VIRTEX — Global resetislabded “ GSR' .

18 Using Modd Sim PE 5.X With Xilinx Alliance Software Applications Note

171N

To be able to use more than one device family libraries, they have to be compiled into
separate directories as a UNISIM library. Then for each design the mapping of the
UNISIM logical name would need to be changed to the appraopriate directory.

1. Change into the directory in which you wish to store the compiled libraries. Select
File P Change Directory, use the file browser to locate the desired directory. Any
library that is now created will be placed into this directory by default.

2. Create a unism library. Select Library b Create A New Library, ensure that "a
new library and logical mapping toit" is selected, enter ‘unism’ in the library box as
shown below.

] Create a New Library

Create

anew library and a logical mapping to it
£ anew library only [ho mapping]

™ amap to an exizting librany

Library: iunisin‘l

Maps to: lunisim

k. | Cancel

3. Select OK to except this entry, thiswill execute both the vlib and vmap commands to
create aunisim library and directory with the same name in the working directory.
4. Compiling the unism Verilog source files. If the GSR signal needs to be controlled

compile_options_dlg

Yernlog
¥ Enable runtime hazard checks [T Dizable loading messages
[T Don't put debugaging info in libran [T Show source lines with emrors

I Convert verlog identifiers bo upper-case

—0Other Yerilog Options

: : +define+G5R_SIGMAL=testbench_module_name. =
Add Library Dir... deszign_inztance_name.G5H
&dd Extension,,, —
NB
Add Librarg File.... 9500 +define+tEPRLD_SIGNAL
3000, 5200 +define+tGR_SIGNAL
B et Others +define+tGSR_SIGNAL
Add 4 &
acro < (i 'j
(] | Apply Cancel |

Applications Note 113 Using Moddel Sim PE 5.X With Xilinx Alliance 19

[

during smulation then the following set up is required before compiling the library.
The library must be compiled with a specia switch specific to your design. Select the
Compile button. This will display the compile dialog box, at the bottom select the
Default Options button. This will display the compiler options dialog box, select the
Verilog tab. Thiswill display the dialog box above.

Sdlect the Add M acr o button and add a macr o name of GR/EPRLD/GSR_SIGNAL
and a value of testbench_mode_namedesign_instance name.GSR. Where the
testbench_model_name is the name of your test bench and the design_instance_name
is the name of the ingtantiation of your design. Note this has to be done on a project
by project basis if the control of the GSR is necessary. Select the OK button on this
dialog box.

5. Using the ‘Look in browser, locate the directory
$XILINX/verilog/src/uni<technology> where technology is the device family that
you are using. Select the complete list of .v files, by selecting the first file in the list
with the mouse and then selecting the last file in the list with the mouse while holding
down the shift key. Select the Compile button, thiswill compile the compilelibrary.

SIMPRIM

The SIMPRIM libraries are used for smulations post-implementation, the design stages
include post-NGDBuild, post-MAP and full timing simulation post place and route. They
are dso used in RTL simulations using models generated by LogiBLOX. The SIMPRIM
Verilog libraries are written using Verilog language primitives and UPD’s which are fully
accelerated by ModelSm. Verilog libraries include the overhead of runtime timing checks.
These checks can be disabled at simulation time by using the ‘disable timing checks in
specify blocks' in the Verilog options menu of the load design dialog box. The Verilog
source code can be found at : $XILINX/verilog/src/simprims. This directory contains the
all the.vmd modd files for the smprim library.

These libraries are completely design independent and therefore are used for the timing
simulation of any Xilinx device family.

1. Change into the directory in which you wish to store the compiled libraries. Select
File P Change Directory, use the file browser to locate the desired directory. Any
library that is now created will be placed into this directory by default.

2. Createa smprim library. Sdlect Library b Create A New Library, ensure that "a
new library and logical mapping to it" is selected, enter ‘ssmprim’ in the library box
as shown below.

"]Create a New Library

—LCreate

" anew library and a logical mapping to it
£ anew librane only [ho mapping]

T amap to an existing librany

Library: Esimprin‘l

Mapsz to: Isimprim g Broiss..

k. | Cancel

3. Select OK to except this entry, thiswill execute both the vlib and vmap commands to
create asimprim library and directory with the same name in the working directory.

