Chapter 7 Design Elements (LD to NOR16)

This chapter describes design elements included in the Unified Libraries. The elements are organized in alphanumeric order with all numeric suffixes in ascending order.

Information on the specific architectures supported by each of the following libraries is contained under the Applicable Architectures section of the Unified Libraries Chapter.

- <u>XC3000 Library</u>
- XC4000E Library
- XC4000X Library
- XC5200 Library
- XC9000 Library
- Spartan Library
- SpartanXL Library
- Virtex Library
- **Note:** Wherever *XC4000* is mentioned, the information applies to all architectures supported by the XC4000E and XC4000X libraries.
- **Note:** Wherever *Spartans* or *Spartan series* is mentioned, the information applies to all architectures supported by the Spartan and SpartanXL libraries.

Schematics are included for each library if the implementation differs. Design elements with bused or multiple I/O pins (2-, 4-, 8-, 16-bit versions) typically include just one schematic — generally the 8-bit version. When only one schematic is included, implementation of the smaller and larger elements differs only in the number of sections. In cases where an 8-bit version is very large, an appropriate smaller element serves as the schematic example.

LD

Transparent Data Latch

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	Macro	Macro	Macro	N/A	Macro	Primitive

LD is a transparent data latch. The data output (Q) of the latch reflects the data (D) input while the gate enable (G) input is High. The data on the D input during the High-to-Low gate transition is stored in the latch. The data on the Q output remains unchanged as long as G remains Low.

The latch is asynchronously cleared, output Low, when power is applied. For CPLDs, the power-on condition can be simulated by applying a High-level pulse on the PRLD global net. FPGAs simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR (XC5200) and GSR (XC4000X, SpartanXL, Virtex) default to active-High but can be inverted by adding an inverter in front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

Refer to the <u>"LD4, 8, 16"</u> section for information on multiple transparent data latches for the XC4000X, XC9000, and SpartanXL.

Inputs		Outputs
G	D	Q
1	0	0
1	1	1
0	Х	No Chg
\downarrow	D	d
d = state of input of the state of the sta	one setup time prior to High	n-to-Low gate

transition

Figure 7-1LD Implementation XC4000X, SpartanXL

Figure 7-2LD Implementation XC5200

Figure 7-3LD Implementation XC9000

LD_1 Transparent Data Latch with Inverted Gate

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	Macro	Macro	N/A	N/A	Macro	Primitive

LD_1 is a transparent data latch with an inverted gate. The data output (Q) of the latch reflects the data (D) input while the gate enable (G) input is Low. The data on the D input during the Low-to-High gate transition is stored in the latch. The data on the Q output remains unchanged as long as G remains High.

The latch is asynchronously cleared with Low output when power is applied. FPGAs simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR (XC5200) and GSR (XC4000X, SpartanXL, Virtex) default to active-High but can be inverted by adding an inverter in front of the GR/GSR input of the STARTUP or STARTUP_VIRTEX symbol.

Inputs		Outputs
G	D	Q

0	0	0
0	1	1
1	Х	No Chg
1	D	d
1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

d = state of input one setup time prior to Low-to-High gate transition

Figure 7-4LD_1 Implementation XC4000X, SpartanXL

Figure 7-5LD_1 Implementation XC5200

X6369

LD4, 8, 16 Multiple Transparent Data Latches

Eleme	XC300	XC400	XC400	XC520	XC900	Sparta	Spartan	Virtex
nt	0	0E	0X	0	0	n	XL	
LD4, LD8, LD16	N/A	N/A	Macro	N/A	Macro	N/A	Macro	Macro

LD4, LD8, and LD16 have, respectively, 4, 8, and 16 transparent data latches with a common gate enable (G). The data output (Q) of the latch reflects the data (D) input while the gate enable (G) input is High. The data on the D input during the High-to-Low gate transition is stored in the latch. The data on the Q output remains unchanged as long as G remains Low.

The latch is asynchronously cleared, output Low, when power is applied. For CPLDs, the power-on condition can be simulated by applying a High-level pulse on the PRLD global net. FPGAs simulate power-on when global set/reset (GSR) is active. GSR (XC4000X, SpartanXL, Virtex) default to active-High but can be inverted by adding an inverter in front of the GSR input of the STARTUP or the STARTUP_VIRTEX symbol.

	Outputs
D	Q
0	0
1	1
Х	No Chg
D	d
	D 0 1 X D

Refer to the <u>"LD"</u> section for information on single transparent data latches.

d = state of input one setup time prior to High-to-Low gate transition

Figure 7-6LD8 Implementation XC4000X, XC9000, SpartanXL, Virtex

LDC Transparent Data Latch with Asynchronous Clear

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	Macro	Macro	N/A	N/A	Macro	Primitive

X4070

LDC is a transparent data latch with asynchronous clear. When the asynchronous clear input (CLR) is High, it overrides the other inputs and resets the data (Q) output Low. Q reflects the data (D) input while the gate enable (G) input is High and CLR is Low. The data on the D input during the High-to-Low gate transition is stored in the latch. The data on the Q output remains unchanged as long as G remains low.

The latch is asynchronously cleared with Low output when power is applied. FPGAs simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR (XC5200) and GSR (XC4000X, SpartanXL, Virtex) default to active-High but can be inverted by adding an inverter in front of the GR/GSR input of the STARTUP or the STARTUP_VIRTEX symbol.

