
Chapter 12

Attributes, Constraints, and Carry Logic
This chapter lists and describes all the attributes that you can use with your design entry software and the constraints that

are contained in machine- and user-generated files.

This chapter contains the following major sections.

• "Overview"

• "Information for Mentor Customers"

• "Schematic Syntax"

• "UCF/NCF File Syntax"

• "Attributes/Logical Constraints"

This section contains alphabetical listings of the attributes and constraints as well as descriptions, syntax, and

examples of each constraint.

• "Placement Constraints"

• "Relative Location (RLOC) Constraints"

• "Timing Constraints"

• "Physical Constraints"

• "Relationally Placed Macros (RPMs)"

• "Carry Logic in XC4000 and Spartans"

• "Carry Logic in XC5200"

• "Carry Logic in Virtex"

Overview
This section gives an overview of attributes, constraints, and carry logic.

Attributes
Attributes are instructions placed on symbols or nets in an FPGA or CPLD schematic to indicate their placement,

implementation, naming, directionality, and so forth. This information is used by the design implementation software

during placement and routing of a design. All the attributes listed in this chapter are available in the schematic entry tools

directly supported by Xilinx unless otherwise noted, but some may not be available in textual entry methods such as

VHDL.

Attributes applicable only to a certain schematic entry tool are described in the documentation for that tool. For

third-party interfaces, consult the interface user guides for information on which attributes are available and how they

are used.

Refer to the "Schematic Syntax" section in this chapter for guidelines on placing attributes on symbols on a schematic.

 1 - libguide

Constraints
Constraints, which are a type, or subset, of attributes, indicate where an element should be placed.

Logical Constraints

Constraints that are attached to elements in the design prior to mapping are referred to as logical constraints. Applying

logical constraints helps you to adapt your design's performance to expected worst-case conditions. Later, when you

choose a specific Xilinx architecture and place and route your design, the logical constraints are converted into physical

constraints.

You can attach logical constraints using attributes in the input design, which are written into the Netlist Constraints File

(NCF), or with a User Constraints File (UCF). Refer to the "UCF/NCF File Syntax" section for the rules for entering

constraints in a UCF or NCF file.

Three categories of logical constraints are described in detail in the "Attributes/Logical Constraints" section :

placement constraints, relative location constraints, and timing constraints.

The "Placement Constraints" section gives examples showing how to place constraints on the various types of logic

elements in FPGA designs.

For FPGAs, relative location constraints (RLOCs) group logic elements into discrete sets and allow you to define the

location of any element within the set relative to other elements in the set, regardless of eventual placement in the overall

design. Refer to the "Relative Location (RLOC) Constraints" section for detailed information on RLOCs.

Timing constraints allow you to specify the maximum allowable delay or skew on any given set of paths or nets in your

design. Refer to the "Timing Constraints" section for detailed information on using timing constraints in a UCF file.

Physical Constraints

Constraints can also be attached to the elements in the physical design, that is, the design after mapping has been

performed. These constraints are referred to as physical constraints and are defined in the Physical Constraints File

(PCF), which is created during mapping. See the "Physical Constraints" section.

Note: It is preferable to place any user-generated constraint in the UCF file  not in an NCF or PCF file.

Carry Logic
Dedicated fast carry logic increases the efficiency and performance of adders, subtracters, accumulators, comparators,

and counters. See the "Carry Logic in XC4000 and Spartans" section, "Carry Logic in XC5200" section , and

"Carry Logic in Virtex" section at the end of this chapter.

Information for Mentor Customers
In some software programs, particularly Mentor Graphics, attributes are called properties, but their functionality is the

same as that of attributes. In this document, they are referred to as attributes.

There are two types of Mentor Graphics properties. In one, a property is equal to a value, for example, LOC=AA. In the

other, the property name and the value are the same, for example, DECODE. In the first type, "attribute" refers to the

property. In the second, "attribute" refers to the property and the value.

The Mentor netlist writer program (ENWRITE) converts all property names to lowercase letters, and the Xilinx netlist

reader EDIF2NGD then converts the property names to uppercase letters. Because property names are processed in this

way, you must enter the variable text of certain constraints in uppercase letters only. The most salient examples are the

following.

 2 - libguide

• A TSidentifier name should contain only uppercase letters on a Mentor Schematic (TSMAIN, for example, but not

TSmain or TSMain). Also, if a TSidentifier name is referenced in a property value, it must be entered in uppercase

letters. For example, the TSID1 in the second constraint below must be entered in uppercase letters to match the

TSID1 name in the first constraint.

• Group names should contain only uppercase letters on a Mentor schematic (MY_FLOPS, for example, but not

my_flops or My_flops).

• If a group name appears in a property value, it must also be expressed in uppercase letters. For example, the

GROUP3 in the first constraint below must be entered in uppercase letters to match the GROUP3 in the second

constraint.

Schematic Syntax
This section describes how to place attributes on symbols on a schematic. The following guidelines are for specifying

locations.

• To specify a single location, use the following syntax.
attribute=location

• To specify multiple locations, use the following syntax.
attribute=location,location,location

A comma separates locations in a list of locations. (Spaces are ignored if entered.)

When you specify a list of locations, PAR (Place and Route) chooses any one of the listed

locations.

• To define a range by specifying the two corners of a bounding box, use the following syntax.
attribute=location : location [SOFT]

A colon is only used to separate the corners of a bounding box. The logic represented by the symbol is placed

somewhere inside the bounding box. If SOFT is specified, PAR may place the attribute elsewhere to obtain better

results.

Following are some examples of location attributes.

LOC=CLB_R1C2 Locates the element in the CLB in the first

row, second column.

LOC=CLB_R1C2.LC3 Locates the element in the top-most slice of

the four slices of the XC5200 CLB located

in the first row, second column.

LOC=CLB_R1C2.S1 Locates the element in the right-most slice

of the two slices of the Virtex CLB located

in the first row, second column.

LOC=P12 Assigns the signal to the pin P12 (for

CPLDs).

 3 - libguide

RLOC=R4C4 Assigns the location relative to other

elements in the set to row 4, column

4.

RLOC=R0Cl.FFX Assigns the location relative to other

elements in the set to the X flip-flop in row

0, column 1.

RLOC=R2C3.LC0 Assigns the location of the element to be

one slice below another element in the set

that has an RLOC=R2C3.LC1 attribute.

(XC5200)

RLOC=R2C3.S0 Assigns the location of the element to be the

left-most slice of another element in the set

that has an RLOC=R2C3.S1 attribute.

(Virtex)

RLOC_ORIGIN=R4C4 Fixes the reference CLB of a designated set

at row 4, column 4.

RLOC_RANGE=R4C4 :

R10C10

Limits the members of a designated set to a

range between row 4, column 4 and row 10,

column 10.

A name can be composed of any ASCII character except for control characters and characters that have special

meanings.

Control characters are : (colon) ; (semi-colon) , (comma) and "(double quotes).

Characters with special meaning are / (forward slash) used as the hierarchy separator and . (period) used as the pin

separator and for extensions.

For additional propagation rules for each constraint and attribute, refer to the "Macro and Net Propagation Rules"

table in the "Attributes/Logical Constraints" section.

UCF/NCF File Syntax
Logical constraints are found in a Netlist Constraint File (NCF), an ASCII file generated by synthesis programs, and in a

User Constraint File (UCF), an ASCII file generated by the user. This section describes the rules for entering constraints

in a UCF or NCF file.

Note: It is preferable to place any user-generated constraint in the UCF file  not in an NCF or PCF file.

The UCF and NCF files are case sensitive. Identifier names (names of objects in the design, such as net names) must

exactly match the case of the name as it exists in the source design netlist. However, any Xilinx constraint keyword (for

example, LOC, PERIOD, HIGH, LOW) may be entered in either all upper-case or all lower-case letters; mixed case is

not allowed.

Each statement is terminated by a semicolon (;).

No continuation characters are necessary if a statement exceeds one line, since a semicolon marks the end of the

 4 - libguide

statement.

You can add comments to the UCF/NCF file by beginning each comment line with a pound (#) sign. Following is an

example of part of a UCF/NCF file containing comments.

Statements do not have to be placed in any particular order in the UCF/NCF file.

The constraints in the UCF/NCF files and the constraints in the schematic or synthesis file are applied equally; it does not

matter whether a constraint is entered in the schematic or synthesis file or in the UCF/NCF files. If the constraints

overlap, however, UCF/NCF constraints override the schematic constraint. Refer to the "Constraints Priority"

section of the Development System Reference Guide for additional details on constraint priorities.

If by mistake two or more elements are locked onto a single location, the mapper detects the conflict, issues a detailed

error message, and stops processing so that you can correct the mistake.

The syntax for constraints in the UCF/NCF files is as follows.

NET INST PIN ;

or

SET ;

where

full_name is a full hierarchically qualified name of the object being referred to. When the name refers to a pin, the

instance name of the element is also required.

constraint is a constraint in the same form as it would be used if it were attached as an attribute on a schematic object.

For example, LOC=P38 or FAST, and so forth.

set_name is the name of an RLOC set. Refer to the "RLOC Sets" section for more information.

set_constraint is an RLOC_ORIGIN or RLOC_RANGE constraint.

Note: To specify attributes for the CONFIG or TIMEGRP primitives (tables), the keywords CONFIG or

TIMEGRP precede the attribute definitions in the constraints files.

For the TIMESPEC primitive (table), the use of the keyword TIMESPEC in the constraints files is

optional.

Note: In all of the constraints files (NCF, UCF, and PCF), instance or variable names that match internal reserved

words will be rejected unless the names are enclosed in double quotes. It is good practice to enclose all

names in double quotes.

For example, the following entry would not be accepted because the word net is a reserved word.

Following is the recommended way to enter the constraint.

or

 5 - libguide

Inverted signal names, for example ~OUTSIG1, must always be enclosed in double quotes as shown in the following

example.

Wildcards
You can use the wildcard characters, * and ?, in constraint statements as follows. The asterisk (*) represents any string of

zero or more characters. The question mark (?) indicates a single character.

In net names, the wildcard characters enable you to select a group of symbols whose output net names match a specific

string or pattern. For example, the following constraint increases the output speed of the pads to which nets with names

that begin with any series of characters followed by "AT" and end with one single characters are

connected.

In an instance name, a wildcard character by itself represents every symbol of the appropriate type. For example, the

following constraint initializes an entire set of ROMs to a particular hexadecimal value, 5555.

If the wildcard character is used as part of a longer instance name, the wildcard represents one or more characters at that

position.

In a location, you can use a wildcard character for either the row number or the column number. For example, the

following constraint specifies placement of any instance under the hierarchy of loads_of_logic in any CLB in column

8.

Wildcard characters can be used in dot extensions.

Wildcard characters cannot be used for both the row number and the column number in a single constraint, since such a

constraint is meaningless.

Traversing Hierarchies
Note: Top-level block names (design names) are ignored when searching for instance name

matches.

You can use the asterisk wildcard character (*) to traverse the hierarchy of a design within a UCF or NCF file. The

following syntax applies (where level1 is an example hierarchy level name).

* Traverses all levels of the hierarchy

level1/* Traverses all blocks in level1 and below

level1/*/ Traverses all blocks in the level1 hierarchy level but no

further

Consider the following design hierarchy.

 6 - libguide

With the example design hierarchy, the following specifications illustrate the scope of the

wildcard.

File Name
By default, NGDBuild reads the constraints file that carries the same name as the input design with a .ucf extension;

however, you can specify a different constraints file name with the -uc option when running NGDBuild. NGDBuild

automatically reads in the NCF file if it has the same base name as the input XNF or EDIF file and is in the same

directory as the XNF or EDIF file.

Note: The implementation tools (NGDBuild, MAP, PAR, etc.) require file name extensions in all lowercase (.ucf,

for example) in command lines.

Instances and Blocks
Because the statements in the constraints file concern instances and blocks, these entities are defined

here.

An instance is a symbol on the schematic. An instance name is the symbol name as it appears in the EDIF or XNF

netlist. A block is a CLB, an IOB, or a TBUF. You can specify the block name by using the BLKNM, HBLKNM, or the

XBLKNM attribute; by default, the software assigns a block name on the basis of a signal name associated with the

block.

 7 - libguide

Attributes/Logical Constraints
Syntax Summary
This section summarizes attribute and logical constraints syntax. This syntax conforms to the conventions given in the

"Conventions" section. A checkmark (√) appearing in a column means that the attribute/constraint is supported for

architectures that use the indicated library. (Refer to the "Applicable Architectures" section of the "Xilinx Unified

Libraries" chapter for information on the specific device architectures supported in each library.) A blank column

means that the attribute/constraint is not supported for architectures using that library.

BASE BASE = {F | FG | FGM | IO}

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

BLKNM BLKNM = block_name

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √

BUFG BUFG = {CLK | OE | SR}

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

CLKDV_DIVIDE CLKDV_DIVIDE={ 1.5 | 2 | 2.5 | 3 | 4 | 5 | 8 | 16}

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

COLLAPSE COLLAPSE

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

 8 - libguide

CONFIG* CONFIG = tag value [tag value]

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

*The CONFIG attribute configures internal options of an XC3000 CLB or IOB. Do not

confuse this attribute with the CONFIG primitive, which is a table containing PROHIBIT and

PART attributes.