20

171N

Using Modd Sim PE 5.X With Xilinx Alliance Software Applications Note

4. Compile the smprim source files. Select the Compile button. Select the Compile
button. Thiswill display the Compile HDL Source Files dialog box. Set the library to
smprim using the pull down menu. Use the ‘Look in' selection to locate the

Compile HDL Source Files |
Library: (BT j

Look in: | 5] zimprima :_! ﬁ{ I

(28] _AND 16 vmd |28 _ANDE.vmd (=] ¢_CLKDLL.vmd

(28] _AND2.vmd [t ¢_ANDT.vmd =] ¢_FF.vmd

(8] %_AND3.vmd (28] % _ANDE.vmd (8] < _INV.vmnd

28] % _AND32.vmd (2] %_BPAD vmd (8] %_IPAD.vmnd

8] _AND4.vmd [38] ¢_BUF.vmd [=4] _KEEPER.vmd

|#]%_AMND5.vmd] %_CKBUF.vmd (8] %_LATCH. vmd

R i

File name: I Compile I
Files of tppe: 4l Files [+ =l Done |

Crefault Dptions... | Edit Source |

SIMPRIM source files. These will be found in the Xilinx ingtallation in
SXILINX/verilog/src/simprims.

Change the files of type to All files (*.*). Select the complete list of .vmd files, by
sdecting the firg file in the list with the mouse and then sdlecting the last file in the
list with the mouse while holding down the shift key. Select the Compile button, this
will compile the compile library. The SIMPRIM library is now ready to be used for
simulation.

Compiling the Xilinx Verilog gate level library using the command line

UNISIM

The following commands need to be executed on the command line to compile each of
the UNISIM source files. The cells contained in the library are device dependant and
only include unit delay timing. This means that there is a different set of files that need
to be compiled to allow simulation of each of the Xilinx technology families. If the GSR
signal needs to be controlled during simulation then it is necessary to compile the library
with a macro defined. This is done on a design by design basis due to the fact that the
GSR needs to be connected via a hierarchical name. There is an example below with and
without the GSR connected. Note that GSR is for 4000, 4000X, SPARTAN and
VIRTEX devices, see above for global names for other device families.

With GSR

cd <directory storage location>

vlib unisim

vmap unisim unisim

vlog —work unisim \
+define+GSR_SIGNAL=testbench_module_name.design_instance_name.GSR \
$XILINX/verilog/src/technology_name/*.v

testbench_model_name = The name of your test bench module.

Applications Note 113 Using Moddel Sim PE 5.X With Xilinx Alliance 21

[

design_instance_name = The instance name of your design.
technology_name = The technology used in your design.

Without GSR

cd <directory storage location>

vlib unisim

vmap unisim unisim

vlog —work unisim $XILINX/verilog/src/technology_name/*.v

technology_name = The technology used in your design.

SIMPRIM

The following commands need to be executed on the command line to compile each of
the SIMPRIM source files. The SIMPRIM Verilog libraries are written using Verilog
language primitives and UPD’s which are fully accelerated by ModelSm. These
commands can be saved in a‘do’ torun asascript.

cd <directory storage location>

vlib simprim

vmap simprim simprim

vlog -work simprim {$XILINX/verilog/src/simprims/*.vmd}

If the SIMPRIM library exists already compiled in a shared area then only the following
line needs to be executed, the vmap command maps the logical library to the phyiscal
directory.

vmap simprim F:/some_directory/vendors/xilinx/simprim

22

171N

Using Modd Sim PE 5.X With Xilinx Alliance Software Applications Note

Section 4. Compile and Timing
Simulation of the VHDL Gate Level
Source Files

This section details how to use ModelSm to run a full timing gate level smulation using
Xilinx SIMPRIM’s. This section includes a step by step guide on how to use the GUI to
run the gate level simulations, however it does assume two important steps prior to
gtarting. Thefirst isthat aVHDL VITAL structural netlist and SDF file has been exported
from the place and route process, see section 2 of this document for full details. Secondly,
the SIMPRIM’s library source files are compiled into a library named ‘smprim’, see
section 3 of this document for full details. ModelSm fully accelerates the VITAL timing
and primitive packages, this means that there are built in routines that implement the
behavior of these functions, the VHDL is not evaluated line by line. The VITAL packages
are pre-compiled and ready to use when the product is installed. Xilinx use these timing
and primitive packages to congtruct the cells from their technology and therefore benefit
from the acceleration. As part of the VITAL standard there is a method set down to allow
timing information to be taken from an SDF (Standard Delay Format) file and annotated
onto the models. Model Sm reads an SDF file output from the place and route process and
annotates the timing values in the file onto the generics of the modd. A simulator is said
to be VITAL compliant when it accelerates the VITAL packages and allows SDF data to
be annotated onto VITAL models.