Inputs	Outputs			
CLR	G	D	Q	
1	Х	Х	0	—
0	1	0	0	_
0	1	1	1	_
0	0	Х	No Chg	
0	\downarrow	D	d	

d = state of input one setup time prior to High-to-Low gate transition

Figure 7-7LDC Implementation XC4000X, SpartanXL

Figure 7-8LDC Implementation XC5200

LDC_1

Transparent Data Latch with Asynchronous Clear and Inverted Gate

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	Macro	Macro	N/A	N/A	Macro	Primitive

X3752

LDC_1 is a transparent data latch with asynchronous clear and inverted gate. When the asynchronous clear input (CLR) is High, it overrides the other inputs (D and G) and resets the data (Q) output Low. Q reflects the data (D) input while the gate enable (G) input and CLR are Low. The data on the D input during the Low-to-High gate transition is stored in the latch. The data on the Q output remains unchanged as long as G remains High.

The latch is asynchronously cleared with Low output when power is applied. FPGAs simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR (XC5200) and GSR (XC4000X, SpartanXL, Virtex) default to active-High but can be inverted by adding an inverter in front of the GR/GSR input of the STARTUP or the STARTUP_VIRTEX symbol.

Inputs			Outputs
CLR	G	D	Q
1	Х	X	0
0	0	0	0
0	0	1	1
0	1	Х	No Chg
0	↑	D	d

d = state of input one setup time prior to Low-to-High gate transition

Figure 7-9LDC_1 Implementation XC4000X, SpartanXL

Figure 7-10LDC_1 Implementation XC5200

LDCE Transparent Data Latch with Asynchronous Clear and Gate Enable

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	Macro	Primitive	N/A	N/A	Macro	Primitive

LDCE is a transparent data latch with asynchronous clear and gate enable. When the asynchronous clear input (CLR) is High, it overrides the other inputs and resets the data (Q) output Low. Q reflects the data (D) input while the gate (G) input and gate enable (GE) are High and CLR is Low. If GE is Low, data on D cannot be latched. The data on the D input during the High-to-Low gate transition is stored in the latch. The data on the Q output remains unchanged as long as G or GE remains low.

The latch is asynchronously cleared with Low output when power is applied. FPGAs simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR (XC5200) and GSR (XC4000X, SpartanXL, Virtex) default to active-High but can be inverted by adding an inverter in front of the GR/GSR input of the STARTUP or the STARTUP_VIRTEX symbol.

Inputs	Outputs			
CLR	GE	G	D	Q
1	Х	Х	Х	0
0	0	Х	Х	No Chg
0	1	1	0	0
0	1	1	1	1
0	1	0	Х	No Chg
0	1	\downarrow	D	d

d = state of input one setup time prior to High-to-Low gate transition

Figure 7-11LDCE Implementation XC4000X, SpartanXL

LDCE_1

Transparent Data Latch with Asynchronous Clear, Gate Enable, and Inverted Gate

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	Primitive	Macro	N/A	N/A	Primitive	Primitive

LDCE_1 is a transparent data latch with asynchronous clear, gate enable, and inverted gate. When the asynchronous clear input (CLR) is High, it overrides the other inputs and resets the data (Q) output Low. Q reflects the data (D) input while the gate (G) input and CLR are Low and gate enable (GE) is High. If GE is Low, the data on D cannot be latched. The data on the D input during the Low-to-High gate transition is stored in the latch. The data on the Q output remains unchanged as long as G remains High or GE remains Low.

The latch is asynchronously cleared with Low output when power is applied. FPGAs simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR (XC5200) and GSR (XC4000X, SpartanXL, Virtex) default to active-High but can be inverted by adding an inverter in front of the GR/GSR input of the STARTUP or the STARTUP_VIRTEX symbol.

Inputs	Outputs			
CLR	GE	G	D	Q
1	Х	Х	Х	0
0	0	Х	Х	No Chg
0	1	0	0	0
0	1	0	1	1
0	1	1	Х	No Chg
0	1	1	D	d

d = state of input one setup time prior to Low-to-High gate transition

Figure 7-12LDCE_1 Implementation XC5200

LD4CE, LD8CE, LD16CE

,

Transparent Data Latches with Asynchronous Clear and Gate Enable

Eleme	XC300	XC400	XC400	XC520	XC900	Sparta	Spartan	Virtex
nt	0	0E	0X	0	0	n	XL	
LD4CE	N/A	N/A	Macro	Macro	N/A	N/A	Macro	Macro

LD8CE

LD16C

E

LD4CE, LD8CE, and LD16CE have, respectively, 4, 8, and 16 transparent data latches with asynchronous clear and gate enable. When the asynchronous clear input (CLR) is High, it overrides the other inputs and resets the data (Q) outputs Low. Q reflects the data (D) inputs while the gate (G) input is High, gate enable (GE) is High, and CLR is Low. If GE for is Low, data on D cannot be latched. The data on the D input during the High-to-Low gate transition is stored in the

latch. The data on the Q output remains unchanged as long as GE remains Low.

The latch is asynchronously cleared with Low output when power is applied. FPGAs simulate power-on when global reset (GR) or global set/reset (GSR) is active. GR (XC5200) and GSR (XC4000X, SpartanXL, Virtex) default to active-High but can be inverted by adding an inverter in front of the GR/GSR input of the STARTUP or the STARTUP_VIRTEX symbol.

Outputs	
Qn	
0	
No Chg	
1	
0	
No Chg	
dn	
•	

Dn = referenced input, for example, D0, D1, D2

Qn = referenced output, for example, Q0, Q1, Q2

dn = referenced input state, one setup time prior to High-to-Low gate

transition

Figure 7-13LD4CE Implementation XC4000X, XC5200, SpartanXL, Virtex

Figure 7-14LD8CE Implementation XC4000X, XC5200, SpartanXL, Virtex

LDCP Transparent Data Latch with Asynchronous Clear and Preset

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	N/A	N/A	N/A	N/A	N/A	Primitive

LDCP is a transparent data latch with data (D), asynchronous clear (CLR) and preset (PRE) inputs. When CLR is High, it overrides the other inputs and resets the data (Q) output Low. When PRE is High and CLR is low, it presets the data (Q) output High. Q reflects the data (D) input while the gate (G) input is High and CLR and PRE are Low. The data on the D input during the High-to-Low gate transition is stored in the latch. The data on the Q output remains unchanged as long as G remains Low.