DECODE DECODE

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √

DIVIDE1_BY and

DIVIDE2_BY

DIVIDE1_BY = {4 | 16 | 64 | 256}

DIVIDE2_BY = {2 | 8 | 32 | 128 | 1024 | 4096 | 16384 |

65536}

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

DOUBLE DOUBLE

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √

DRIVE XC4000X, SpartanXL:
DRIVE = {12 |24}

Virtex:
DRIVE = {2 | 4 | 6 | 8 | 12 | 16 | 24}

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

 9 - libguide

√* √ √

* supported for XC4000XV and XC4000XLA designs only

DROP_SPEC TSidentifier=DROP_SPEC

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √ √

DUTY_CY

CLE_COR

RECTION

DUTY_CYCLE_CORRECTION={TRUE | FALSE}

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

EQUATE_F and

EQUATE_G

EQUATE_F = equation

EQUATE_G = equation

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

FAST FAST

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √ √

FILE FILE = file_name [.extension]

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √ √

 10 - libguide

HBLKNM HBLKNM = block_name

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √

HU_SET HU_SET = set_name

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √

INIT INIT ={S | R | value}

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √

INIT_0x INIT_0x = value

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

INREG INREG

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

IOB IOB={TRUE | FALSE}

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

 11 - libguide

KEEP KEEP

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √ √*

*Only at BEL level

LOC FPGAs:

LOC=location1[,location2,... , locationn]

or:

LOC=location : location [SOFT]

CPLDs:
LOC = {pin_name | FBnn | FBnn_mm}

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √ √

MAP MAP = [PUC | PUO | PLC | PLO]*

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √

*Only PUC and PUO are observed. PLC and PLO are translated to PUC and PUO,

respectively. The default is PUO.

MAXDELAY MAXDELAY = allowable_delay [units]

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √

MAXSKEW MAXSKEW = allowable_skew [units]

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √

 12 - libguide

MEDDELAY MEDDELAY

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √

NODELAY NODELAY

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √

NOREDUCE NOREDUCE

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √

OFFSET OFFSET={IN | OUT} offset_time [units] {BEFORE | AFTER}

"clk_net" [TIMEGRP "reggroup"]

or:

NET "name" OFFSET={IN | OUT} offset_time [units] {BEFORE |

AFTER} "clk_net" [TIMEGRP "reggroup"]

or:

TIMEGRP "group" OFFSET={IN | OUT} offset_time [units]

{BEFORE | AFTER} "clk_net" [TIMEGRP "reggroup"]

or:

TSidentifier= [TIMEGRP name] OFFSET = {IN|OUT} offset_time

[units] {BEFORE|AFTER} "clk_net" [TIMEGRP "reggroup"]

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √ √

OPT_EFFORT OPT_EFFORT= {NORMAL | HIGH}

 13 - libguide

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √

OPTIMIZE OPTIMIZE ={AREA | SPEED | BALANCE | OFF}

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √

OUTREG OUTREG

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

PART PART = part_type

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √ √

PERIOD PERIOD = period[units] [{HIGH | LOW} [high_or_low_time

[hi_lo_units]]]

or:

TSidentifier=PERIOD TNM_reference period[units] [{HIGH |

LOW} [high_or_low_time hi_lo_units]]]

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √ √

PROHIBIT PROHIBIT = location1[, location2, ... , locationn]

or:

PROHIBIT = location : location

XC3000 XC4000 XC4000 XC5200 XC9000 Spartan Spartan Virtex

 14 - libguide

E X XL

√ √ √ √ √ √ √ √

PWR_MODE PWR_MODE ={LOW | STD}

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

RLOC XC4000:
RLOC = RmCn[.extension]

XC5200, Virtex:
RLOC = RmCn.extension

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √

RLOC_ORIGIN RLOC_ORIGIN = RmCn

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √

RLOC_RANGE RLOC_RANGE = Rm1Cn1:Rm2Cn2

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √

S(ave) - Net Flag

Attribute

S

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √

 15 - libguide

SLOW SLOW

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

STARTUP_WAIT STARUP_WAIT={TRUE | FALSE}

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

TEMPERATURE TEMPERATURE=value[C | F | K]

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√* √* √* √* √* √* √*

*Availability depends on the release of characterization data

TIG TIG

or:

TIG= TSidentifier1 [, TSidentifier2, ... ,TSidentifiern]

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √

Time Group

Attributes

new_group_name=[RISING | FALLING] group_name1 [EXCEPT

group_name2... group_namen]

or:

new_group_name=[TRANSHI | TRANSLO] group_name1

[EXCEPT group_name2... group_namen]

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √ √

 16 - libguide

TNM TNM = [predefined_group:] identifier

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √ √

TNM_NET TNM_NET = [predefined_group:] identifier

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √

TPSYNC TPSYNC = identifier

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √

TPTHRU TPTHRU = identifier

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √

TSidentifier TSidentifier=[MAXDELAY] FROM source_group TO dest_group

allowable_delay [units]

or:

TSidentifier=FROM source_group TO dest_group

allowable_delay [units]

or:

TSidentifier=FROM source_group THRU thru_point [THRU

thru_point1... thru_pointn] TO dest_group allowable_delay [units]

or:

TSidentifier=FROM source_group TO dest_group another_TSid[/ |

*] number

or:

TSidentifier=PERIOD TNM_reference period[units] [{HIGH |

LOW} [high_or_low_time [hi_lo_units]]]

 17 - libguide

or:

TSidentifier=PERIOD TNM_reference

another_PERIOD_identifier [/ | *] number [{HIGH | LOW}

[high_or_low_time [hi_lo_units]]]

or:

TSidentifier=FROM source_group TO dest_group TIG

or:

TSidentifier=FROM source_group THRU thru_point [THRU

thru_point1... thru_pointn] TO dest_group TIG

NOTE:

The use of a colon (:) instead of a space as a separator is

optional.

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √ √

U_SET U_SET = name

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √

USE_RLOC USE_RLOC = {TRUE | FALSE}

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √

VOLTAGE VOLTAGE=value[V]

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√* √* √* √* √* √* √*

*Availability depends on the release of characterization data

WIREAND WIREAND

XC3000 XC4000 XC4000 XC5200 XC9000 Spartan Spartan Virtex

 18 - libguide

E X XL

√*

* not supported for XC9500XL designs only

XBLKNM XBLKNM = block_name

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √

Attributes/Constraints Applicability
Certain constraints can only be defined at the design level, whereas other constraints can be defined in the various

configuration files. The following table lists the constraints and their applicability to the design, and the NCF, UCF, and

PCF files. A check mark (√) indicates that the constraint applies to the item for that column.

Table 12-1Constraint Applicability Table

Attribute/Constraint Desig
n

NCF UCF PCF

BASE √

BLKNM √ √ √

BUFG √ √ √

CLKDV_DIVIDE √ √ √

COLLAPSE √ √ √

COMPGRP √

CONFIG** √

DECODE √ √ √

DIVIDE1_BY √ √

DIVIDE2_BY √ √

DOUBLE √

DRIVE √ √ √

DROP_SPEC √ √ √*

DUTY_CYCLE_CORRECTI √ √ √

 19 - libguide

ON

EQUATE_F √

EQUATE_G √

FAST √ √ √

FILE √

FREQUENCY √

HBLKNM √ √ √

HU_SET √ √ √

INIT √ √

INIT_0x √ √ √

INREG √ √ √ √

IOB √ √ √

KEEP √ √ √

LOC √ √ √ √*

LOCATE √

LOCK √

MAP √ √ √

MAXDELAY √ √ √ √*

MAXSKEW √ √ √ √*

MEDDELAY √ √ √

NODELAY √ √ √

NOREDUCE √ √ √

OFFSET √ √ √*

OPT_EFFORT √ √ √

OPTIMIZE √ √ √

OUTREG √ √ √ √

PATH √

PART √ √ √

PENALIZE TILDE √

 20 - libguide

PERIOD √ √ √ √*

PIN √

PRIORITIZE √

PROHIBIT √ √ √ √*

PWR_MODE √ √ √

RLOC √ √ √

RLOC_ORIGIN √ √ √ √

RLOC_RANGE √ √ √ √

S(ave) - Net Flag

attribute
√ √ √

SITEGRP √

SLOW √ √ √

STARTUP_WAIT √ √ √

TEMPERATURE √ √ √ √

TIG √ √ √ √*

Time group attributes √ √ √ √

TNM √ √ √

TNM_NET √ √ √

TPSYNC √ √ √

TPTHRU √ √ √

TSidentifier √ √ √ √*

U_SET √ √ √

USE_RLOC √ √ √

VOLTAGE √ √ √ √

WIREAND √ √ √

XBLKNM √ √ √

*Use cautiously  while constraint is available, there are differences

between the UCF/NCF and PCF syntax.

**The CONFIG attribute configures internal options of an XC3000 CLB

or IOB. Do not confuse this attribute with the CONFIG primitive, which

 21 - libguide

is a table containing PROHIBIT and PART attributes.

Macro and Net Propagation Rules
Not all constraints can be attached to nets and macros. The following table lists the constraints and stipulates whether

they can be attached to a net, a macro, or neither.

Table 12-2Macro and Net Propagation Rules

Constraint/Attribute Action when
attached to a
net

Action when
attached to a
macro

BASE illegal illegal

BLKNM illegal Note 4

BUFG Note 3 illegal

CLKDV_DIVIDE illegal illegal

COLLAPSE Note 3 illegal

CONFIG* illegal illegal

DECODE Note 1 Note 4

DIVIDE1_BY and

DIVIDE2_BY

Note 1 Note 4

DOUBLE Note 1 Note 4

DRIVE Note 6 Note4

DROP_SPEC illegal illegal

DUTY_CYCLE_CORREC

TION

illegal Note 4

EQUATE_F and

EQUATE_G

illegal illegal

FAST Note 6 Note 4

FILE illegal Note 5

HBLKNM illegal Note 4

HU_SET illegal Note 4

INIT FPGA: illegal

CPLD: Note 1

Note 4

INIT_0x illegal illegal

 22 - libguide

INREG illegal illegal

IOB illegal Note 4

KEEP Note 3 illegal

LOC FPGA: Note 6

CPLD: Note 1

Note 4

MAP illegal illegal

MAXDELAY Note 3 illegal

MAXSKEW Note 3 illegal

MEDDELAY Note 6 Note 4

NODELAY Note 6 Note 4

NOREDUCE Note 3 illegal

OFFSET Note 3 illegal

OPTIMIZE illegal Note 5

OPT_EFFORT illegal Note 5

OUTREG illegal illegal

PART illegal illegal

PERIOD Note 3 illegal

PROHIBIT illegal illegal

PWR_MODE Note 2 Note 4

RLOC illegal Note 4

RLOC_ORIGIN illegal Note 4

RLOC_RANGE illegal Note 4

S(ave) - Net Flag

Attribute

Note 3 illegal

SLOW Note 6 Note 4

STARTUP_WAIT illegal Note 4

TEMPERATURE illegal illegal

TIG Note 2 Note 4

Time Group Attributes illegal illegal

TNM Note 2 Note 4

TNM_NET Note 2 illegal

 23 - libguide

TPSYNC Note 3 illegal

TPTHRU Note 3 illegal

TSidentifier illegal illegal

U_SET illegal Note 4

USE_RLOC illegal Note 4

VOLTAGE illegal illegal

WIREAND Note 3 illegal

XBLKNM illegal Note 4

Note 1: Attaches to all applicable elements that drive the

net.

Note 2: The attribute has a net form and so no special propagation is

required.

Note 3: Attribute is a net attribute and any attachment to a macro is

illegal.

Note 4: Propagated to all applicable elements in the hierarchy below the

module.

Note 5: Attribute is a macro attribute and any attachment to a net is

illegal.

Note 6: Attribute is illegal when attached to a net except when the net is

connected to a pad. In this case, the attribute is treated as attached to the

pad instance.

*The CONFIG attribute configures internal options of an XC3000 CLB or

IOB. Do not confuse this attribute with the CONFIG primitive, which is a

table containing PROHIBIT and PART attributes.

Syntax Descriptions
The information that follows describes in alphabetical order the attributes and constraints. A checkmark (√) appearing in

a column means that the attribute/constraint is supported for architectures that use the indicated library. (Refer to the

"Applicable Architectures" section of the "Xilinx Unified Libraries" chapter for information on the specific device

architectures supported in each library.) A blank column means that the attribute/constraint is not supported for

architectures that use that library.

The description for each attribute contains a subsection entitled "Applicable Elements." This section describes the base

primitives and circuit elements to which the constraint or attribute can be attached. In many cases, constraints or

attributes can be attached to macro elements, in which case some resolution of the user's intent is required. Refer to the

"Macro and Net Propagation Rules" section for a table describing the additional propagation rules for each constraint

and attribute.