1. Ensurethat the smprim library has been compiled and that there is a correct mapping
to the library. For full details of how the compile the library see section 3 of this
document. Select Library P Browse Libraries.., select the smprim line and hit the
view button, thiswill display the library dialog boxes as below.

. Library Browser

Show: |.-5.II Yizible Libraries él

Library

Lnizim
W'.:'rk . '5-..1Lihrary Contents
anithmetic
ieee Librany: Isimprim ﬂ
mgc_portable
ztd —~
std_developerskit Dresigr it I Description Iﬁ
---------- clg_w_and16 v Config
cfg_w_and2_w Config
cfg_w_and32_w Config
View cfg_w_and3_w Config
cfg_w_andd v Config
cfg_w_andf_w Config
cfg_w_ands_w Config
cfg_w_and?_w Config
o PR e ;‘
Delete Cloze

Applications Note 113 Using Moddel Sim PE 5.X With Xilinx Alliance 23

[

Close both of the dialog boxes after ensuring the correct mapping.

2. Compilethe netlist output from M1, if the default name was unchanged then the file
name for thisfile will betime_sim.vhd. The structural netlist can be compiled directly
into the work library used for the RTL simulations, however this does have an effect
on the sat up for running RTL smulations. The reason for this is the fact that the
entity that is produced by M1 has the same name as the entity used for RTL
simulations. This is a requirement to allow the use of the same testbench without
modification. However the library use clauses are not the same in the two entities and
the dependency rules of VHDL mean that all files from the entity upwards have to be
re-compiled. The best solution to get around this problem is to compile the structural
netlist into a newly created library. A new configuration can then be written to bind
the new structural design into the existing testbench. Select Library b Create A @
New Library, ensure that "a new library and logical mapping to it" is selected, enter =0
‘gates’ in the library box and then select OK. Select the Compile button. Thisis the
first button on the left hand side and will start the Compile HDL Source Files menu.
This menu will automatically select the correct language compiler based upon the
source file selected. Locate the time_sim.vhd file using the file browser. Ensure that
thelibrary is set to ‘ gates'. Select the compile button.

Note : time_sim.vhd includes the structural netlist for the design and two components
ROC (Reset On Configuration) and TOC (Tri-state On Configuration) The delay for
these actions to occur can be modified by changing the time generic on each of these
components, the default is 100ns for ROC and Ons for TOC.
Change the library in the compile dialog window back to ‘work’ and compile the
config_gate.vhd source file. Cancel the compile dialog box.

3. Loading the smulator. Select File b Load New Design or select the Load Design
button. Thiswill display the Load Design dialog box, which displays the design units =
availablein each of the libraries. Ensure that the design tab is highlighted. Ensurethat [
the work library isvisible in the library section. Each of the units in the work library
should be displayed along with a description of the type of unit, sdect the

] Load Design

SDF]

—5SDF Files
Region/File Crelay
ding_INST
F:/testcazesingbuffer/ goldencommandlinetirme._ zim. zdf hp
Add... | [relete | Edit, |

[T Dizable SDF wamings

[T Reduce SDF ermors to warnings

Multi-Source Delay |atest —l|

Load

Ewit

Save Sethngs... | Cancel

24 Using Modd Sim PE 5.X With Xilinx Alliance Software Applications Note

171N

configuration named test_bench_gate. Select the SDF tab, this will display the SDF
options. This menu sets up the annotation of the SDFfile, it allows multiple SDF files
to be annotated into different regions of a modd. Select Add..., this will display the
specify an SDF file dialog box.

1% Specify an SDF File

SDF FileIF:a’testcases;"ringl:uuffer.-’gu:uldena’u:u:ummandline.-’time_sim.st Browse. .. |

Apply to legiuni.-’ring_INSﬂ Delay Selection typ — |

k. | Cancel

Use the browse button to locate the SDF file that was generated by the place and
route process. The default name of this file will be time_sim.sdf. The Apply to region
selection needs to be set to the instantiated name of the device, in this case the name
of theinstantiation isring_INST. Select the OK button, and re-select the design tab.
Ensure that the test_bench_gate is still selected and hit load design. It is possible to
run the simulation without the SDF file. This is done by not seecting the SDF file,
simulations in this case have no net loading information and only have interna gate
timing.