The latch is asynchronously cleared, output Low, when power is applied. Virtex simulates power-on when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the STARTUP_VIRTEX symbol.

Inputs	Outputs			
CLR	PRE	G	D	Q
1	Х	Х	Х	0
0	1	Х	Х	1
0	0	1	1	1
0	0	1	0	0
0	0	0	Х	No Chg
0	0	\downarrow	D	d

d = state of input one setup time prior to High-to-Low gate transition

LDCP_1

Transparent Data Latch with Asynchronous Clear and Preset and Inverted Gate

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	N/A	N/A	N/A	N/A	N/A	Primitive

LDCP_1 is a transparent data latch with data (D), asynchronous clear (CLR) and preset (PRE) inputs. When CLR is High, it overrides the other inputs and resets the data (Q) output Low. When PRE is High and CLR is low, it presets the data (Q) output High. Q reflects the data (D) input while gate (G) input, CLR, and PRE are Low. The data on the D input during the Low-to-High gate transition is stored in the latch. The data on the Q output remains unchanged as long as G remains High.

The latch is asynchronously cleared, output Low, when power is applied. Virtex simulates power-on when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the STARTUP_VIRTEX symbol.

Inputs	Outputs			
CLR	PRE	G	D	Q
1	Х	Х	Х	0
0	1	Х	Х	1
0	0	0	1	1
0	0	0	0	0
0	0	1	Х	No Chg
0	0	1	D	d

d = state of input one setup time prior to Low-to-High gate transition

LDCPE

Transparent Data Latch with Asynchronous Clear and Preset and Gate Enable

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	N/A	N/A	N/A	N/A	N/A	Primitive
PRE D GE G	LDCPE	Q					
CLR							
	140	074					

X8371

LDCPE is a transparent data latch with data (D), asynchronous clear (CLR), asynchronous preset (PRE), and gate enable (GE). When CLR is High, it overrides the other inputs and resets the data (Q) output Low. When PRE is High and CLR is low, it presets the data (Q) output High. Q reflects the data (D) input while the gate (G) input and gate enable (GE) are High and CLR and PRE are Low. The data on the D input during the High-to-Low gate transition is stored in the latch. The data on the Q output remains unchanged as long as G or GE remain Low.

Inputs					Output s
CLR	PRE	GE	G	D	Q
1	Х	Х	Х	Х	0
0	1	Х	Х	Х	1
0	0	0	Х	Х	No Chg
0	0	1	1	0	0
0	0	1	1	1	1
0	0	1	0	Х	No Chg
0	0	1	\downarrow	D	d

d = state of input one setup time prior to High-to-Low gate transition

LDCPE_1

Transparent Data Latch with Asynchronous Clear and Preset, Gate Enable, and Inverted Gate

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	N/A	N/A	N/A	N/A	N/A	Primitive
PRE							

X8372

LDCPE_1 is a transparent data latch with data (D), asynchronous clear (CLR), asynchronous preset (PRE), and gate enable (GE). When CLR is High, it overrides the other inputs and resets the data (Q) output Low. When PRE is High and CLR is low, it presets the data (Q) output High. Q reflects the data (D) input while gate enable (GE) is High and gate (G), CLR, and PRE are Low. The data on the D input during the Low-to-High gate transition is stored in the latch. The data on the Q output remains unchanged as long as G is High or GE is Low.

Inputs					Output s	
CLR	PRE	GE	G	D	Q	_
1	Х	Х	Х	Х	0	=

0	1	Х	Х	Х	1
0	0	0	Х	Х	No Chg
0	0	1	0	0	0
0	0	1	0	1	1
0	0	1	1	Х	No Chg
0	0	1	1	D	d

d = state of input one setup time prior to Low-to-High gate transition

LDE Transparent Data Latch with Gate Enable

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	N/A	N/A	N/A	N/A	N/A	Primitive

LDE is a transparent data latch with data (D) and gate enable (GE) inputs. Output Q reflects the data (D) while the gate (G) input and gate enable (GE) are High. The data on the D input during the High-to-Low gate transition is stored in the latch. The data on the Q output remains unchanged as long as G or GE remain Low.

Inputs			Outputs	
GE	G	D	Q	

0	Х	Х	No Chg
1	1	0	0
1	1	1	1
1	0	Х	No Chg
1	\downarrow	D	d

d = state of input one setup time prior to High-to-Low gate transition

LDE_1 Transparent Data Latch with Gate Enable and Inverted Gate

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	N/A	N/A	N/A	N/A	N/A	Primitive

LDE_1 is a transparent data latch with data (D) and gate enable (GE) inputs. Output Q reflects the data (D) while the gate (G) input is Low and gate enable (GE) is High. The data on the D input during the Low-to-High gate transition is stored in the latch. The data on the Q output remains unchanged as long as G is High or GE is Low.

Inputs			Outputs	
GE	G	D	Q	
0	Х	Х	No Chg	

1	0	0	0
1	0	1	1
1	1	Х	No Chg
1	↑	D	d

d = state of input one setup time prior to Low-to-High gate transition

LDP Transparent Data Latch with Asynchronous Preset

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	N/A	N/A	N/A	N/A	N/A	Primitive

LDP is a transparent data latch with asynchronous preset (PRE). When the PRE input is High, it overrides the other inputs and resets the data (Q) output High. Q reflects the data (D) input while gate (G) input is High and PRE is Low. The data on the D input during the High-to-Low gate transition is stored in the latch. The data on the Q output remains unchanged as long as G remains Low.