BASE

 24 - libguide

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

Applicable Elements

CLB or IOB primitives

Description

The BASE attribute defines the base configuration of a CLB or an IOB. For an IOB primitive, it should always be set to

IO. For a CLB primitive, it can be one of three modes in which the CLB function generator

operates.

• F mode allows the CLB to implement any one function of up to five variables.

• FG mode gives the CLB any two functions of up to four variables. Of the two sets of four variables, one input (A)

must be common, two (B and C) can be either independent inputs or feedback from the Qx and Qy outputs of the

flip-flops within the CLB, and the fourth can be either of the two other inputs to the CLB (D and E).

• FGM mode is similar to FG, but the fourth input must be the D input. The E input is then used to control a

multiplexer between the two four-input functions, allowing some six- and seven-input functions to be implemented.

CLB and IOB base configurations of the XC3000 family are illustrated in the "IOB and CLB Primitives for Base

Configurations XC3000" figure. In this drawing, BASE F, FG, and FGM are for CLBs; BASE IO is for

IOBs.

Figure 12-1IOB and CLB Primitives for Base Configurations XC3000

 25 - libguide

In a schematic, BASE can be attached to any valid instance. Not supported for UCF, NCF, or PCF

files.

Syntax

BASE=

where mode can be F, FG, or FGM for a CLB and IO for an IOB.

Example

Schematic

Attached to a valid instance.

UCF/NCF file

N/A

BLKNM

 26 - libguide

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√
1, 2, 3, 7,

8

√
2, 3, 4,

5, 7, 8,

9, 10,

11

√
2, 3, 4,

5, 7, 8,

9, 10,

11

√
2, 3, 4, 6,

7, 11

√
2, 3, 4,

5, 7, 8,

9, 10,

11

√
2, 3, 4, 5,

7, 8, 9,

10, 11

Applicable Elements

1. IOB, CLB and CLBMAP (See the Note at the end of this list)

2. Flip-flop and latch primitives

3. Any I/O element or pad

4. FMAP

5. HMAP

6. F5MAP

7. BUFT

8. ROM primitive

9. RAM primitives

10. RAMS and RAMD primitives

11. Carry logic primitives

Note: You can also attach the BLKNM constraint to the net connected to the pad component in a UCF file.

NGDBuild transfers the constraint from the net to the pad instance in the NGD file so that it can be

processed by the mapper. Use the following syntax.

NET BLKNM=

Description

Assigns block names to qualifying primitives and logic elements. If the same BLKNM attribute is assigned to more than

one instance, the software attempts to map them into the same block. Conversely, two symbols with different BLKNM

names are not mapped into the same block. Placing similar BLKNMs on instances that do not fit within one block creates

an error.

Specifying identical BLKNM attributes on FMAP and/or HMAP symbols tells the software to group the associated

function generators into a single CLB. Using BLKNM, you can partition a complete CLB without constraining the CLB

 27 - libguide

to a physical location on the device.

BLKNM attributes, like LOC constraints, are specified from the schematic. Hierarchical paths are not prefixed to

BLKNM attributes, so BLKNM attributes for different CLBs must be unique throughout the entire design. See the

section on the "HBLKNM" attribute for information on attaching hierarchy to block names.

The BLKNM attribute allows any elements except those with a different BLKNM to be mapped into the same physical

component. Elements without a BLKNM can be packed with those that have a BLKNM. See the section on the

"XBLKNM" attribute for information on allowing only elements with the same XBLKNM to be mapped into the same

physical component.

For XC5200, a given BLKNM string can only be used to group a logic cell (LC), which contains one register, one LUT

(FMAP), and one F5_MUX element. An error will occur if two or more registers, two or more FMAPs, or two or more

F5_MUX elements have the same BLKNM attribute.

Syntax

BLKNM=

where block_name is a valid LCA block name for that type of symbol. For a list of prohibited block names, see the

"Naming Conventions" section of each user interface manual.

For information on assigning hierarchical block names, see the "HBLKNM" section elsewhere in this chapter.

Example

Schematic

Attached to a valid instance.

UCF/NCF file

This statement assigns an instantiation of an element named block1 to a block named U1358.

BUFG

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

Applicable Elements

Any input buffer (IBUF) that drives a CLK, OE, or SR pin or the pad net connected to the IBUF

input

Description

Maps the tagged signal to a global net.

Syntax

BUFG= CLK OE SR

 28 - libguide

where CLK, OE, and SR indicate clock, output enable, or set/reset, respectively.

Example

Schematic

Attached to a valid instance.

UCF/NCF file

This statement maps the signal named "fastclk" to a global net.

CLKDV_DIVIDE

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

Applicable Elements

Any CLKDLL or CLKDLLHF instance

Description

Specifies the extent to which the CLKDLL or CLKDLLHF clock divider (CLKDV output) is to be frequency divided.

Syntax

CLKDV_DIVIDE= 1.5 2 2.5 3 4 5 8 16

The default is 2 if no CLKDV_DIVIDE attribute is specified.

Example

Schematic

Attached to a CLKDLL or CLKDLLHF instance.

UCF/NCF file

This statement specifies a frequency division factor of 8 for the clock divider foo/bar.

COLLAPSE

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

 29 - libguide

Applicable Elements

Any internal net

Description

Forces a combinatorial node to be collapsed into all of its fanouts.

Syntax

COLLAPSE

Example

Schematic

Attached to a net.

UCF/NCF file

This statement forces net $1N6745 to collapse into all its fanouts.

CONFIG

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

Applicable Elements

IOB and CLB primitives

Description

Defines the configuration of the internal options of a CLB or IOB.

Note: Do not confuse this attribute with the CONFIG primitive, which is a table containing PROHIBIT and PART

attributes. Refer to the "PROHIBIT" section for information on disallowing the use of a site and to

the "PART" section for information on defining the part type for the design.

Syntax

CONFIG=

where tag and value are derived from the following tables.

Table 12-3XC3000 CLB Configuration Options

Tag BASE F BASE FG BASE FGM*

X F, QX F, QX M, QX

 30 - libguide

Y F, QY G, QY M, QY

DX DI, F DI, F, G DI, M

DY DI, F DI, F, G DI, M

CLK K, NOT K, NOT K, NOT

RSTDIR RD RD RD

ENCLK EC EC EC

F A,B,C,D,E,QX,

QY

A,B,C,D,E,QX,

QY

A,B,C,D,QX,

QY

G None A,B,C,D,E,QX,

QY

A,B,C,D,QX,

QY

*For BASE FGM, M=F if E=0, and M=G if E=1

Table 12-4XC3000 IOB Configuration Options

Tag BASE IO

IN I, IQ, IKNOT, FF, LATCH, PULLUP

OUT O, OQ, NOT, OKNOT, FAST

TRI T, NOT

Example

Schematic

Attached to a valid instance.

Following is an example of a valid XC3000 CLB CONFIG attribute value.

UCF/NCF file

N/A

DECODE

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √

 31 - libguide

Applicable Elements

WAND1

Description

Defines how a wired-AND (WAND) instance is created, either using a BUFT or an edge decoder. If the DECODE

attribute is placed on a single-input WAND1 gate, the gate is implemented as an input to a wide-edge decoder in

XC4000 designs.

Syntax

DECODE

DECODE attributes can only be attached to a WAND1 symbol.

Example

Schematic

Attached to a WAND1 symbol.

UCF/NCF file

This statement implements an instantiation of a wired AND using the edge decoder $COMP_1

DIVIDE1_BY and DIVIDE2_BY

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

Applicable Elements

OSC5, CK_DIV

Description

Defines the division factor for the on-chip clock dividers.

Syntax

DIVIDE1_BY= 4 16 64 256

DIVIDE2_BY= 2 8 32 128 1024 4096 16384 65536

Examples

Schematic

Attached to a valid instance.

NCF file

This statement defines the division factor of 8 for the clock divider $1I45678.

 32 - libguide

Note: DIVDE1_BY and DIVIDE2_BY are not supported in the UCF file.

DOUBLE

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √

Applicable Elements

PULLUPs

Description

Specifies double pull-up resistors on the horizontal longline. On XC3000 parts, there are internal nets that can be set as

3-state with two programmable pull-up resistors available per line. If the DOUBLE attribute is placed on a PULLUP

symbol, both pull-ups are used, enabling a fast, high-power line. If the DOUBLE attribute is not placed on a pull-up,

only one pull-up is used, resulting in a slower, lower-power line.

When the DOUBLE attribute is present, the speed of the distributed logic is increased, as is the power consumption of

the part. When only half of the longline is used, there is only one pull-up at each end of the

longline.

While the DOUBLE attribute can be used for the XC4000 and Spartans, it is not recommended. The mapper activates

both pull-up resistors if the entire longline (not a half-longline) is used. When DOUBLE is used, PAR will not add an

additional pull-up to achieve your timing constraints while routing XC4000 or Spartan series designs (refer to the

"PAR Place and Route" chapter of the Development System Reference Guide for information on PAR and timing

optimization).

Syntax

DOUBLE

Example

Schematic

Attached to a PULLUP only.

UCF/NCF file

N/A

DRIVE

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

 33 - libguide

√*

1

√
1

√
2

* supported for XC4000XV and XC4000XLA designs only

Applicable Elements

1. IOB output components (OBUF, OFD, etc.)

2. OBUF, OBUFT, IOBUF instances (with implied LVTTL standards)

Description

For the XC4000XV, XC4000XLA, and SpartanXL, programs the output drive current from High (24 mA) to Low (12

mA).

For Virtex, selects output drive strength (mA) for the components that use the LVTTL interface

standard.

Syntax

XC4000XV, XC4000XLA, and SpartanXL

DRIVE= 12 24

Virtex

DRIVE= 2 4 6 8 12 16 24

where 12 mA is the default.

Example

Schematic

Attached to a valid IOB output component.

UCF/NCF file

This statement specifies a High drive.

DROP_SPEC

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √ √

Applicable Elements

All timing specifications. Should be used only in UCF or PCF files.

 34 - libguide

Description

Allows you to specify that a timing constraint defined in the input design should be dropped from the analysis. This

constraint can be used when new specifications defined in a constraints file do not directly override all specifications

defined in the input design, and some of these input design specifications need to be dropped.

While this timing command is not expected to be used much in an input netlist (or NCF file), it is not illegal. If defined in

an input design this attribute must be attached to a TIMESPEC primitive.

Syntax

=DROP_SPEC

where TSidentifier is the identifier name used for the timing specification that is to be removed.

Example

Schematic

N/A

UCF/NCF file

This statement cancels the input design specification TS67.

DUTY_CYCLE_CORRECTION

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

Applicable Elements

Any CLKDLL, CLKDLLHF, or BUFGDLL instance

Description

Corrects the duty cycle of the CLK0 output.

Syntax

DUTY_CYCLE_CORRECTION=TRUE FALSE

where TRUE corrects the duty cycle to be a 50_50 duty cycle and FALSE does not change the duty cycle. The default is

FALSE.

Example

Schematic

Attached to a CLKDLL, CLKDLLHF, or BUFGDLL instance.

UCF/NCF file

This statement specifies a 50_50 duty cycle for foo/bar.

 35 - libguide

EQUATE_F and EQUATE_G

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

Applicable Elements

CLB primitive

Description

These attributes set the logic equations describing the F and G function generators of a CLB,

respectively.

Syntax

EQUATE_F=

EQUATE_G=

where equation is a logical equation of the function generator inputs (A, B, C, D, E, QX, QY) using the boolean

operators listed in the following table.

Table 12-5Valid XC3000 Boolean Operators

Symbol Boolean Equivalent

~ NOT

* AND

@ XOR

+ OR

() Group expression

Example

Schematic

Attached to a valid instance.

Here are two examples illustrating the use of the EQUATE_F attribute.

UCF/NCF file

 36 - libguide

N/A

FAST

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √ √

Applicable Elements

Output primitives, output pads, bidirectional pads

Note: You can also attach the FAST attribute to the net connected to the pad component in a UCF file. NGDBuild

transfers the attribute from the net to the pad instance in the NGD file so that it can be processed by the

mapper. Use the following syntax.

NET FAST

Description

Increases the speed of an IOB output.

Note: The FAST attribute produces a faster output but may increase noise and power

consumption.

Syntax

FAST

Example

Schematic

Attached to a valid instance.

UCF/NCF file

This statement increases the output speed of the element y2.

This statement increases the output speed of the pad to which net1 is connected.

FILE

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √ √

 37 - libguide

Applicable Elements

Macros that refer to underlying non-schematic designs

Description

FILE is attached to a macro that does not have an underlying schematic. It identifies the file to be looked at for a logic

definition. The type of file to be searched for is defined by the search order of the program compiling the design.

Syntax

FILE=

where file_name is the name of a file that represents the underlying logic for the element carrying the attribute. Example

file types include EDIF, XTF, NMC.

Schematic

Attached to a valid instance.