4. Thiswill load all the units necessary to run the gate level simulation and will read the
SDF file and annotate them onto the generics of the gate level cells. Open both the

B® structure E =]

File Edit “Windaw

tezt_ringbuf test_ringbuf{test_ringbuf] =
_ring _ringbuftest_ring =

structure and wave windows, select View P Structure and View P Wave. Notice
that the structure window shows each of the gates in the design. Select the test bench
test_ringbuf and drag it over and drop it into the waveform viewer.

5. Run the smulation. There are two ways of running the smulation for a specified time
using the GUI. Thefirst oneisto type run 10000000 at the VSIM prompt in the main
window. The other is to enter the time value into the run window in the set of menu

Applications Note 113 Using Moddel Sim PE 5.X With Xilinx Alliance 25

[

icons at the top of the main window, and then hitting the Run button. At the end of
the run time the wave window will display the results of the simulation. It can be seen
from the display that txda is a steady pseudo-random data stream and rxda represents
the same datain a burst of hits.

The following is a script file that can be used to run the gate level simulation with
SDF back annotation.

cd <design directory>

vlib gates

vmap gates gates

vcom —work gates time_sim.vhd

vcom —work work config_gate.vhd

vsim -sdftyp /ring_INST=F:/time_sim.sdf -multisource_delay \
latest work.test_bench_gate

view *

add wave /*

run 10000000

To run without the delays annotated from the SDF file then the vaim line above
should be replaced with the following line.

vsim latest work.test_bench_gate

In this case smulation time will be shorter but the mode will not be a complete
representation of the place and routed device. Thisisjust afunctional type smulation
and can be used to verify that the Synthesis tool has correctly implemented the
design.

26

171N

Using Modd Sim PE 5.X With Xilinx Alliance Software Applications Note

Section 5. Compile and Timing
Simulation of the Verilog Gate
Level Source Files

This section details how to use ModelSm to run a full timing gate level smulation using

Xilinx SIMPRIM’s. This section includes a step by step guide on how to use the GUI to

run the gate level simulations, however it does assume two important steps prior to

gtarting. Thefirst isthat a Verilog structural netlist and SDF file has been exported from
the place and route process, see section 2 of this document for full details. Secondly, the

SIMPRIM’s library source files are compiled into a library named ‘simprim’, see section

3 of this document for full details. ModelSm fully accelerates the Verilog primitives and

UDP's (User Defined Primitives), this means that there are built in routines that

implement the behavioral of these functions, the Verilog is not evaluated line by line.

Xilinx use these primitives and UDP's to construct the cells from their technology and

therefore benefit from the acceleration. As part of the an OVI (Open Verilog

International) standard there is a method set down to allow timing information to be taken

from an SDF (Standard Delay Format) file and annotated onto the models. ModelSm

reads an SDF file output from the place and route process and annotates the timing values
in the file onto the parameters (specparam’s) of the model.

1. Ensurethat the smprim library has been compiled and that thereis a correct mapping
tothelibrary. For full details of how the compilethe library see section 3 of this
document. Select Library P Browse Libraries, sdect the smprim line and hit the
view button, thiswill display the library dial og boxes.

T/] Library Browser

Show: |AlVizible Librarnes ﬂ
Library Type _
gates maps ko gates
wark, —
: B .| Library Contents
arthrnetic
== E i
Library: | zimprim *
migc_pork E J
ztd
std_dewel | Design Uit | Drescription | j
e fizroe LDF
latchar UDF
latchzre LoP
Viigik L LOP
sfferce UDP
[ielete Cloze

Applications Note 113 Using Moddel Sim PE 5.X With Xilinx Alliance 27

[

Closethelibrary contents dialog box after ensuring the correct mapping.

2. Compiling the netlist output from M1, if the default name was unchanged then the
file name for this file will be time_sim.v. The module name by default will be the
same name as used by the RTL version of the device. This meansiif the new structural
netlist is compiled into the library used for the RTL simulations, the top level of the
RTL version will be over-written. This is not too much of a problem if the RTL
design issmall and quick to compile, but if you wish to switch between RTL and gate
level simulations then this can become monotonous. A solution to this is to compile
this new netlist into a separate library and to delete the top level design from the work
library. Thetop level RTL version can then be re-compiled into a new library and the
two versions can be selected using the —L switch in the smulator. The following
ingtructions will detail this method. If it is not important to switch between gate and
RTL smulations then the new netlist can be compiled into the work library. The
simulator switch —L is then only needed to select the smprim library. Select the work
library in the library browser and press the View button, thiswill show the contents of
thework library. Select the RTL top level module ringbuf and then press the delete
button at the bottom of the dialog box. Answer yes to verify the deletion of the
module. Close the library browser using the close button.