Inputs			Outputs	
PRE	G	D	Q	

1	Х	Х	1
0	1	0	0
0	1	1	1
0	0	Х	No Chg
0	\downarrow	D	d

d = state of input one setup time prior to High-to-Low gate transition

LDP_1

Transparent Data Latch with Asynchronous Preset and Inverted Gate

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	N/A	N/A	N/A	N/A	N/A	Primitive

LDP_1 is a transparent data latch with asynchronous preset (PRE). When the PRE input is High, it overrides the other inputs and resets the data (Q) output High. Q reflects the data (D) input while gate (G) input and PRE are Low. The data on the D input during the Low-to-High gate transition is stored in the latch. The data on the Q output remains unchanged as long as G remains High.

Inputs			Outputs	
PRE	G	D	Q	
1	Х	Х	1	
0	0	0	0	
0	0	1	1	
0	1	Х	No Chg	
0	1	D	d	

d = state of input one setup time prior to Low-to-High gate transition

LDPE

Transparent Data Latch with Asynchronous Preset and Gate Enable

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	Macro	N/A	N/A	N/A	Macro	Primitive

X6954

LDPE is a transparent data latch with asynchronous preset and gate enable. When the asynchronous preset (PRE) is High, it overrides the other input and presets the data (Q) output High. Q reflects the data (D) input while the gate (G) input and gate enable (GE) are High. If GE is low, data on D cannot be latched. The data on the D input during the High-to-Low gate transition is stored in the latch. The data on the Q output remains unchanged as long as G or GE remains Low.

The latch is asynchronously preset, output High, when power is applied. FPGAs simulate power-on when global set/reset (GSR) is active. GSR (XC4000X, SpartanXL, Virtex) default to active-High but can be inverted by adding an inverter in front of the GR/GSR input of the STARTUP or the STARTUP_VIRTEX symbol.

Inputs				Outputs
PRE	GE	G	D	Q
1	Х	Х	Х	1
)	0	Х	Х	No Chg
)	1	1	0	0
)	1	1	1	1
)	1	0	Х	No Chg
)	1	\downarrow	D	d

d = state of input one setup time prior to High-to-Low gate transition

Figure 7-15LDPE Implementation XC4000X, SpartanXL

LDPE_1

Transparent Data Latch with Asynchronous Preset, Gate Enable, and Inverted Gate

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	Primitive	N/A	N/A	N/A	Primitive	Primitive

LDPE_1 is a transparent data latch with asynchronous preset, gate enable, and inverted gated. When the asynchronous preset (PRE) is High, it overrides the other input and presets the data (Q) output High. Q reflects the data (D) input while the gate (G) input is low and gate enable (GE) is High.

If GE is low, data on D cannot be latched. The data on the D input during the Low-to-High gate transition is stored in the latch. The data on the Q output remains unchanged as long as G remains High or GE remains Low.

The latch is asynchronously preset, output High, when power is applied. FPGAs simulate power-on when global set/reset (GSR) is active. GSR (XC4000X, SpartanXL, Virtex) default to active-High but can be inverted by adding an inverter in front of the GR/GSR input of the STARTUP or the STARTUP_VIRTEX symbol.

Inputs	Outputs			
PRE	GE	G	D	Q
1	Х	Х	Х	1
0	0	Х	Х	No Chg
0	1	0	0	0
0	1	0	1	1
0	1	1	Х	No Chg
0	1	1	D	d

d = state of input one setup time prior to Low-to-High gate transition

LUT1, 2, 3, 4 1-, 2-, 3-, 4-Bit Look-Up-Table with General Output

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex

LUT1, LUT2, LUT3, and LUT4 are, respectively, 1-, 2-, 3-, and 4-bit look-up-tables (LUTs) with general output (O). A mandatory INIT attribute, with an appropriate number of hexadecimal digits for the number of inputs, must be attached to the LUT to specify its function.

LUT1 provides a look-up-table version of a buffer or inverter.

LUTs are the basic Virtex building blocks. Two LUTs are available in each CLB slice; four LUTs are available in each CLB. The variants, <u>"LUT1_D, LUT2_D, LUT3_D, LUT4_D"</u> and <u>"LUT1_L, LUT2_L, LUT3_L, LUT4_L"</u>, provide additional types of outputs that can be used by different timing models for more accurate pre-layout timing estimation.

Inputs			Outputs	
12	11	10	ο	
0	0	0	INIT[0]	
0	0	1	INIT[1]	
0	1	0	INIT[2]	
0	1	1	INIT[3]	
1	0	0	INIT[4]	
1	0	1	INIT[5]	
1	1	0	INIT[6]	
1	1	1	INIT[7]	

INIT = binary equivalent of the hexadecimal number assigned to the INIT attribute

LUT3 Function Table

LUT1_D, LUT2_D, LUT3_D, LUT4_D 1-, 2-, 3-, 4-Bit Look-Up-Table with Dual Output

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	N/A	N/A	N/A	N/A	N/A	Primitive

LUT1_D, LUT2_D, LUT3_D, and LUT4_D are, respectively, 1-, 2-, 3-, and 4-bit look-up-tables (LUTs) with two functionally identical outputs, O and LO. The O output is a general interconnect. The LO output is used to connect to another output within the same CLB slice and to the fast connect buffer.

A mandatory INIT attribute, with an appropriate number of hexadecimal digits for the number of inputs, must be attached to the LUT to specify its function.

LUT1_D provides a look-up-table version of a buffer or inverter.

See also <u>"LUT1, 2, 3, 4"</u> and <u>"LUT1_L, LUT2_L, LUT3_L, LUT4_L"</u>.