UCF/NCF file

N/A

HBLKNM

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√
1, 2, 3, 7,

8, 9,

10,12

√
2, 3, 4,

5, 7, 8,

10, 11,

12, 13,

14, 15

√
2, 3, 4,

5, 7, 8,

10, 12,

13, 14,

15

√
2, 3, 4, 6,

7, 10,

15

√
2, 3, 4,

5, 7, 8,

10, 11,

12, 13,

14, 15

√
2, 3, 4, 5,

7, 8, 10,

12, 13,

14, 15

Applicable Elements

1. IOB, CLB and CLBMAP (See Note below)

2. Registers

3. I/O elements and pads

4. FMAP

5. HMAP

6. F5MAP

7. BUFT

 38 - libguide

8. PULLUP

9. ACLK, GCLK

10. BUFG

11. BUFGS, BUFGP

12. ROM

13. RAM

14. RAMS and RAMD

15. Carry logic primitives

Note: You can also attach the HBLKNM constraint to the net connected to the pad component in a UCF file.

NGDBuild transfers the constraint from the net to the pad instance in the NGD file so that it can be

processed by the mapper. Use the following syntax.

NET HBLKNM=

Description

Assigns hierarchical block names to logic elements and controls grouping in a flattened hierarchical design. When

elements on different levels of a hierarchical design carry the same block name and the design is flattened, NGDBuild

prefixes a hierarchical path name to the HBLKNM value.

Like BLKNM, the HBLKNM attribute forces function generators and flip-flops into the same CLB. Symbols with the

same HBLKNM attribute map into the same CLB, if possible. However, using HBLKNM instead of BLKNM has the

advantage of adding hierarchy path names during translation, and therefore the same HBLKNM attribute and value can

be used on elements within different instances of the same macro.

For XC5200, a given HBLKNM string can only be used to group a logic cell (LC), which contains one register, one

LUT (FMAP), and one F5_MUX element. An error will occur if two or more registers, two or more FMAPs, or two or

more F5_MUX elements have the same HBLKNM attribute.

Syntax

HBLKNM=

where block_name is a valid LCA block name for that type of symbol.

Example

Schematic

Attached to a valid instance.

UCF/NCF file

This statement specifies that the element this_hmap will be put into the block named group1.

This statement attaches the HBLKNM constraint to the pad connected to net1.

 39 - libguide

Note: Elements with the same HBLKNM are placed in the same logic block if possible. Otherwise an error occurs.

Conversely, elements with different block names will not be put into the same block.

HU_SET

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√
1, 2, 3,

5, 7, 8,

9, 10,

12

√
1, 2, 3,

5, 7, 8,

9, 10,

12

√
1, 2, 4, 6,

7, 8, 12

√
1, 2, 3,

5, 7, 8,

9, 10,

12

√
1, 2, 3, 5,

7, 8, 9,

10, 12

√
1,2, 7,

11, 12

Applicable Elements

1. Registers

2. FMAP

3. HMAP

4. F5MAP

5. CY4

6. CY_MUX

7. Macro Instance

8. EQN

9. ROM

10. RAM

11. RAMS, RAMD

12. BUFT

Description

The HU_SET constraint is defined by the design hierarchy. However, it also allows you to specify a set name. It is

possible to have only one H_SET constraint within a given hierarchical element (macro) but by specifying set names,

you can specify several HU_SET sets.

 40 - libguide

NGDBuild hierarchically qualifies the name of the HU_SET as it flattens the design and attaches the hierarchical names

as prefixes. The difference between an HU_SET constraint and an H_SET constraint is that an HU_SET has an explicit

user-defined and hierarchically qualified name for the set, but an H_SET constraint has only an implicit hierarchically

qualified name generated by the design-flattening program. An HU_SET set "starts" with the symbols that are assigned

the HU_SET constraint, but an H_SET set "starts" with the instantiating macro one level above the symbols with the

RLOC constraints.

For background information about using the various set attributes, refer to the "RLOC Sets" section.

Syntax

HU_SET=

where set_name is the identifier for the set; it must be unique among all the sets in the design.

Example

Schematic

Attached to a valid instance.

UCF/NCF file

This statement assigns an instance of the register FF_1 to a set named heavy_set.

INIT

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√
1, 2, 3

√
1, 2, 3

√
3

√
1, 2, 3

√
1, 2, 3

√
2, 3, 4

Applicable Elements

1. ROM

2. RAM

3. Registers

4. LUTs, SRLs

Description

Initializes ROMs, RAMs, registers, and look-up tables. The least significant bit of the value corresponds to the value

loaded into the lowest address of the memory element. For register initialization, S indicates Set and R indicates Reset.

The INIT attribute can be used to specify the initial value directly on the symbol with the following limitation. INIT may

only be used on a RAM or ROM that is 1 bit wide and not more than 32 bits deep.

 41 - libguide

Syntax

INIT= S R

where value is a 4-digit or 8-digit hexadecimal number that defines the initialization string for the memory element,

depending on whether the element is 16-bit or 32-bit. For example, INIT=ABAC1234.

S indicates Set and R indicates Reset for registers.

Note: For XC4000 and Spartans, INIT cannot specify a register as Set if the reset pin is being used or as Reset if

the set pin is being used.

Example

Schematic

Attached to a net, pin, or instance.

UCF/NCF file

INIT={S | R} is supported in both the NCF and UCF files. It is allowed in the UCF to control the startup state of

registers (primarily for CPLDs).

INIT=value is supported in the NCF file only. This statement defines the initialization string for an instantiation of the

memory element ROM2 to be the 16-bit hexadecimal string 5555.

Note: INIT=value is not supported in the UCF file.

INIT_0x

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

Applicable Elements

Block RAMs

Description

Specifies initialization strings for block RAM components.

Syntax

INIT_0 =

where

x is any hexadecimal value 0 through F that specifies which 256 bits (see the following table) of the 4096-bit block RAM

to initialize to the specified value.

value is a string of hexadecimal characters up to 64 digits wide. If the INIT_0x attribute has a value less than the

required 64 hex digits, the value will be padded with zeros from the most significant bit (MSB) side. This fills the 256

 42 - libguide

bits in the initialization string (4 bits per hexadecimal character * 64 characters).

INIT_0x Addresses

4096 x
1

2048 x
2

1024 x
4

512 x 8 256 x
16

INIT_00 255  0 127  0 63  0 31  0 15  0

INIT_01 511 
256

255 
128

127
64

63  32 31  16

INIT_02 767 
512

383 
256

191 
128

95  64 47  32

INIT_03 1023 
768

511 
384

255 
192

127 
96

63  48

INIT_04 1279 
1024

639 
512

319 
256

159 
128

79  64

INIT_05 1535 
1280

767 
640

383 
320

191 
160

95  80

INIT_06 1791 
1536

895 
768

447 
384

223 
192

111 
96

INIT_07 2047 
1792

1023 
896

511 
448

255 
224

127 
112

INIT_08 2303 
2048

1151 
1024

575 
512

287 
256

143 
128

INIT_09 2559 
2304

1279 
1152

639 
576

319 
288

159 
144

INIT_0

A
2815 
2560

1407 
1280

703 
640

351 
320

175 
160

INIT_0B 3071 
2816

1535 
1408

767 
704

383 
352

191 
176

INIT_0C 3327 
3072

1663 
1536

831 
768

415 
384

207 
192

INIT_0

D
3583 
3328

1791 
1664

895 
832

447 
416

223 
208

INIT_0E 3839 
3584

1919 
1792

959 
896

479 
448

239 
224

 43 - libguide

INIT_0F 4095 
3840

2047 
1920

1023 
960

511 
480

255 
240

INIT_0x usage rules

A summary of the rules for the INIT_0x attribute follows.

• If no INIT_0x attribute is attached to a block RAM, the contents of the RAM defaults to

zero.

• Each initialization string defines 256 bits of the 4096-bit block RAM. For example, for a 4096-bit deep x 1-bit wide

block RAM, INIT_00 assigns the 256 bits to addresses 0 through 255 and INIT_01 assigns the 256 bits to addresses

256 through 511. For a 2048-bit deep x 2-bit wide block RAMs, INIT_00 assigns the 256 bits to addresses 0

through 127 (a 2-bit value at each address) and INIT_01 assigns the 256 bits to addresses 128 through

255.

• If a subset of the INIT_00 through INIT_0F properties are specified for a block RAM, the remaining properties

default to zero.

• In an initialization string, the least significant bit (LSB) is the right-most value.

• The least significant word of the block RAM is composed of the least significant bits of the block

RAM.

INIT_0x on block RAMs of various widths

The initialization string "fills" the block RAM beginning from the LSB of the 256 bits for the specified INIT_0x

addresses. The size of the word filling each address depends on the width of the block RAM being initialized 1, 2, 4,

8, or 16 bits.

For example, if INIT_0C=bcde7, the corresponding binary sequence is as follows:

1011 1100 1101 1110 0111 ←LSB

b c d e 7

The appropriate addresses in the RAM are initialized with the binary string content depending on the width of the RAM

as shown in the following table.

Block RAM
(depth x
width)

Address
(INIT_0C)

Contents

4096 x 1 3072

3073

3074

3075

.

0

.

 44 - libguide

3327

2048 x 2 1536

1537

1538

1539

.

1663

.

1024 x 4 768

769

770

771

.

831

.

512 x 8 384

385

386

387

.

415

.

256 x 16 192

193

194

195

.

207

.

Example

Schematic

Attached to a block RAM instance.

UCF/NCF file

The following statement specifies that the INIT_03 addresses in instance foo/bar be initialized, starting from the LSB, to

the hex value aaaaaaaaaaaaaaaaaaaa (padded with 44 zeros from the MSB side).

INREG

 45 - libguide

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

Applicable Elements

Flip-flops, latches

Description

Because XC5200 IOBs do not have flip-flops or latches, you can apply this attribute to meet fast setup timing

requirements. If a flip-flop or latch is driven by an IOB, you can specify INREG to enable PAR (Place and Route) to

place the flip-flop/latch close to the IOB so that the two elements can be connected using fast routes. See also the

"OUTREG" section .

Syntax

INREG

Example

Schematic

Attached to a latch or flip-flop instance.

UCF/NCF file

This statement directs PAR to place the flip-flop $I1 near the IOB driving it.

IOB

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

Applicable Elements

Non-INFF/OUTFF flip-flop and latch primitives, registers

Description

Indicates which flip-flops and latches can be moved into the IOB. The mapper supports a command line option (-pr i | o |

b) that allows flip-flop/latch primitives to be pushed into the input IOB (i), output IOB (o), or input/output IOB (b) on a

global scale. The IOB constraint, when associated with a flip-flop or latch, tells the mapper to pack that instance into an

IOB type component if possible. The IOB constraint has precedence over the mapper "-pr" command line

option.

Syntax

 46 - libguide

IOB= TRUE FALSE

where TRUE allows the flip-flop/latch to be pulled into an IOB and FALSE indicates not to pull it into an

IOB.

Example

Schematic

Attached to a flip-flop or latch instance or to a register.

UCF/NCF file

This statement prevents the mapper from placing the foo/bar instance into an IOB component.

KEEP

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √ √

Applicable Elements

Nets

Description

When a design is mapped, some nets may be absorbed into logic blocks. When a net is absorbed into a block, it can no

longer be seen in the physical design database. This may happen, for example, if the components connected to each side

of a net are mapped into the same logic block. The net may then be absorbed into the block containing the components.

The KEEP constraint prevents this from happening.

In Virtex, KEEP makes the signal visible at the BEL level, not the CLB level as in other

architectures.

Note: The KEEP property is translated into an internal constraint known as NOMERGE when targeting an FPGA.

Messaging from the implementation tools will therefore refer to the system property NOMERGEnot

KEEP.

Syntax

KEEP

Example

Schematic

Attached to a net.

UCF/NCF file

This statement ensures that the net $SIG_0 will remain visible.

 47 - libguide

LOC

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√
1, 5, 6,

12

√
1, 2, 3,

5, 7, 9,

10, 11,

12, 13,

14, 15

√
1, 2, 3,

5, 7, 9,

10, 11,

12, 13,

14, 15

√
1, 2, 4, 5,

8, 12,

14

√
1, 5, 16

√
1, 2, 3,

5, 7, 9,

10, 11,

12, 13,

14, 15

√
1, 2, 3, 5,

7, 9, 10,

11, 12,

13, 14,

15

√
1, 2, 5,

6, 10,

11, 12,

13, 14,

15, 16,

17

Applicable Elements

1. Registers

2. FMAP

3. HMAP

4. F5MAP

5. IO elements

6. CLB and IOB primitives, CLBMAP

7. CY4

8. CY_MUX

9. ROM

10. RAM

11. RAMS, RAMD

12. BUFT

13. WAND

14. Clock buffers

15. Edge decoders

16. Any instance

 48 - libguide

17. RAMB4s

Description for FPGAs

Defines where a symbol can be placed within an FPGA. It specifies the absolute placement of a design element on the

FPGA die. It can be a single location, a range of locations, or a list of locations. The LOC constraint can be specified

from the schematic and statements in a constraints file can also be used to direct placement.