3. Before compiling the netlist it isimportant to understand how the global reset and tri-
state are controlled. Every storage cell in the smprim library has a GSR (Global Set
Reset) pin. On the device during power on, the complete deviceisreset. Thereisanet
within the netlist that allows the designer to connect some stimulus to simulate the
action of both the GSR and the GTS (Global Tri-state). In the test bench file there are
two initial blocks that produce the stimulus for the GSR and GTS signals, the GSR is

shown below.
reggs, gts,
initial begin gsr = 1'b0;
#100 gsr = 1'b1;
end

To connect the gsr signal from the test bench into the netlist it is hecessary to compile
the netlist file with the GSR_SIGNAL and/or GTS SIGNAL macros defined and
pointing to the driversin the testbench. Note that the GSR is hormally active high, in
this design the reset is active low therefore is inverted. These steps are shown in the
following instructions.

4. Create anew library to hold the gate level netlist. Select Library P Create A New
Library, enter the library name ‘gates and then press OK. Sdect the Compile
button. Thisis the first button on the left hand side and will start the Compile HDL
Source Files menu. Change the library to the newly created gates library. Select the @
default options button at the bottom of the dialog and then sdlect the verilog tab. —
Sdect the add macro button and enter GSR_SIGNAL as the macro name and
test_ringbuf.gsr asthe value, press OK. If the gts signal needs to be added then select
add macro again and enter GTS_SIGNAL as the macro name and test_ringbuf.gts as
the value, press OK. Pressthe OK button on the options dial og.

7. compile_option.._ =]

Macro Hame: IGSH_SIGN.-’-‘-.L
Value: !test_ringhuf.gsl

aF. | Cancel

Select the time_sim.v file and press the compile button. This will compile the netlist
into the gates library. Cancel the compile dial og box.

5. Loading the smulator. Select File b Load New Design or select the Load Design
button. Thiswill display the Load Design dialog box, which displays the design units -

28 Using ModelSim PE 5.X With Xilinx Alliance Software Applications Note

171N

availablein each of thelibraries. Ensure that the design tab is highlighted. Ensure that
the work library isvisible in the library section. Each of the units in the work library
should be displayed along with a description of the type of unit, select the module
called test_ringbuf. There is an SDF tab on the compile dialog for setting up where
the SDF file can be found and which region to apply the file. The ndist that is output
by Xilinx has the $sdf_annotate task included therefore it is not necessary to locate
the file from the dialog box. If control is needed over the annotation process, for
example you wish to simulate with and without the annotation, then it is necessary to
comment out the annotation task from the generated netlist. The line in the
time_sim.v file that needs commenting out is as follows.

I/ initial $sdf_annotate(" time_sim.sdf");

If the SDF file needs to be applied using the dialog box then select the SDF tab and
the then the Add button. Locate the SDF file and apply it to the ring_INST region,
which is the ingtantiation of the device. Note. When using the $sdf _annotate task the
time_sim.sdf file must either be in the working directory or have a absolute path.

1% Specify an SDF File

SDF FileEF:a’testcases;"ringl:uuffer.-’gu:uldena’u:u:ummandline.-’time_sim.st Browse. .. |

Apply to legiuni.-’ring_INSﬂ Delay Selection typ — |

k. | Cancel

Now sdlect the Verilog tab on the compile dialog. It is necessary to detail the search
paths for Model Sm to find modules that are not located in the work library.

71 Load Design

Yerlog

Delay Selection tup —1|

—Additional Search Libranies:

Browse. .. R emove

| e

gates
Fimprim

| d Checking

Checks in Specify Blocks

|

Load | E wit Sawe Sethings... | Cancel

Applications Note 113 Using Moddel Sim PE 5.X With Xilinx Alliance 29

[

Enter ‘smprim’ in the additional search libraries box and press return, the enter
‘gates’ and pressreturn.