Inputs			Outputs	Outputs		
12	I 1	10	ο	LO		
0	0	0	INIT[0]	INIT[0]		
0	0	1	INIT[1]	INIT[1]		
0	1	0	INIT[2]	INIT[2]		
0	1	1	INIT[3]	INIT[3]		
1	0	0	INIT[4]	INIT[4]		
1	0	1	INIT[5]	INIT[5]		
1	1	0	INIT[6]	INIT[6]		
1	1	1	INIT[7]	INIT[7]		

INIT = binary equivalent of the hexadecimal number assigned to the INIT attribute

LUT3_D Function Table

LUT1_L, LUT2_L, LUT3_L, LUT4_L 1-, 2-, 3-, 4-Bit Look-Up-Table with Local Output

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	N/A	N/A	N/A	N/A	N/A	Primitive

LUT1_L, LUT2_L, LUT3_L, and LUT4_L are, respectively, 1-, 2-, 3-, and 4- bit look-up-tables (LUTs) with a local output (LO) that is used to connect to another output within the same CLB slice and to the fast connect buffer.

A mandatory INIT attribute, with an appropriate number of hexadecimal digits for the number of inputs, must be attached to the LUT to specify its function.

LUT1_L provides a look-up-table version of a buffer or inverter.

See also <u>"LUT1, 2, 3, 4"</u> and <u>"LUT1_D, LUT2_D, LUT3_D, LUT4_D"</u>.

Inputs		Outputs		
12	l1	10	LO	
0	0	0	INIT[0]	-
0	0	1	INIT[1]	-
0	1	0	INIT[2]	-

0	1	1	INIT[3]
1	0	0	INIT[4]
1	0	1	INIT[5]
1	1	0	INIT[6]
1	1	1	INIT[7]

INIT = binary equivalent of the hexadecimal number assigned to the INIT attribute

LUT3_L Function Table

MD0

Mode 0, Input Pad Used for Readback Trigger Input

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	Primitive	Primitive	Primitive	N/A	N/A	N/A	N/A

The MD0 input pad is connected to the Mode 0 (M0) input pin, which is used to determine the configuration mode on XC4000 and XC5200 devices. Following configuration, MD0 can be used as an input pad, but it must be connected through an IBUF to the user circuit. However, the user input signal must not interfere with the device configuration. XC5200 devices allow an MD0 pad to be used as an output pad; XC4000 devices do not. The IOB associated with the MD0 pad has no flip-flop or latch. This pad is usually connected (automatically) to the RTRIG input of the READBACK function.

MD1

Mode 1, Output Pad Used for Readback Data Output

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	Primitive	Primitive	Primitive	N/A	N/A	N/A	N/A

The MD1 output pad is connected to the Mode 1 (M1) output pin, which is used to determine the configuration mode on XC4000 and XC5200 devices. Following configuration, MD1 can be used as a 3-state or simple output pad, but it must be connected through an OBUF or an OBUFT to the user circuit. However, the user output signal must not interfere with the device configuration. XC5200 devices allow an MD1 pad to be used as an input pad; XC4000 devices do not. The IOB associated with an MD1 pad has no flip-flop or latch. This pad is usually connected to the DATA output of the READBACK function, and the output-enable input of the 3-state OBUFT is connected to the RIP output of the READBACK function.

MD2

Mode 2, Input Pad

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	Primitive	Primitive	Primitive	N/A	N/A	N/A	N/A

The MD2 input pad is connected to the Mode 2 (M2) input pin, which is used to determine the configuration mode on XC4000 and XC5200 devices. Following configuration, MD2 can be used as an input pad, but it must be connected through an IBUF to the user circuit. However, the user input signal must not interfere with the device configuration. XC5200 devices allow an MD2 pad to be used as an output pad; XC4000 devices do not. The IOB associated with it has no flip-flop or latch.

M2_1 2-to-1 Multiplexer

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
Macro	Macro	Macro	Macro	Macro	Macro	Macro	Macro

The M2_1 multiplexer chooses one data bit from two sources (D1 or D0) under the control of the select input (S0). The output (O) reflects the state of the selected data input. When Low, S0 selects D0 and when High, S0 selects D1.

Inputs			Outputs
S0	D1	D0	0
1	1	Х	1
1	0	Х	0
0	Х	1	1
0	Х	0	0

Figure 7-16M2_1 Implementation XC3000, XC4000, XC5200, XC9000, Spartans, Virtex

M2_1B1 2-to-1 Multiplexer with D0 Inverted

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
Macro	Macro	Macro	Macro	Macro	Macro	Macro	Macro

The M2_1B1 multiplexer chooses one data bit from two sources (D1 or D0) under the control of select input (S0). When S0 is Low, the output (O) reflects the state of $\overline{D0}$. When S0 is High, O reflects the state of D1.

		Outputs
D1	D0	0
1	Х	1
0	Х	0
Х	1	0
Х	0	1
	D1 1 0 X X X	D1 D0 1 X 0 X X 1 X 0

Figure 7-17M2_1B1 Implementation XC3000, XC4000, XC5200, XC9000, Spartans, Virtex

M2_1B2 2-to-1 Multiplexer with D0 and D1 Inverted

Macro Macro Macro Macro Macro Macro	Macro

The M2_1B2 multiplexer chooses one data bit from two sources (D1 or D0) under the control of select input (S0). When S0 is Low, the output (O) reflects the state of $\overline{D0}$. When S0 is High, O reflects the state of $\overline{D1}$.

Inputs			Outputs	
S0	D1	D0	0	_
1	1	Х	0	;
1	0	Х	1	
0	Х	1	0	
0	Х	0	1	

Figure 7-18M2_1B2 Implementation XC3000, XC4000, XC5200, XC9000, Spartans, Virtex

M2_1E 2-to-1 Multiplexer with Enable

Е

X4029

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
Macro	Macro	Macro	Macro	Macro	Macro	Macro	Macro
D0 D1 S0	 •						

M2_1E is a 2-to-1 multiplexer with enable. When the enable input (E) is High, the M2_1E chooses one data bit from two sources (D1 or D0) under the control of select input (S0). When E is High, the output (O) reflects the state of the selected input. When Low, S0 selects D0 and when High, S0 selects D1. When E is Low, the output is Low.