You can specify multiple locations for the same symbol by using a comma (,) to separate each location within the field.

It specifies that the symbols be placed in any of the locations specified. Also, you can specify an area in which to place a

symbol or group of symbols.

The legal names are a function of the target part type. However, to find the correct syntax for specifying a target

location, you can load an empty part into EPIC (the design editor). Place the cursor on any block and click to display its

location in the EPIC history area. Do not include the pin name such as .I, .O, or .T as part of the

location.

You can use the LOC constraint for logic that uses multiple CLBs, IOBs, soft macros, or other symbols. To do this, use

the LOC attribute on a soft macro symbol, which passes the location information down to the logic on the lower level.

The location restrictions are applied to all blocks on the lower level for which LOCs are

legal.

XC5200

The XC5200 CLB is divided into four physical site locations that each contain one flip-flop, one function generator, and

one carry logic element. Therefore, for the XC5200, each LOC attribute can be used for only one register, one FMAP,

one F5_MUX element, or one CY_MUX element. An error will occur if two or more registers, two or more FMAPs, two

or more F5_MUX elements, or two or more CY_MUX elements have the same LOC attribute.

Virtex

The physical site specified in the location value is defined by the row and column numbers for the array, with an

optional extension to define the slice for a given row/column location. The Virtex slice is composed of two LUTs (that

can be configured as RAM or shift registers), two flip-flops (that can also be configured as latches), two XORCYs, two

MULT_ANDs, one F5MUX, one F6MUX, and one MUXCY. Only one F6MUX can be used between the two adjacent

slices in a specific row/column location. The two slices at a specific row/column location are adjacent to one

another.

The block RAMs (RAMB4s) have a different row/column grid specification than the CLB and TBUFs. A block RAM

located at RAMB4_R3C1 is not located at the same site as a flip-flop located at CLB_R3C1. Therefore, the location

value must start with "CLB," "TBUF," or "RAMB4." The location cannot be shortened to reference only the row,

column, and extension.The optional extension specifies the left-most or right-most slice for the row/column. While the

XC4000 and Spartans allow extensions such as .FFX, .FFY, .F and .G to identify specific flip-flops and LUTs within the

CLB, these extensions are not required or allowed for Virtex.

The location value for global buffers and DLL elements is the specific physical site names for available

locations.

Description for CPLDs

For CPLDs, use the LOC=pin_name attribute on a PAD symbol or pad net to assign the signal to a specific pin. The

PAD symbols are IPAD, OPAD, and IOPAD. You can use the LOC=FBnn attribute on any instance or its output net to

assign the logic or register to a specific function block or macrocell, provided the instance is not

 49 - libguide

collapsed.

Pin assignments and function block assignments are unconditional; that is, the software does not attempt to relocate a pin

if it cannot achieve the specified assignment. You can apply the LOC constraint to as many symbols in your design as

you like. However, each assignment further constrains the software as it automatically allocates logic and I/O resources

to internal nodes and I/O pins with no LOC constraints.

The LOC=FBnn_mm attribute on any internal instance or output pad assigns the corresponding logic to a specific

function block or macrocell within the CPLD. If a LOC is placed on a symbol that does not get mapped to a macrocell or

is otherwise removed through optimization, the LOC will be ignored.

Note: Pin assignment using the LOC attribute is not supported for bus pad symbols such as

OPAD8.

Location Types

Use the following location types to define the physical location of an element.

P12 IOB location (chip carrier)

A12 IOB location (pin grid)

B, L, T, R Indicates edge locations (bottom, left, top,

right)  applies to edge decoders only

LB, RB, LT, RT, BR, TR,

BL, TL

Indicates half edges (left bottom, right

bottom, and so forth)  applies to edge

decoders only

TL, TR, BL, BR Indicates a corner for global buffer

placement

AA CLB location for XC3000

CLB_R4C3 CLB location for XC4000, XC5200, or

Spartans

CLB_R4C3 (or .S0 or

.S1)

CLB location for Virtex

CLB_R6C8.F (or .G) Function generator, RAM, ROM, or RAMS

location for XC4000 or Spartans

CLB_R6C8.LC0 (or .LC1,

.LC2, .LC3)

Function generator or register location for

XC5200

CLB_R6C8.S0 (or .S1) Function generator or register slice for

Virtex

CLB_R6C8.LC0 (or .LC2) F5_MUX location for XC5200

CLB_R6C8.FFX (or.FFY) Flip-flop location for XC4000 or

Spartans

TBUF_R6C7.1 (or.2) TBUF location for XC4000 or Spartans

 50 - libguide

TBUF_R6C7.0 (or .1, .2,

or .3)

TBUF location for XC5200

TBUF_R6C7 (or .0 or

.1)

TBUF location for Virtex

RAMB4_R3C1 Block RAM location for Virtex

GCLKBUG0 (or 1, 2, or

3)

Global clock buffer location for

Virtex

GCLKPAD0 (or 1, 2, or

3)

Global clock pad location for Virtex

DLL0 (or 1, 2, or 3) Delay Locked Loop element location for

Virtex

The wildcard character (*) can be used to replace a single location with a range as shown in the following

examples.

C* Any CLB in row C of an XC3000 device

*D Any CLB in column D of an XC3000

device

CLB_R*C5 Any CLB in column 5 of an XC4000,

XC5200, or Spartan series device

CLB_R*C5 Any CLB in either slice in column 5 of a

Virtex device

Note: The wildcard character is not supported for Virtex global buffer or DLL locations.

The following are not supported.

• Dot extensions on ranges. For example, LOC=CLB_R0C0:CLB_R5C5.G. However, for the XC5200, range

locations will be expanded to include extensions, CLB_R0C0.*:CLB_R5C5.*, for example, when the mapper

passes a range constraint to the PCF file.

• B, L, R, T used to indicate IO edge locations (bottom, left, top, right)

• LB, RB, LT, RT, BR, TR, BL, TL used to indicate IO half edges (left bottom, right bottom,

etc.)

• Wildcard character for Virtex global buffer, global pad, or DLL locations.

Syntax for FPGAs

Single location

LOC=

where location is a legal LCA location for the LCA part type. Examples of the syntax for single LOC constraints are

 51 - libguide

given in the "Single LOC Constraint Examples" table.

Table 12-6Single LOC Constraint Examples

Attribute Description

Place I/O at location P12.

Place decode logic on the bottom

edge.

Place decode logic on the top left edge, or

global buffer in the top left corner.

(XC3000)

Place logic in CLB AA.

(XC3000)

Place BUFT in TBUF above and one column

to the right of CLB AC.

(XC4000 or Spartans)

Place logic in the CLB in row 3, column

5.

LOC=CLB_R3C5

(Virtex)

Place logic in either slice of the CLB in row3,

column 5.

(XC5200)

Place logic in the lowest slice of the CLB in

row 4, column 4.

LOC=CLB_R3C5.S0

(Virtex)

Place logic in the left slice of the CLB in row

1, column 1.

(XC4000 or Spartans)
Place CLB flip-flop in the X flip-flop of the

CLB in row 4, column 5.

(XC4000 or Spartans)

Place CLB function generator in the F

generator of row 4, column 5.

(XC4000 or Spartans)

Place BUFT in row 2, column 1, along the

top.

(XC5200)

Place BUFT in the top buffer in row 4,

column 4.

(XC4000, XC5200,

Spartans)

Place BUFT in any row in column 0.

(Virtex)

Place both TBUFs in row 1, column 2.

(Virtex)

Specifies any block RAM in column 1 of the

block RAM array

 52 - libguide

Multiple locations

LOC=

Repeating the LOC constraint and separating each such constraint by a comma specifies multiple locations for an

element. When you specify multiple locations, PAR can use any of the specified locations. Examples of multiple LOC

constraints are provided in the "Multiple LOC Constraint Examples" table .

Table 12-7Multiple LOC Constraint Examples

Attribute Description

(XC4000 or Spartans)

Place decoder (XC4000) on the top or bottom

edge.

(XC4000 or Spartans)

Place the flip-flop in either CLB R2C4 or

CLB R7C9.

(Virtex)

Place the flip-flop in the right-most slice of

CLB R4C5 or in either slice of CLB

R4C6

Range of locations

LOC= : SOFT

You can define a range by specifying the two corners of a bounding box. Specify the upper left and lower right corners

of an area in which logic is to be placed. Use a colon (:) to separate the two boundaries. The logic represented by the

symbol is placed somewhere inside the bounding box. The default is to interpret the constraint as a "hard" requirement

and to place it within the box. If SOFT is specified, PAR may place the constraint elsewhere if better results can be

obtained at a location outside the bounding box. Examples of LOC constraints used to specify an area (range) are given

in the "Area LOC Constraint Examples" table .

Table 12-8Area LOC Constraint Examples

Attribute Description

(XC3000)

Place CLB logic anywhere in the top

left corner of the LCA bounded by

row F and column F.

(XC4000, Spartans)

Place logic in the top left corner of the

LCA in a 5 x 5 area bounded by row

5 and column 5.

(must be specified in one

Place CLB logic in the top left corner

of the LCA in a 5 x 5 area, but not in

the CLB in row 5, column 5.

 53 - libguide

continuous line)

(XC4000, Spartans)

(XC5200)

Place logic in any slice in the top left

corner of the LCA bounded by row 4,

column 4.

(Virtex)

Place logic in either slice in the top

left corner of the LCA bounded by

row 4, column 4.

(XC4000, XC5200, Spartans)

Place BUFT anywhere in the area

bounded by row 1, column 1 and row

2, column 8.

Note: For area constraints, LOC ranges can be supplemented by the user with the keyword

SOFT.

Syntax for CPLDs

LOC=

or

LOC=FB

or

LOC=FB

where

pin_name is Pnn for PC packages; nn is a pin number. The pin name is nn (row number and column number) for PG

packages. See the appropriate data book for the pin package names, for example, p12. Examples are LOC=P24 and

LOC=G2. This form is valid only on pad instances.

nn is a function block number and mm is a macrocell within a function block number. This form is valid on any

instances.

Examples

Refer to the "Placement Constraints" section for multiple examples of legal placement constraints for each type of

logic element (flip-flops, ROMs and RAMs, block RAMS, FMAPs and HMAPs, CLBMAPs, BUFTs, CLBs, IOBs, I/Os,

edge decoders, global buffers) in FPGA designs.

Schematic

Attached to an instance.

UCF/NCF file

This specifies that an instance of the element BUF1 be placed above the CLB in row 6, column 9. For XC4000 or

Spartan series devices, you can place the TBUF above or below the CLB. For XC5200 devices, you can place the TBUF

in one of four locations (.0-.3).

This specifies that each instance found under "FLIP_FLOPS" is to be placed in any CLB in column

 54 - libguide

8.

This specifies that an instantiation of MUXBUF_D0_OUT be placed in IOB location P110.

This specifies that the net DATA<1> be connected to the pad from IOB location P111.

MAP

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√
4

√
1, 2

√
1, 2

√
1, 3

√
1, 2

√
1, 2

√
1

Applicable Elements

1. FMAP

2. HMAP

3. F5MAP

4. CLBMAP

Description

Placed on an FMAP, F5MAP, HMAP, or CLBMAP to specify whether pin swapping and the merging of other functions

with the logic in the map are allowed. If merging with other functions is allowed, other logic can also be placed within

the CLB, if space allows.

Syntax

MAP=PUC PUO PLC PLO

where

PUC means that the CLB pins are unlocked, ad the CLB is closed.

PUO means that the CLB pins are unlocked, and the CLB is open.

PLC means that the CLB pins are locked, and the CLB is closed.

PLO means that the CLB pins are locked, and the CLB is open.

"Unlocked" in these definitions means that the software can swap signals among the pins on the CLB; "locked" means

that it cannot. "Open" means that the software can add or remove logic from the CLB; conversely, "closed" indicates that

the software cannot add or remove logic from the function specified by the MAP symbol.

The default is PUO.

 55 - libguide

Note: Currently, only PUC and PUO are observed. PLC and PLO are translated into PUC and PUO,

respectively.

Example

Schematic

Attached to a map symbol instance.

UCF/NCF file

This statement allows pin swapping and ensures that no logic other than that defined by the original map will be mapped

into the function generators.

MAXDELAY

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √

Applicable Elements

Nets

Description

The MAXDELAY attribute defines the maximum allowable delay on a net.

Syntax

MAXDELAY=

where units may be ps, ns, us, ms, GHz, MHz, or kHz. The default is ns.

Example

Schematic

Attached to a net.

UCF/NCF file

This statement assigns a maximum delay of 1 us to the net $SIG_4.

MAXSKEW

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

 56 - libguide

√ √ √ √ √ √ √

Applicable Elements

Nets

Description

Defines the allowable skew on a net.

Syntax

MAXSKEW=

where units may be ps, ns, us, ms, GHz, MHz, or kHz. The default is ns.

Example

Schematic

Attached to a net.