Return to the Design tab and ensure that thetest_ringbuf moduleis still selected, and
then press Load. If the netlist has not been compiled into the gates library then it is
not necessary to include the gates library in the search paths.

Thiswill load al the units necessary to run the gate level simulation and will read the
SDF file and annotate them onto the specprams of the gate level cells. Open both the
structure and wave windows, select View P Structure and View P Wave. Notice
that the structure window shows each of the gates in the design. Select the test bench
test_ringbuf and drag it over and drop it into the waveform viewer.

Run the simulation. There are two ways of running the simulation for a specified time
using the GUI. The first one is to type run 10000000000 at the VSIM prompt in the
main window. The other is to enter the time value into the run window in the set of
menu icons at the top of the main window, and then hitting the Run button. At the end
of the run time the wave window will display the results of the smulation. It can be
seen from the display that txda is a steady pseudo-random data stream and rxda
represents the same datain a burst of bits.

The following is a script file that can be used to run the gate level ssimulation with
SDF back annotation.

cd <design directory>
vlib gates
vmap gates gates
vlog +define+GSR_SIGNAL=test_ringbuf.gsr \

+define+GTS_SIGNAL=test_ringbuf.gts \

-work gates {F:/testcases/ringbuffer/golden/time_sim.v}
vsim -sdftyp /ring_INST=F:/time_sim.sdf -multisource_delay \
latest —L simprim —L gates work.test_bench_gate
view *
add wave /*
run 10000000000

If it is not necessary to use the GSR or GTS then the +define lines can be removed
from the viog command line. If the $sdf_annotate task is being used within the Xilinx
netlist then the —sdftyp and —multisource _delay switches can be removed from the
vsim command line.

Note: Torun the RTL simulations again the top level RTL module needsto bere-
compiled in thework library or into a new library pointed to by the vaim —L switch.

30

171N

Using Modd Sim PE 5.X With Xilinx Alliance Software Applications Note

Section 6. Using LogiBLOX and

CoreGen Models

LogiBLOX

LogiBLOX is a graphical interactive design tool that you can use to create high-level
modules such as counters, shift registers, and multiplexers. LogiBLOX includes both a
library of generic modules and a set of tools for customizing them. Using the LogiBLOX
graphical user interface (GUI) you can create and process high-level LogiBLOX modules
that fit into either a schematic-based design or HDL synthesis-based design.

HLogiBLOX Module Selector [_ [}
= Selection
]
Module Mame: todule Type: Bus Width: \——I
Iacc _:J |Eounter$ __‘j |8 _"_J Cancel l
~ Dietailz Setup I
DM sl (] OUT Llzer F'[efsl
Up/Davin — ﬂl
&zpnc. Contal [
Sync. Contral [
Clock Enable v —
Clack — v Terminal Count
Dperation = ILIpf'Du:uwn ;1
Shyle = IMaHimum Speed :i
Encoding = [ERESNNG_—_— -
Caunt Lirnit = |
Baunc, Yal = |
S el |
A ol = |
S Enrhe |

The solution to simulation is dightly different between the two languages. There is a
LogiBLOX library written in VHDL which is used by the behavioral models generated by
LogiBLOX. For Verilog a structural netlist is generated using the UNISIM library. The
following instructions detail how to set up the simulation environment to simulate using
either language.

1

Start the LogiBLOX GUI. If this is the first time it has been started then the setup
dialog box will be displayed. If it is not the first time select the setup button. Select
the vendor tab and set the vendor to ‘other’ and the bus notation to ‘Bl’. Sdlect the
project directory and set it using the browse button to a working directory. Select the
device family tab and select a family, for example XC4000XL. Select the options tab
and sdlect behavioral VHDL netlist and structural Verilog netlist in the simulation
netlist section. Select the VHDL template and Verilog template in the component
declaration section. Finally press the OK button to apply the settings.

Back in the module selector set the module type to counters. Select the bit width to 8.
De-sdlect the tick in the D_IN check box and select the tick in the terminal count
check box. Select the OK button to confirm all settings and generate the module.

Applications Note 113

[

Using Moddel Sim PE 5.X With Xilinx Alliance 31

3. This will generate four files that can be used for smulation. <module>.vhd is a
behavioral VHDL mode that uses the VHDL LogiBLOX libraries. <module>.v is a
Verilog structural netlist that uses the UNISIM gate leve library. <module>.vhi
includes a template component declaration and a template component instantiation of
the generated module. <module>.vei includes a template module declaration and a
template module instantiation of the generated module.