Inputs				Outputs
E	S0	D1	D0	0
0	Х	Х	Х	0

40 - libguide

1	0	Х	1	1
1	0	Х	0	0
1	1	1	Х	1
1	1	0	Х	0

Figure 7-19M2_1E Implementation XC3000, XC4000, XC5200, XC9000, Spartans, Virtex

M4_1E 4-to-1 Multiplexer with Enable

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
Macro	Macro	Macro	Macro	Macro	Macro	Macro	Macro

M4_1E is an 4-to-1 multiplexer with enable. When the enable input (E) is High, the M4_1E multiplexer chooses one data bit from four sources (D3, D2, D1, or D0) under the control of the select inputs (S1 - S0). The output (O) reflects the state of the selected input as shown in the truth table. When E is Low, the output is Low.

Inputs	6						Outputs
E	S1	S0	D0	D1	D2	D3	0
0	Х	Х	Х	Х	Х	Х	0
1	0	0	D0	Х	Х	Х	D0
1	0	1	Х	D1	Х	Х	D1
1	1	0	Х	Х	D2	Х	D2
1	1	1	Х	Х	Х	D3	D3

Figure 7-20M4_1E Implementation XC3000, XC4000, XC5200, XC9000, Spartans

X7859

Figure 7-21M4_1E Implementation Virtex

M8_1E 8-to-1 Multiplexer with Enable

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
Macro	Macro	Macro	Macro	Macro	Macro	Macro	Macro

Inputs					Outputs
E	S2	S1	S0	D7 – D0	ο
0	Х	Х	Х	Х	0
1	0	0	0	D0	D0
1	0	0	1	D1	D1
1	0	1	0	D2	D2
1	0	1	1	D3	D3
1	1	0	0	D4	D4
1	1	0	1	D5	D5
1	1	1	0	D6	D6
1	1	1	1	D7	D7

M8_1E is an 8-to-1 multiplexer with enable. When the enable input (E) is High, the M8_1E multiplexer chooses one data bit from eight sources (D7 – D0) under the control of the select inputs (S2 – S0). The output (O) reflects the state of the selected input as shown in the truth table. When E is Low, the output is Low.

Dn represents signal on the Dn input; all other data inputs are don't-cares (X).

Figure 7-22M8_1E Implementation XC3000, XC4000, XC5200, XC9000, Spartans

Figure 7-23M8_1E Implementation Virtex

M16_1E

16-to-1 Multiplexer with Enable

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
Macro	Macro	Macro	Macro	Macro	Macro	Macro	Macro

M16_1E is a 16-to-1 multiplexer with enable. When the enable input (E) is High, the M16_1E multiplexer chooses one data bit from 16 sources (D15 – D0) under the control of the select inputs (S3 – S0). The output (O) reflects the state of the selected input as shown in the truth table. When E is Low, the output is Low.

Input	s					Outputs
E	S3	S2	S1	S0	D15 – D0	0
0	Х	Х	Х	Х	Х	0
1	0	0	0	0	D0	D0
1	0	0	0	1	D1	D1
1	0	0	1	0	D2	D2
1	0	0	1	1	D3	D3

•	•	•	•	•	•	
•	•	•	•	•	•	
	•	•	•			
1	1	1	0	0	D12	D12
1	1	1	0	1	D13	D13
1	1	1	1	0	D14	D14
1	1	1	1	1	D15	D15

Dn represents signal on the Dn input; all other data inputs are don't-cares (X).

MULT_AND Fast Multiplier AND

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	N/A	N/A	N/A	N/A	N/A	Primitive

10 LO X8405

MULT_AND is an AND component used *exclusively* for building fast and smaller multipliers. The I1 and I0 inputs *must* be connected to the I1 and I0 inputs of the associated LUT. The LO output *must* be connected to the DI input of the associated MUXCY, MUXCY_D, or MUXCY_L. See the <u>"Example Multiplier Using MULT_AND" figure</u>.

Inputs		Output		
11	10	LO		
0	0	0		
0	1	0		
1	0	0		
1	1	1		
0 0 1	0 1 0 1	LO 0 0 0 1		

MUXCY 2-to-1 Multiplexer for Carry Logic with General Output

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	N/A	N/A	N/A	N/A	N/A	Primitive

MUXCY is used to implement a 1-bit high-speed carry propagate function. One such function can be implemented per logic cell (LC), for a total of 4-bits per configurable logic block (CLB). The direct input (DI) of an LC is connected to the DI input of the MUXCY. The carry in (CI) input of an LC is connected to the CI input of the MUXCY. The select input (S) of the MUX is driven by the output of the lookup table (LUT) and configured as an XOR function. The carry out (O) of the MUXCY reflects the state of the selected input and implements the carry out function of each LC. When

Low, S selects DI; when High, S selects CI.

The variants, <u>"MUXCY_D"</u> and <u>"MUXCY_L"</u>, provide additional types of outputs that can be used by different timing models for more accurate pre-layout timing estimation.

Inputs			Outputs
S	DI	CI	0
0	1	Х	1
0	0	Х	0
1	Х	1	1
1	Х	0	0

MUXCY_D

2-to-1 Multiplexer for Carry Logic with Dual Output

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	N/A	N/A	N/A	N/A	N/A	Primitive
	CY_D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						

MUXCY_D is used to implement a 1-bit high-speed carry propagate function. One such function can be implemented per logic cell (LC), for a total of 4-bits per configurable logic block (CLB). The direct input (DI) of an LC is connected to the DI input of the MUXCY_D. The carry in (CI) input of an LC is connected to the CI input of the MUXCY_D. The select input (S) of the MUX is driven by the output of the lookup table (LUT) and configured as an XOR function. The carry out (O and LO) of the MUXCY_D reflects the state of the selected input and implements the carry out function of each LC. When Low, S selects DI; when High, S selects CI.