UCF/NCF file

This statement specifies a maximum skew of 3 ns on net $SIG_6.

MEDDELAY

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √

Applicable Elements

Input register

Note: You can also attach the MEDDELAY constraint to a net that is connected to a pad component in a UCF file.

NGDBuild transfers the constraint from the net to the pad instance in the NGD file so that it can be

processed by the mapper. Use the following syntax.

NET MEDDELAY

Description

Specifies a medium sized delay for the IOB register.

Syntax

MEDDELAY

Example

Schematic

 57 - libguide

Attached to a valid instance.

UCF/NCF file

This statement specifies that the register in the IOB $COMP_6 will have a medium sized delay.

This statement assigns a medium sized delay to the pad to which net1 is connected.

NODELAY

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √

Applicable Elements

Input register

Note: You can also attach the NODELAY constraint to a net connected to a pad component in a UCF file.

NGDBuild transfers the constraint from the net to the pad instance in the NGD file so that it can be

processed by the mapper. Use the following syntax.

NET NODELAY

Description

The default configuration of IOB flip-flops in XC4000 and Spartan series designs includes an input delay that results in

no external hold time on the input data path. However, this delay can be removed by placing the NODELAY attribute on

input flip-flops or latches, resulting in a smaller setup time but a positive hold time.

The NODELAY attribute can be attached to the I/O symbols and the special function access symbols TDI, TMS, and

TCK.

Syntax

NODELAY

Example

Schematic

Attached to a valid instance.

UCF/NCF file

This statement specifies that IOB register inreg67 not have an input delay.

This statement specifies that there be no input delay to the pad that is attached to net1.

 58 - libguide

NOREDUCE

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

Applicable Elements

Any net

Description

NOREDUCE prevents minimization of redundant logic terms that are typically included in a design to avoid logic

hazards or race conditions. NOREDUCE also identifies the output node of a combinatorial feedback loop to ensure

correct mapping. When constructing combinatorial feedback latches in a design, always apply NOREDUCE to the

latch's output net and include redundant logic terms when necessary to avoid race conditions.

Syntax

NOREDUCE

Example

Schematic

Attached to a net.

UCF/NCF file

This statement specifies that there be no Boolean logic reduction or logic collapse from the net named $SIG_12

forward.

OFFSET

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √ √

Applicable Elements

Global, nets, time groups

Description

Specifies the timing relationship between an external clock and its associated data-in or data-out pin. Used only for

pad-related signals and cannot be used to extend the arrival time specification method to the internal signals in a

 59 - libguide

design.

OFFSET constraints allow you to do the following.

• Calculate whether a setup time is being violated at a flip-flop whose data and clock inputs are derived from external

nets.

• Specify the delay of an external output net derived from the Q output of an internal flip-flop being clocked from an

external device pin.

For CPLD designs, clock inputs referenced by OFFSET constraints must be explicitly assigned to a global clock pin

(using either the BUFG symbol or applying the BUFG=CLK attribute to an ordinary input). Otherwise, the OFFSET

constraint will not be used during timing-driven optimization of the design.

Syntax

Global method

The OFFSET constraint can be a "global" constraint that applies to all data pad nets in the design for the specified

clock.

OFFSET= IN OUT BEFORE AFTER " " TIMEGRP " "

Net-Specific method

When the NET "name" specifier is used, the constraint is associated with a specific net.

NET " " OFFSET= IN OUT BEFORE AFTER " " TIMEGRP

" "

Group method

When the TIMEGRP "group" specifier is used, the constraint is associated with a group of data pad

nets.

TIMEGRP " " OFFSET= IN OUT BEFORE AFTER " " TIMEGRP

" "

Alternate method

Because the global and group OFFSET constraints are not associated with a single data net or component, these two

types can also be entered on a TIMESPEC symbol in the design netlist with TSidentifier.

TS = TIMEGRP OFFSET = IN OUT BEFOREAFTER

TIMEGRP

where

group is the name of a time group containing IOB components or pad BELs.

offset_time is the external offset.

units is an optional field to indicate the units for the offset time. The default is nanoseconds, but the timing number can

be followed by ps, ns, us, ms, GHz, MHz, or kHz to indicate the intended units.

clk_net is the fully hierarchical netname of the clock net between the pad and its input buffer.

reggroup is a previously defined time group of register bels. Only registers in the time group clocked by the specified

IOB component is checked against the specified offset time. The optional time group qualifier, TIMEGRP "reggroup,"

can be added to any OFFSET constraint to indicate that the offset applies only to registers specified in the qualifying

group. When used with the "Group method," the "register time" group lists the synchronous elements that qualify which

 60 - libguide

register elements clocked by "clk_net" get analyzed.

Note: CPLD designs do not support the "Group Method" or the TIMEGRP options in the other methods described

above.

Example

Schematic

N/A

UCF/NCF file

This statement specifies that the data will be present on input43 at least 20 ns before the triggering edge of the clock

signal CLOCK.

For a detailed description of OFFSET, please see the "OFFSET Timing Specifications" section in the Development

System Reference Guide.

OPT_EFFORT

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √

Applicable Elements

Any macro or hierarchy level

Description

Defines an effort level to be used by the optimizer.

Syntax

OPT_EFFORT=NORMAL HIGH

Example

Schematic

Attached to a macro.

UCF/NCF file

This statement attaches a High effort of optimization to all of the logic contained within the module defined by instance

$1I678/adder.

OPTIMIZE

 61 - libguide

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √

Applicable Elements

Any macro or hierarchy level

Description

Defines whether optimization is performed on the flagged hierarchical tree. The OPTIMIZE attribute has no effect on

any symbol that contains no combinational logic, such as an input/output buffer.

Syntax

OPTIMIZE= AREA SPEED BALANCE OFF

Example

Schematic

Attached to a macro.

UCF/NCF file

This statement specifies that no optimization be performed on an instantiation of the macro

CTR_MACRO.

OUTREG

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

Applicable Elements

Flip-flops, latches

Description

Because XC5200 IOBs do not have flip-flops or latches, you can apply this attribute to meet fast setup requirements. If a

flip-flop or latch is driving an IOB, you can specify OUTREG to enable PAR (Place and Route) to place the

flip-flop/latch close to the IOB so that the two elements can be connected using fast routes. See also the "INREG"

section.

Syntax

OUTREG

Example

 62 - libguide

Schematic

Attached to a latch or flip-flop instance.

UCF/NCF file

This statement directs PAR to place the flip-flop $I1 near the IOB that it is driving.

PART

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √ √

Applicable Elements

1. Global

2. Attached to CONFIG symbol in schematics

Description

Defines the part type used for the design.

Syntax

PART=

where part_type can be device-speed-package or device-package-speed. For example, 4028EX-PG299-3 or

4028EX-3-PG299

The package string must always begin with an alphabetic character  never with a number.

The speed string must always begin with an numeric character never with an alphabetic character.

The text XC is an optional prefix to the whole part_type string.

In a constraints file, the PART specification must be preceded by the keyword CONFIG.

Example

Schematic

Global or attached to the CONFIG symbol.

UCF/NCF file

This statement specifies a 4005E device, a PQ160C package, with a speed of 5.

PERIOD

 63 - libguide

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √ √

Applicable Elements

Nets that feed forward to drive flip-flop clock pins

Description

Provides a convenient way of defining a clock period for registers attached to a particular clock net.

PERIOD controls pad-to-setup and clock-to-setup paths but not clock-to-pad paths. Refer to the "Using Timing

Constraints" chapter in the Development System Reference Guide for more information on clock period

specifications.

Syntax

Simple method

PERIOD= HIGH LOW

where

period is the required clock period.

units is an optional field to indicate the units for a clock period. The default is nanoseconds (ns), but the timing number

can be followed by ps, ns, or us to indicate the intended units.

HIGH or LOW can be optionally specified to indicate whether the first pulse is to be High or

Low.

high_or_low_time is the optional High or Low time, depending on the preceding keyword. If an actual time is specified,

it must be less than the period. If no High or Low time is specified, the default duty cycle is 50

percent.

hi_lo_units is an optional field to indicate the units for the duty cycle. The default is nanoseconds (ns), but the High or

Low time number can be followed by ps, us, ms, or % if the High or Low time is an actual time

measurement.

Alternate method

TS PERIOD HIGH LOW

where

identifier is a reference identifier that has a unique name.

TNM_reference is the identifier name that is attached to a clock net (or a net in the clock path) using the TNM

attribute.

period is the required clock period.

units is an optional field to indicate the units for a clock period. The default is nanoseconds (ns), but the timing number

can be followed by ps, ms, us, or % to indicate the intended units.

HIGH or LOW indicates whether the first pulse is to be High or Low.

 64 - libguide

high_or_low_time is the optional High or Low time, depending on the preceding keyword. If an actual time is specified,

it must be less than the period. If no High or Low time is specified, the default duty cycle is 50

percent.

hi_lo_units is an optional field to indicate the units for the duty cycle. The default is nanoseconds (ns), but the High or

Low time number can be followed by ps, us, ms, or % if the High or Low time is an actual time

measurement.

Example

The following examples are for the "simple method."

Schematic

Attached to a net.

UCF/NCF file

This statement assigns a clock period of 40 ns to the net named $SIG_24, with the first pulse being High and having a

duration of 25 nanoseconds.

PROHIBIT

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √ √

Applicable Elements

Attached to CONFIG symbol

Description

Disallows the use of a site within PAR, EPIC, and the CPLD fitter.

Location Types

Use the following location types to define the physical location of an element.

P12 IOB location (chip carrier)

A12 IOB location (pin grid)

B, L, R, T Indicates edge locations (bottom, left, top,

right)  applies to edge decoders only

LB, RB, LT, RT, BR, TR,

BL, TL

Indicates half edges (left bottom, right

bottom, and so forth)  applies to edge

decoders only

 65 - libguide

TL, TR, BL, BR Indicates a corner for global buffer

placement

AA CLB location for XC3000

CLB_R4C3 CLB location for XC4000 or XC5200

CLB_R4C3 (or .S0 or

.S1)

CLB location for Virtex

CLB_R6C8.LC0 (or 1, 2,

3)

Function generator or register location for

XC5200

CLB_R6C8.S0 (or .S1) Function generator or register location for

Virtex

CLB_R6C8.LC0 (or 2) F5_MUX location for XC5200

TBUF_R6C7.1 (or.2) TBUF location for XC4000

TBUF_R6C7.0 (or.1,.2,

or.3)

TBUF location for XC5200

TBUF_R6C7 (or .0 or

.1)

TBUF location for Virtex

RAMB4_R3C1 Block RAM location for Virtex

GCLKBUG0 (or 1, 2, or

3)

Global clock buffer location for

Virtex

GCLKPAD0 (or 1, 2, or

3)

Global clock pad location for Virtex

DLL0 (or 1, 2, or 3) Delay Locked Loop element location for

Virtex

The wildcard character (*) can be used to replace a single location with a range as shown in the following

examples.

C* Any CLB in row C of an XC3000 device

*D Any CLB in column D of an XC3000

device

CLB_R*C5 Any CLB in column 5 of an XC4000 or

XC5200 device

CLB_R*C5 Any CLB in either slice in column 5 of a

Virtex device

Note: The wildcard character is not supported for Virtex global buffer or DLL locations.

 66 - libguide

The following are not supported.

• Dot extensions on ranges. For example, LOC=CLB_R0C0:CLB_R5C5.G. However, for the XC5200, range

locations will be expanded to include extensions, CLB_R0C0.*:CLB_R5C5.*, for example, when the mapper

passes a range constraint to the PCF file.

• B, L, R, T used to indicate IO edge locations (bottom, left, top, right)

• LB, RB, LT, RT, BR, TR, BL, TL used to indicate IO half edges (left bottom, right bottom,

etc.)

• .F or .G extension for function generator, RAM, ROM, or RAMS location for XC4000

• .FFX or .FFY extension for flip-flop location for XC4000

• Wildcard character for Virtex global buffer, global pad, or DLL locations.

Syntax

Single location

PROHIBIT=

Multiple single locations

PROHIBIT=

Range of locations

PROHIBIT= :

In a constraints file, the PROHIBIT specification must be preceded by the keyword CONFIG.

Note: CPLDs do not support the "Range of locations" form of PROHIBIT.

Example

Schematic

Unattached attribute or attached to a CONFIG symbol.

UCF/NCF file

This statement prohibits use of the site P45.

This statement prohibits use of the CLB located in Row 6, Column 8.

This statement prohibits use of the site TBUF_R5C2.2.

PWR_MODE

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

 67 - libguide

√

Applicable Elements

1. Nets

2. Any instance

Description

Defines the mode, Low power or High performance (standard power) of the macrocell that implements the tagged

element.

Note: If the tagged function is collapsed forward into its fanouts, the attribute is not

applied.

Syntax

PWR_MODE=LOW STD

Example

Schematic

Attached to a net or an instance.

UCF/NCF file

This statement specifies that the macrocell that implements the net $SIG_0 will be in Low power

mode.