VHDL User

4. Change into the directory in which you wish to store the LogiBLOX libraries. Select
Fileb Change Directory, use the file browser to locate the desired directory. Create
a logiblox library. Select Library b Create A New Library, ensure that "a new
library and logical mapping to it" is selected, enter ‘logiblox’ in the library box and
select OK. Sdect the Compile button. Change the library to the newly created
‘logiblox’ library. Change directory to $XILINX/vhdl/src/logiblox and compile the
VHDL filesin the following order, mvlutil.vhd, mviarith.vhd and logiblox.vhd. Select
the done button.

5. If nowork library exists, select Library b Create A New Library, ensure that "a
new library and logical mapping to it" is selected, enter ‘work’ in the library box and
select OK.

6. Select the Compile button. Change the library to the newly created ‘work’ library. If
the module name has been kept to the default and the file output from LogiBLOX
will be acc.vhd. Compile the acc.vhd file followed by the testacc.vhd file into the
work library.

7. Loading the smulator. Select File b Load New Design or select the Load Design
button. Thiswill display the Load Design dialog box, which displays the design units
availablein each of thelibraries. Ensure that the design tab is highlighted. Ensure that
the work library is visible in the library section. Select the test_counter entity and
press the load button.

8. Sdect View b Structure and View b Wave, sdect the top level block in the
structure window and drag and drop it into the wave window.

9. Type 10000000 in the Run box in the main window and then hit the run for button as
shown below.

P ——

= 28 ER(EL m) e

Verilog User

4. Ensure that there is a mapping to the UNISIM Verilog library, the UNISIM library
will have to be re-compiled to connect to the g and gts, see section 3 of this
document for details. The GSR_SIGNAL macro should be set to test_counter.gsr and
the GTS_SIGNAL macro should be set to test_counter.gts. If no work library exists,
select Library b Create A New Library, ensure that "a new library and logical
mapping toit" is selected, enter ‘work’ in the library box and select OK.

5. Select the Compile button. Change the library to the newly created ‘work’ library. If
the module name has been kept to the default and the file output from LogiBLOX
will be acc.v. Compile the acc.v file followed by the testacc.v file into the work
library.

6. Loading the smulator. Select File b Load New Design or select the Load Design
button. Thiswill display the Load Design dialog box, which displays the design units
availablein each of thelibraries. Ensure that the design tab is highlighted. Ensure that
the work library is visible in the library section. Select the test_counter module and
then the Verilog tab. Add uniprim into the additional search library box and then
select theload button.

7. Select View b Structure and View b Wave, sdect the top level block in the
structure window and drag and drop it into the wave window.

32

171N

Using Modd Sim PE 5.X With Xilinx Alliance Software Applications Note

8. Type 100000000 in the Run box in the main window and then hit the run for button
as shown below.

S @ &

The output from both the VHDL and Verilog simulations should show a simple binary
count which will count up and down as shown bel ow.

File Edit Cursor Zoom Prop wWindow

EE fBE LA ki Q@

bench/g_out = 244

bench/term_cnt =0

H 2 EE

4520 nz to 5349 ns

CoreGEN

The Xilinx CORE Generator System (CoreGEN) provides the designer with a catalog of
ready-made functions ranging in complexity from simple arithmetic operators such as
adders, accumulators and multipliers, to system-level building blocks including filters,
transforms and memories. CoreGEN outputs both VHDL and Verilog behavioral models
for smulation. The following section details how to set up the VHDL library and how to
simulate using either a VHDL or Verilog modd.

1. Start the CoreGEN GUI, the product will start and the core generator options will be
displayed. In the output products select, VHDL behavioral smulation model, VHDL
instantiation template, Verilog behavioral smulation model and Verilog instantiation
template options. Select a target technology, leaving it at default is fine for this
exercise. Select the OK button to apply the selections.

2. Back in the CoreGEN GUI thereis a browser that allows the selection of a library of
modules that can be generated. The core generator library is made up of the
AllianceCore and LogiCore libraries. The AllianceCore library includes models from
Xilinx's Alliance partners and includes various models for applications such as ATM,
USB and standard microprocessors. The LogiCore library includes models for
standard building blocks such as DSP Filters, standard math’ s functions and Xilinx’s
own PCI functions. Select OptionsbP System Options and set the working directory,
thisisthedirectory that all fileswill bewritten.