Outputs O and LO are functionally identical. The O output is a general interconnect. The LO output is used to connect to other inputs within the same CLB slice.

See also <u>"MUXCY"</u> and <u>"MUXCY_L"</u>.

Inputs		Outputs		
S	DI	СІ	0	LO
0	1	Х	1	1
0	0	Х	0	0
1	Х	1	1	1
1	Х	0	0	0

MUXCY_L

2-to-1 Multiplexer for Carry Logic with Local Output

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	N/A	N/A	N/A	N/A	N/A	Primitive

MUXCY_L is used to implement a 1-bit high-speed carry propagate function. One such function can be implemented per logic cell (LC), for a total of 4-bits per configurable logic block (CLB). The direct input (DI) of an LC is connected to the DI input of the MUXCY_L. The carry in (CI) input of an LC is connected to the CI input of the MUXCY_L. The select input (S) of the MUX is driven by the output of the lookup table (LUT) and configured as an XOR function. The carry out (LO) of the MUXCY_L reflects the state of the selected input and implements the carry out function of each LC. When Low, S selects DI; when High, S selects CI.

The LO output can only connect to other inputs within the same CLB slice.

See also <u>"MUXCY"</u> and <u>"MUXCY_D"</u>.

Inputs

Outputs

<u>S</u>	DI	CI	LO
0	1	Х	1
0	0	Х	0
1	Х	1	1
1	Х	0	0

MUXF5

2-to-1 Lookup Table Multiplexer with General Output

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	N/A	N/A	N/A	N/A	N/A	Primitive

MUXF5 provides a multiplexer function in one half of a Virtex CLB for creating a function-of-5 lookup table or a 4-to-1 multiplexer in combination with the associated lookup tables. The local outputs (LO) from the two lookup tables are connected to the I0 and I1 inputs of the MUXF5. The S input is driven from any internal net. When Low, S selects I0. When High, S selects I1.

The variants, <u>"MUXF5_D"</u> and <u>"MUXF5_L"</u>, provide additional types of outputs that can be used by different timing models for more accurate pre-layout timing estimation.

Inputs			Outputs
s	10	11	0
0	1	Х	1
0	0	Х	0
1	Х	1	1
1	Х	0	0

MUXF5_D 2-to-1 Lookup Table Multiplexer with Dual Output

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	N/A	N/A	N/A	N/A	N/A	Primitive

X8432

MUXF5_D provides a multiplexer function in one half of a Virtex CLB for creating a function-of-5 lookup table or a 4-to-1 multiplexer in combination with the associated lookup tables. The local outputs (LO) from the two lookup tables are connected to the I0 and I1 inputs of the MUXF5. The S input is driven from any internal net. When Low, S selects I0. When High, S selects I1.

Outputs O and LO are functionally identical. The O output is a general interconnect. The LO output is used to connect to other inputs within the same CLB slice.

Inputs		Outputs	Outputs		
S	10	I1	ο	LO	
0	1	Х	1	1	
0	0	Х	0	0	
1	Х	1	1	1	
1	Х	0	0	0	

See also <u>"MUXF5"</u> and <u>"MUXF5_L"</u>.

MUXF5_L 2-to-1 Lookup Table Multiplexer with Local Output

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	N/A	N/A	N/A	N/A	N/A	Primitive
11 S							

MUXF5_L provides a multiplexer function in one half of a Virtex CLB for creating a function-of-5 lookup table or a 4-to-1 multiplexer in combination with the associated lookup tables. The local outputs (LO) from the two lookup tables are connected to the I0 and I1 inputs of the MUXF5. The S input is driven from any internal net. When Low, S selects I0. When High, S selects I1.

The LO output is used to connect to other inputs within the same CLB slice.

See also <u>"MUXF5"</u> and <u>"MUXF5_L"</u>.

Inputs			Output	
S	10	11	LO	
0	1	Х	1	—
0	0	Х	0	—
1	Х	1	1	_
1	Х	0	0	—

MUXF6

2-to-1 Lookup Table Multiplexer with General Output

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	N/A	N/A	N/A	N/A	N/A	Primitive

MUXF6 provides a multiplexer function in a full Virtex CLB for creating a function-of-6 lookup table or an 8-to-1 multiplexer in combination with the associated four lookup tables and two MUXF5s. The local outputs (LO) from the two MUXF5s in the CLB are connected to the I0 and I1 inputs of the MUXF5. The S input is driven from any internal net. When Low, S selects I0. When High, S selects I1.

The variants, <u>"MUXF6_D"</u> and <u>"MUXF6_L"</u>, provide additional types of outputs that can be used by different timing models for more accurate pre-layout timing estimation.

Inputs			Outputs
S	10	11	ο
0	1	Х	1
0	0	Х	0
1	Х	1	1
1	Х	0	0

MUXF6_D

2-to-1 Lookup Table Multiplexer with Dual Output

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	N/A	N/A	N/A	N/A	N/A	Primitive

MUXF6_D provides a multiplexer function in a full Virtex CLB for creating a function-of-6 lookup table or an 8-to-1 multiplexer in combination with the associated four lookup tables and two MUXF5s. The local outputs (LO) from the two MUXF5s in the CLB are connected to the I0 and I1 inputs of the MUXF5. The S input is driven from any internal net. When Low, S selects I0. When High, S selects I1.

Outputs O and LO are functionally identical. The O output is a general interconnect. The LO output is used to connect to other inputs within the same CLB slice.

See also <u>"MUXF6"</u> and <u>"MUXF6_L"</u>.