RLOC

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√
1, 2, 3,

5, 7, 8,

9, 10,

11

√
1, 2, 3,

5, 7, 8,

9, 10,

11

√
1, 2, 4, 6,

10

√
1, 2, 3,

5, 7, 8,

9, 10

√
1, 2, 3, 5,

7, 8, 9,

10

√
1, 2, 8,

9, 10,

12

Applicable Elements

1. Registers

2. FMAP

 68 - libguide

3. HMAP

4. F5MAP

5. CY4

6. CY_MUX

7. ROM

8. RAM

9. RAMS, RAMD

10. BUFT. (Can only be used if the associated RPM has an RLOC_ORIGIN that causes the RLOC values in the RPM

to be changed to LOC values.)

11. WAND primitives that do not have a DECODE attribute attached

12. LUTs, F5MUX, F6MUX, MUXCY, XORCY, MULT_AND, SRL16, SRL16E

Description

Relative location (RLOC) constraints group logic elements into discrete sets and allow you to define the location of any

element within the set relative to other elements in the set, regardless of eventual placement in the overall design. See the

"Physical Constraints" section for detailed information about this type of constraint.

For XC5200, the RLOC attribute must include the extension that defines in which of the four slices of a CLB the element

will be placed (.LC0, .LC1, .LC2, .LC3). This defines the relationship of the elements in the set and also specifies in

which of the four slices the element will eventually be placed.

For Virtex, the RLOC attribute must include the extension that defines in which of the two slices of a CLB the element

will be placed (.S0, .S1).

Syntax

XC4000 or Spartans

RLOC=R C

XC5200 or Virtex

RLOC=R C

where

m and n are integers (positive, negative, or zero) representing relative row numbers and column numbers, respectively.

extension uses the LOC extension syntax as appropriate; it can take all the values that are available with the current

absolute LOC syntax.

For the XC4000 and Spartans, the available extensions are FFX, FFY, F, G, H, 1, and 2. The 1 and 2 values are available

for BUFT primitives, and the rest are available for primitives associated with CLBs. See the "LOC" section for more

details.

For the XC5200, extension is required to define in which of the four slices of a CLB the element will be placed (.LC0,

 69 - libguide

.LC1, .LC2, .LC3).

For Virtex, extension is required to define the spatial relationships (.S0 is the left-most slice; .S1 is the right-most slice)

of the objects in the RPM.

The RLOC value cannot specify a range or a list of several locations; it must specify a single location. See the

"Guidelines for Specifying Relative Locations" section for more information.

Example

Schematic

Attached to an instance.

UCF/NCF file

This statement specifies that an instantiation of FF1 be placed in the CLB at row 4, column 4.

This statement specifies that an instantiation of elemA be placed in the X flip-flop in the CLB at row 0, column

1.

RLOC_ORIGIN

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √

Applicable Elements

Instances or macros that are members of sets

Description

An RLOC_ORIGIN constraint fixes the members of a set at exact die locations. This constraint must specify a single

location, not a range or a list of several locations. For more information about this constraint, refer to the "Fixing

Members of a Set at Exact Die Locations" section.

The RLOC_ORIGIN constraint is required for a set that includes BUFT symbols. The RLOC_ORIGIN constraint cannot

be attached to a BUFT instance.

Syntax

RLOC_ORIGIN=R C

where m and n are positive integers (including zero) representing relative row and column numbers,

respectively.

Example

Schematic

Attached to an instance that is a member of a set.

 70 - libguide

UCF/NCF file

This statement specifies that an instantiation of FF1, which is a member of a set, be placed in the CLB at R4C4 relative to

FF1. For example, if RLOC=R0C2 for FF1, then the instantiation of FF1 is placed in the CLB that occupies row 4 (R0 +

R4) , column 6 (C2 + C4).

RLOC_RANGE

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √

Applicable Elements

Instances or macros that are members of sets

Description

The RLOC_RANGE constraint is similar to the RLOC_ORIGIN constraint except that it limits the members of a set to a

certain range on the die. The range or list of locations is meant to apply to all applicable elements with RLOCs, not just

to the origin of the set.

Syntax

RLOC_RANGE=R C R C

where the relative row numbers (m1 and m2) and column numbers (n1 and n2) can be positive integers (including zero)

or the wildcard (*) character. This syntax allows three kinds of range specifications, which are defined in the "Fixing

Members of a Set at Exact Die Locations" section.

Example

Schematic

Attached to an instance that is a member of a set.

UCF/NCF file

This statement specifies that an instantiation of the macro MACRO4 be placed within a region that is enclosed by the

rows R4-R10 and the columns C4-C10.

S(ave) - Net Flag Attribute

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √

 71 - libguide

Applicable Elements

Nets

Description

Attaching the net flag attribute to nets affects the mapping, placement, and routing of the

design.

Syntax

S

The S (save) net flag attribute prevents the removal of unconnected signals. If you do not have the S attribute on a net,

any signal not connected to logic and/or an I/O primitive is removed.

Example

Schematic

Attached to a net.

UCF/NCF file

This statement specifies that the net named $SIG_9 will not be removed.

SLOW

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

Applicable Elements

Output primitives, output pads, bidirectional pads

Note: You can also attach the SLOW constraint to the net connected to the pad component in a UCF file.

NGDBuild transfers the constraint from the net to the pad instance in the NGD file so that it can be

processed by the mapper. Use the following syntax.

NET SLOW

Description

Stipulates that the slew rate limited control should be enabled. This is the default.

Syntax

SLOW

Example

 72 - libguide

Schematic

Attached to a valid instance.

UCF/NCF file

This statement establishes a slow slew rate for an instantiation of the element y2.

This statement establishes a slow slew rate for the pad to which net1 is connected.

STARTUP_WAIT

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√

Applicable Elements

Any CLKDLL, CLKDLLHF, or BUGDGLL instance

Description

Controls whether the DONE signal (device configuration) can go HIGH (indicating that the device is fully configured).

Syntax

START_WAIT= TRUE FALSE

where

TRUE specifies that the DONE signal cannot go High until the instance assigned this property

locks.

FALSE, the default, specifies that the locking of the instance has no impact on the DONE

signal.

Example

Schematic

Attached to a valid instance.

UCF/NCF file

This statement specifies that the DONE signal cannot go High until the foo/bar instance locks.

TEMPERATURE

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

 73 - libguide

√* √* √* √* √* √* √*

*Availability depends on the release of characterization data

Applicable Elements

Global

Description

Allows the specification of the operating junction temperature. This provides a means of prorating device delay

characteristics based on the specified temperature. Prorating is a scaling operation on existing speed file delays and is

applied globally to all delays.

Note: Each architecture has its own specific range of valid operating temperatures. If the entered temperature does

not fall within the supported range, the constraint is ignored and an architecture-specific default value is

used instead. Also note that the error message for this condition does not appear until PCF

processing.

Syntax

TEMPERATURE= C | F| K

where

value is real number specifying the temperature.

C, K, and F are the temperature units. F is degrees Fahrenheit, K is degrees Kelvin, and C is degrees Celsius, the

default.

Example

Schematic

Unattached attribute.

UCF/NCF file

This statement specifies that the analysis for everything relating to speed file delays assumes a junction temperature of

25 degrees Celsius.

TIG

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √

Applicable Elements

Nets, pins

 74 - libguide

Description

Paths that fan forward from the point of application are treated as if they do not exist (for the purposes of the timing

model) during implementation.

A TIG may be applied relative to a specific timing specification.

Syntax

TIG

or

TIG=TS TS

where identifier refers to a timing specification that should be ignored.

Example

Schematic

Attached to a net or pin.

UCF/NCF file

This statement specifies that the timing specifications TS_fast and TS_even_faster will be ignored on all paths fanning

forward from the net $Sig_5.

For more on TIG, see the "Ignoring Selected Paths (TIG)" section in the Development System Reference Guide.

Time Group Attributes

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √ √

Applicable Elements

1. Global in constraints file (preceded by the keyword TIMEGRP)

2. Time group primitive

Description

Time group properties (attributes) are a set of grouping mechanisms that use existing TNMs (Timing Names) to create

new groups or to define new groups based on the output net that the group sources. The timing group primitive

(TIMEGRP) exists for the purpose of hosting these properties. In a constraints file, the specification of these properties

must be preceded with the keyword TIMEGRP.

Note: When entering time group properties into a TIMEGRP symbol, some property names may conflict with the

predefined property names of the TIMEGRP primitive.

 75 - libguide

The standard procedure for adding a property to a symbol is to use the following format.

However, some property names are reserved, and should not be used because they cause a conflict. Hence, for

property_name you must not use any of the system reserved names LIBVER, INST, COMP, MODEL, or any other

names reserved by your schematic capture program. Please consult your schematic capture documentation to become

familiar with reserved property names.

Note: For more on the TIMEGRP symbol, see the "TIMEGRP" section in the Design Elements

chapter.

Syntax

RISING FALLING EXCEPT

or

TRANSHI TRANSLO EXCEPT

where

group_names can be

• the name assigned to a previously defined group.

• all of the members of a predefined group using the keywords FFS, RAMS, PADS or LATCHES. FFS refers to all

flip-flops. RAMS refers to all RAMs. PADS refers to all I/O pads. LATCHES refers to all

latches.

• a subset of elements in a group predefined by name matching using the following syntax.

RISING or FALLING applies to the rising or falling edge sensitive elements of a group of flip-flops to be referred to as

a subset.

TRANSHI or TRANSLO is the form of the constraint applied to latches.

EXCEPT excludes the object group.

Example 1

Schematic

The following attribute would be attached to a TIMEGRP primitive to combine the elements in two groups to form a

new group.

UCF/NCF file

The same constraint could appear in a User Constraints File (UCF) as follows.

Example 2

Schematic

The following constraints would be attached to a TIMEGRP primitive to define new groups by

exclusion.

 76 - libguide

UCF/NCF file

The same constraint could appear in a UCF as follows.

For more on Time Group Attributes, see the "Entering Timing Specifications" section in the Development System

Reference Guide. See also the "Syntax Summary" section in the same chapter.

TNM

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √ √

Applicable Elements

Nets, instances, macros

Note: You can attach the TNM constraint to the net connected to the pad component in a UCF file. NGDBuild

transfers the constraint from the net to the pad instance in the NGD file so that it can be processed by the

mapper. Use the following syntax.

NET TNM=

Description

Tags specific flip-flops, RAMs, pads, and latches as members of a group to simplify the application of timing

specifications to the group.

TNMs (Timing Names) applied to pad nets do not propagate forward through the IBUF/ OBUF. The TNM is applied to

the external pad. This case includes the net attached to the D input of an IFD. See the "TNM_NET" section if you want

the TNM to trace forward from an input pad net.

TNMs applied to the input pin of an IBUF/ OBUF will propagate the TNM to the next appropriate

element.

TNMs applied to the output pin of an IBUF/OBUF will propagate the TNM to the next appropriate

element.

TNMs applied to an IBUF or OBUF element stay attached to that element.

TNMs applied to a clock-pad-net will not propagate forward through the clock buffer.

When TNM is applied to a macro, all the elements in the macro will have that timing name.

See the "Entering Timing Specifications" section in the Development System Reference Guide for detailed

information about this attribute.

Syntax

TNM= :

where

 77 - libguide

predefined_group can be

• the name assigned to a previously defined group.

• all of the members of a predefined group using the keywords FFS, RAMS, PADS or LATCHES. FFS refers to all

flip-flops. RAMS refers to all RAMs. PADS refers to all I/O pads. LATCHES refers to all

latches.

• a subset of elements in a group predefined by name matching using the following syntax.

identifier can be any combination of letters, numbers, or underscores. Do not use reserved words, such as FFS,

LATCHES, RAMS, or PADS for TNM identifiers.

Example

Schematic

Attached to a net or a macro.

UCF/NCF file

This statement identifies the element register_ce as a member of the timing group the_register.

TNM_NET

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √

Applicable Elements

Nets

Description

Tags specific flip-flops, RAMs, pads, and latches as members of a group to simplify the application of timing

specifications to the group. NGDBuild never transfers a TNM_NET constraint from the attached net to a pad, as it does

with the TNM constraint.

TNM_NETs applied to pad nets propagate forward through the IBUF/ OBUF.

TNM_NETs applied to a clock-pad-net propagate forward through the clock buffer.

When TNM_NET is applied to a macro, all the elements in the macro will have that timing name.

See the "Entering Timing Specifications" section in the Development System Reference Guide for detailed

information about this attribute.

Syntax

TNM_NET=

 78 - libguide

where

predefined_group can be

• the name assigned to a previously defined group.

• all of the members of a predefined group using the keywords FFS, RAMS, PADS or LATCHES. FFS refers to all

flip-flops. RAMS refers to all RAMs. PADS refers to all I/O pads. LATCHES refers to all

latches.

• a subset of elements in a group predefined by name matching using the following syntax.

identifier can be any combination of letters, numbers, or underscores. Do not use reserved words, such as FFS,

LATCHES, RAMS, or PADS for TNM identifiers.