3. Double click the LogiCORE folder, than open the Math’s folder and finally the
Adders and Subtracters. This will display a number of models, select the Registered
Adder by double clicking. This will open the Registered Adder model builder dialog
box. Enter a component name of ‘adder’ and change the width to 8 bit unsigned,
finally hit the Gener ate button.

4. This will generate four files that can be used for simulation. <module>.vhd is a
behavioral VHDL mode that uses the VHDL CoreGEN libraries. <module>.v is a
salf contained Verilog behavioral model. <module>.vhi includes a template
component declaration and a template component instantiation of the generated
module. <module>.vel includes a template module declaration and a template module
instantiation of the generated module.

Applications Note 113 Using Moddel Sim PE 5.X With Xilinx Alliance 33

[

i#. CORE Generator w1 5.0

File Options Help

S'ff | Froject e\COREGenicoregentwka

3 CORE Generator Library
=] Alliance CORE
59 LogicORE
— "] Basic Elements
Y DSp
—E59 Math
—{ 7] Accumulators
— 3 Adders and Subtracters
i—lurl Fegistered Adder
—id Registered Loadable Adder

!—H Registered Loadable Subtracter

% Eg,a Registered Adder l
i

__El‘: — . Component Marme:] adder
e | [InputWidth:]m v|
By | Sidn
_“J M —ee
—JF =i ® Signed
| Registered A — ~ Gi e
CORE Gener:

Generate | Cancel I
« I;I_I

VHDL User

5. In ModeSm, change into the directory in which you wish to store the CoreGen
utilitities library. Select File P Change Directory, use the file browser to locate the
desired directory. Create a ‘xul’ library. Select Library P Create A New Library, @
ensure that "a new library and logical mapping to it" is selected, enter ‘xul’ in the i
library box and select OK. Sdect the Compile button. Change the library to the
newly created “xul’ library. Change directory to
<ingtalled_directory>\COREGen\coregen\ip\xilinx\xul and compile the ul_utils.vhd
file. Select the done button.

6. If nowork library exists, select Library b Create A New Library, ensure that "a
new library and logical mapping to it" is selected, enter ‘work’ in the library box and
select OK.

7. Select the Compile button. Change the library to the newly created ‘work’ library.
The modd file output from CoreGEN is adder.vhd. Compile this model followed by
the testadder.vhd test bench file.

8. Loading the smulator. Select File b Load New Design or select the Load Design
button. Thiswill display the Load Design dialog box, which displays the design units
availablein each of thelibraries. Ensure that the design tab is highlighted. Ensure that
thework library isvisiblein thelibrary section. Select thetest_adder entity and press
the load button.

W

34 Using Modd Sim PE 5.X With Xilinx Alliance Software Applications Note

11

10.

Sdlect View b Structure and View b Wave, sdect the top level block in the
structure window and drap and drop it into the wave window.

Type 20000 in the Run box in the main window and then hit the run for button as
shown below.

P ——

= 28 ER(EL m) EiEEa

Verilog User

5.

If nowork library exists, select Library b Create A New Library, ensurethat "a
new library and logical mapping toit" is selected, enter ‘work’ in the library box and
select OK.

Select the Compile button. Change the library to the newly created ‘work’ library.
Compile the file output by coreGEN, adder.v into the work library. Compile the
testadder.v file into the work library.

Loading the simulator. Select File P Load New Design or sdlect the Load Design
button. Thiswill display the Load Design dialog box, which displays the design units
availablein each of thelibraries. Ensure that the design tab is highlighted. Ensure that
the work library is visible in the library section. Select the test_adder module and
then select theload button.

Sdlect View b Structure and View b Wave, sdect the top level block in the
structure window and drag and drop it into the wave window.

Type 20000000 in the Run box in the main window and then hit the run for button as
shown below.

P ——

¢@ Be FCE mHHBRHEE

The output from both the VHDL and Verilog simulations should show the addition of the
three vector values.

For more information

Consult the other technical notes under the support pages of http://www.model.com and
your Synthesis and FPGA vendor's documentation for more information on HDL
simulation for FPGA design. You can also visit Xilinx’s Web page, where there is a
technical note on HDL smulation which can be found at
www.Xilinx.com/techdocs/1923.htm.

Applications Note 113 Using Moddel Sim PE 5.X With Xilinx Alliance 35

[