Inputs			Outputs	Outputs		
s	10	I 1	ο	LO		
0	1	Х	1	1		
0	0	Х	0	0		
1	Х	1	1	1		
1	Х	0	0	0		

MUXF6_L 2-to-1 Lookup Table Multiplexer with Local Output

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	N/A	N/A	N/A	N/A	N/A	Primitive

MUXF6_L provides a multiplexer function in a full Virtex CLB for creating a function-of-6 lookup table or an 8-to-1 multiplexer in combination with the associated four lookup tables and two MUXF5s. The local outputs (LO) from the two MUXF5s in the CLB are connected to the I0 and I1 inputs of the MUXF5. The S input is driven from any internal net. When Low, S selects I0. When High, S selects I1.

The LO output is used to connect to other inputs within the same CLB slice.

See also <u>"MUXF6"</u> and <u>"MUXF6_D"</u>.

Inputs			Output	
S	10	11	LO	
0	1	Х	1	=
0	0	Х	0	-
1	Х	1	1	-
1	Х	0	0	-

NAND2-9

2- to 9-Input NAND Gates with Inverted and Non-Inverted Inputs

Eleme nt	XC300 0	XC400 0E	XC400 0X	XC520 0	XC900 0	Sparta n	Spartan XL	Virtex
NAND	Primiti	Primiti	Primiti	Primiti	Primiti	Primiti	Primitive	Primiti
2,	ve	ve	ve	ve	ve	ve		ve
NAND								
2B1,								
NAND								
2B2,								
NAND								
3,								
NAND								
3B1,								
NAND								
3B2,								
NAND								
3B3,								
NAND								
4,								
NAND								
4B1,								
NAND								
4B2,								
NAND								
4B3,								
NAND								
4B4								

NAND	Primiti	Primiti	Primiti	Macro	Primiti	Primiti	Primitive	Primiti
5, NAND 5B1, NAND 5B2, NAND 5B3, NAND 5B4, NAND 5B5	ve	ve	ve		ve	ve		ve
NAND 6, NAND 7, NAND 8, NAND 9	Macro	Macro	Macro	Macro	Primiti ve	Macro	Macro	Macro

Figure 7-25NAND Gate Representations

NAND5B5

The NAND function is performed in the Configurable Logic Block (CLB) function generators for XC3000, XC4000, XC5200, and Spartans. NAND gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NAND gates of six to nine inputs are available with only non-inverting inputs. To invert inputs, use external inverters. Since each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Refer to the <u>"NAND12, 16"</u> section for information on additional NAND functions for the XC5200 and Virtex.

Figure 7-26NAND5 Implementation XC5200

X8152

Figure 7-27NAND8 Implementation XC3000

X6524

Figure 7-28NAND8 Implementation XC4000, Spartans

Figure 7-29NAND8 Implementation XC5200

Libraries Guide

X6447

Figure 7-30NAND8 Implementation Virtex

NAND12, 16

12- and 16-Input NAND Gates with Non-Inverted Inputs

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	N/A	Macro	N/A	N/A	N/A	Macro

The NAND function is performed in the Configurable Logic Block (CLB) function generators for XC5200 and Virtex. The 12- and 16-input NAND functions are available only with non-inverting inputs. To invert some or all inputs, use external inverters.

Refer to the <u>"NAND2-9"</u> section for more information on NAND functions.

Figure 7-31NAND12 Implementation XC5200

Figure 7-32NAND12 Implementation Virtex

Figure 7-33NAND16 Implementation XC5200

Figure 7-34NAND16 Implementation Virtex

NOR2-9

2- to 9-Input NOR Gates with Inverted and Non-Inverted Inputs

Eleme nt	XC300 0	XC400 0E	XC400 0X	XC520 0	XC900 0	Sparta n	Spartan XL	Virtex
NOR2, NOR2 B1, NOR2 B2, NOR3, NOR3 B1, NOR3 B2, NOR3 B3, NOR4, NOR4 B1, NOR4 B1, NOR4 B2, NOR4 B3, NOR4 B3, NOR4 B4	Primiti ve	Primiti ve	Primiti ve	Primiti ve	Primiti ve	Primiti ve	Primitive	Primiti ve
NOR5, NOR5 B1, NOR5 B2, NOR5 B3, NOR5 B4, NOR5 B5	Primiti ve	Primiti ve	Primiti ve	Macro	Primiti ve	Primiti ve	Primitive	Primiti ve
NOR6, NOR7, NOR8, NOR9	Macro	Macro	Macro	Macro	Primiti ve	Macro	Macro	Macro

Figure 7-35NOR Gate Representations

NOR5B5

X8033

70 - libguide

The NOR function is performed in the Configurable Logic Block (CLB) function generators for XC3000, XC4000, XC5200, and Spartans. NOR gates of up to five inputs are available in any combination of inverting and non-inverting inputs. NOR gates of six to nine inputs are available with only non-inverting inputs. To invert some or all inputs, use external inverters. Since each input uses a CLB resource, replace gates with unused inputs with gates having the necessary number of inputs.

Refer to the <u>"NOR12, 16"</u> section for information on additional NOR functions for the XC5200 and Virtex.

Figure 7-36NOR5 Implementation XC5200

Figure 7-37NOR8 Implementation XC3000

X6521

Figure 7-38NOR8 Implementation XC4000, Spartans

X6520

Figure 7-39NOR8 Implementation XC5200
Libraries Guide

Figure 7-40NOR8 Implementation Virtex

NOR12, 16

12- and 16-Input NOR Gates with Non-Inverted Inputs

XC3000	XC4000 E	XC4000 X	XC5200	XC9000	Spartan	Spartan XL	Virtex
N/A	N/A	N/A	Macro	N/A	N/A	N/A	Macro

X8197

The 12- and 16-input NOR functions are available only with non-inverting inputs. To invert some or all inputs, use external inverters.

Refer to the <u>"NOR2-9"</u> section for more information on NOR functions.

Figure 7-41NOR16 Implementation XC5200

Figure 7-42NOR16 Implementation Virtex