Example

Schematic

Attached to a net.

UCF/NCF file

This statement identifies all flip-flops fanning out from the PADCLK net as a member of the timing group FFGRP.

TPSYNC

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √

Applicable Elements

Nets, instances, pins

Description

Flags a particular point or a set of points with an identifier for reference in subsequent timing specifications. You can use

the same identifier on several points, in which case timing analysis treats the points as a group. See the "Time Group

Attributes" section .

Defining synchronous points

When the timing of a design must be designed from or to a point that is not a flip-flop, latch, RAM, or I/O pad, the

following rules apply if a TPSYNC timing point is attached to a net, macro pin, output or input pin of a primitive, or an

instance.

• A net  the source of the net is identified as a potential source or destination for timing

specifications.

 79 - libguide

• A macro pin  all of the sources inside the macro that drive the pin to which the attribute is attached are identified

as potential sources or destinations for timing specifications. If the macro pin is an input pin (that is, if there are no

sources for the pin in the macro), then all of the load pins in the macro are flagged as synchronous

points.

• The output pin of a primitive  the primitive's output is flagged as a potential source or destination for timing

specifications.

• The input pin of a primitive  the primitive's input is flagged as a potential source or destination for timing

specifications.

• An instance  the output of that element is identified as a potential source or destination for timing

specifications.

Syntax

TPSYNC=

where identifier is a name that is used in timing specifications in the same way that groups are

used.

All flagged points are used as a source or destination or both for the specification where the TPSYNC identifier is

used.

Note: The name for the identifier must be different from any identifier used for a TNM

attribute.

Example

Schematic

Attached to a net, instance, or pin.

UCF/NCF file

This statement identifies latch as a potential source or destination for timing specifications for the net

logic_latch.

TPTHRU

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √

Applicable Elements

Nets, pins, instances

Description

Flags a particular point or a set of points with an identifier for reference in subsequent timing specifications. You can use

 80 - libguide

the same identifier on several points, in which case timing analysis treats the points as a group. See the "Time Group

Attributes" section .

Defining through points

The TPTHRU attribute is used when it is necessary to define intermediate points on a path to which a specification

applies. See the "TSidentifier" section .

Syntax

TPTHRU=

where identifier is a name used in timing specifications for further qualifying timing paths within a

design.

Note: The name for the identifier must be different from any identifier used for a TNM

attribute.

Example

Schematic

Attached to a net, instance, or pin.

UCF/NCF file

This statement identifies the net on_the_way as an intermediate point on a path to which the timing specification named

"here" applies.

TSidentifier

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √ √ √

Applicable Elements

1. Global in constraints file

2. TIMESPEC primitive

Description

TSidentifier properties beginning with the letters "TS" are placed on the TIMESPEC symbol. In a constraints file, the

specification of these properties can be preceded with the optional keyword TIMESPEC. The value of the TSidentifier

attribute corresponds to a specific timing specification that can then be applied to paths in the

design.

Syntax

 81 - libguide

Note: All the following syntax definitions use a space as a separator. The use of a colon (:) as a separator is

optional.

Defining a maximum allowable delay

TS MAXDELAYFROM TO

or

TS =FROM TO

Defining intermediate points

Note: This form is not supported for CPLDs.

TS =FROM THRU THRU TO

where

identifier is an ASCII string made up of the characters A-Z, a-z, 0-9, and _.

source_group and dest_group are user-defined or predefined groups.

thru_point is an intermediate point used to qualify the path, defined using a TPTHRU attribute.

allowable_delay is the timing requirement.

units is an optional field to indicate the units for the allowable delay. The default units are nanoseconds (ns), but the

timing number can be followed by ps, ns, us, ms, GHz, MHz, or kHz to indicate the intended

units.

Defining a linked specification

This allows you to link the timing number used in one specification to another specification.

TS =FROM TO / *

where

identifier is an ASCII string made up of the characters A-Z, a-z, 0-9, and _.

source_group and dest_group are user-defined or predefined groups.

another_Tsid is the name of another timespec.

number is a floating point number.

Defining a clock period

This allows more complex derivative relationships to be defined as well as a simple clock

period.

TS =PERIOD HIGH LOW

where

identifier is a reference identifier with a unique name.

TNM_reference is the identifier name attached to a clock net (or a net in the clock path) using a TNM

attribute.

period is the required clock period.

 82 - libguide

units is an optional field to indicate the units for the allowable delay. The default units are nanoseconds (ns), but the

timing number can be followed by ps, ns, us, ms, GHz, MHz, or kHz to indicate the intended

units.

HIGH or LOW can be optionally specified to indicate whether the first pulse is to be High or

Low.

high_or_low_time is the optional High or Low time, depending on the preceding keyword. If an actual time is specified,

it must be less than the period. If no High or Low time is specified, the default duty cycle is 50

percent.

hi_lo_units is an optional field to indicate the units for the duty cycle. The default is nanoseconds (ns), but the High or

Low time number can be followed by ps, us, ms, or % if the High or Low time is an actual time

measurement.

Specifying derived clocks

TS =PERIOD HIGH LOW

where

TNM_reference is the identifier name attached to a clock net (or a net in the clock path) using a TNM

attribute.

another_PERIOD_identifier is the name of the identifier used on another period specification.

number is a floating point number.

HIGH or LOW can be optionally specified to indicate whether the first pulse is to be High or

Low.

high_or_low_time is the optional High or Low time, depending on the preceding keyword. If an actual time is specified,

it must be less than the period. If no High or Low time is specified, the default duty cycle is 50

percent.

hi_lo_units is an optional field to indicate the units for the duty cycle. The default is nanoseconds (ns), but the High or

Low time number can be followed by ps, us, ms, or % if the High or Low time is an actual time

measurement.

Ignoring paths

Note: This form is not supported for CPLDs.

There are situations in which a path that exercises a certain net should be ignored because all paths through the net,

instance, or instance pin are not important from a timing specification point of view.

TS =FROM TO TIG

or

TS =FROM THRU THRU TO TIG

where

identifier is an ASCII string made up of the characters A-Z, a-z 0-9, and _.

source_group and dest_group are user-defined or predefined groups.

thru_point is an intermediate point used to qualify the path, defined using a TPTHRU attribute.

 83 - libguide

Example

Schematic

Attached to a TIMESPEC primitive.

UCF/NCF file

This statement says that the timing specification TS_35 calls for a maximum allowable delay of 50 ns between the

groups "here" and "there".

This statement says that the timing specification TS_70 calls for a 25 ns clock period for clock_a, with the first pulse

being High for a duration of 15 ns.

For more information, see the "Timing Constraints" section .

Note: In either example above, a colon can be used instead of a space as the separator. (Additional spaces entered

before or after the colon are ignored.) The statements then become as follows.

U_SET

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√
1, 2, 3,

5, 7, 8,

9, 10,

11, 12

√
1, 2, 3,

5, 7, 8,

9, 10,

11, 12

√
1, 2, 4, 6,

7, 8, 12

√
1, 2, 3,

5, 7, 8,

9, 10,

11, 12

√
1, 2, 3, 5,

7, 8, 9,

10, 11,

12

√
1, 2, 7,

8, 10,

11, 12,

13

Applicable Elements

1. Registers

2. FMAP

3. HMAP

4. F5MAP

5. CY4

6. CY_MUX

7. Macro instance

 84 - libguide

8. EQN

9. ROM

10. RAM

11. RAMS, RAMD

12. BUFT (Can only be used for Virtex if the associated RPM has an RLOC_ORIGIN that causes the RLOC values in

the RPM to be changed to LOC values.)

13. LUTs, F5MUX, F6MUX, MUXCY, XORCY, MULT_AND, SRL16, SRL16E

Description

The U_SET constraint groups design elements with attached RLOC constraints that are distributed throughout the design

hierarchy into a single set. The elements that are members of a U_SET can cross the design hierarchy; that is, you can

arbitrarily select objects without regard to the design hierarchy and tag them as members of a U_SET. For detailed

information about this attribute, refer to the "RLOC Sets" section.

Syntax

U_SET=

where name is the identifier of the set. This name is absolute. It is not prefixed by a hierarchical

qualifier.

Example

Schematic

Attached to a valid instance.

UCF/NCF file

This statement specifies that the design element ELEM_1 be in a set called JET_SET.

USE_RLOC

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√ √ √ √ √ √

Applicable Elements

Instances or macros that are members of sets

Description

 85 - libguide

Turns on or off the RLOC constraint for a specific element or section of a set. For detailed information about this

constraint, refer to the "Toggling the Status of RLOC Constraints" section.

Syntax

USE_RLOC=TRUE FALSE

where TRUE turns on the RLOC attribute for a specific element, and FALSE turns it off. Default is

TRUE.

Example

Schematic

Attached to a member of a set.

UCF/NCF file

VOLTAGE

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√* √* √* √* √* √* √*

*Availability depends on the release of characterization data

Applicable Elements

Global

Description

Allows the specification of the operating voltage. This provides a means of prorating delay characteristics based on the

specified voltage. Prorating is a scaling operation on existing speed file delays and is applied globally to all

delays.

Note: Each architecture has its own specific range of supported voltages. If the entered voltage does not fall within

the supported range, the constraint is ignored and an architecture-specific default value is used instead. Also

note that the error message for this condition appears during PCF processing.

Syntax

VOLTAGE= V

where

value is a real number specifying the voltage.

V indicates volts, the default voltage unit.

Example

Schematic

 86 - libguide

Unattached attribute.

UCF/NCF file

This statement specifies that the analysis for everything relating to speed file delays assumes an operating power of 5

volts.

WIREAND

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√*

* not supported for XC9500XL designs

Applicable Elements

Any net

Description

Forces a tagged node to be implemented as a wired AND function in the interconnect (UIM and

Fastconnect).

Syntax

WIREAND

Example

Schematic

Attached to a net.

UCF/NCF file

This statement specifies that the net named SIG_11 be implemented as a wired AND when

optimized.

XBLKNM

XC3000 XC4000
E

XC4000
X

XC5200 XC9000 Spartan Spartan
XL

Virtex

√
1,2, 3, 7,

8

√
2, 3, 4,

5, 7, 8,

9, 10,

√
2, 3, 4,

5, 7, 8,

9, 10,

√
2, 3, 4, 6,

7, 11

√
2, 3, 4,

5, 7, 8,

9, 10,

√
2, 3, 4, 5,

7, 8, 9,

10, 11

 87 - libguide

11 11 11

Applicable Elements

1. IOB, CLB, and CLBMAP

2. Flip-flop and latch primitives

3. Any I/O element or pad

4. FMAP

5. HMAP

6. F5MAP

7. BUFT

8. ROM primitive

9. RAM primitives

10. RAMS and RAMD primitives

11. Carry logic primitives

Description

Assigns LCA block names to qualifying primitives and logic elements. If the same XBLKNM attribute is assigned to

more than one instance, the software attempts to map them into the same LCA block. Conversely, two symbols with

different XBLKNM names are not mapped into the same block. Placing similar XBLKNMs on instances that do not fit

within one LCA block creates an error.

Specifying identical XBLKNM attributes on FMAP and/or HMAP symbols tells the software to group the associated

function generators into a single CLB. Using XBLKNM, you can partition a complete CLB without constraining the

CLB to a physical location on the device.

XBLKNM attributes, like LOC constraints, are specified from the schematic. Hierarchical paths are not prefixed to

XBLKNM attributes, so XBLKNM attributes for different CLBs must be unique throughout the entire

design.

The BLKNM attribute allows any elements except those with a different BLKNM to be mapped into the same physical

component. XBLKNM, however, allows only elements with the same XBLKNM to be mapped into the same physical

component. Elements without an XBLKNM cannot be not mapped into the same physical component as those with an

XBLKNM.

For XC5200, a given XBLKNM string can only be used to group a logic cell (LC), which contains one register, one

LUT (FMAP), and one F5_MUX element. An error will occur if two or more registers, two or more FMAPs, or two or

more F5_MUX elements have the same XBLKNM attribute.

Syntax

 88 - libguide

XBLKNM=

where block_name is a valid LCA block name for that type of symbol. For a list of prohibited block names, see the

"Naming Conventions" section of each user interface manual.

Example

Schematic

Attached to a valid instance.

UCF/NCF file

This statement assigns an instantiation of an element named flip_flop2 to a block named U1358.

Placement Constraints
This section describes the legal placement constraints for each type of logic element, such as flip-flops, ROMs and

RAMs, FMAPs, F5MAPs, and HMAPs, CLBMAPs, BUFTs, CLBs, IOBs, I/Os, edge decoders, and global buffers in

FPGA designs. Individual logic gates, such as AND or OR gates, are mapped into CLB function generators before the

constraints are read and therefore cannot be constrained. However, if gates are represented by an FMAP, F5MAP,

HMAP, or CLBMAP symbol, you can put a placement constraint on that symbol.

You can use the following constraints (described earlier in the "Attributes/Logical Constraints" section) to control

mapping and placement of symbols in a netlist.

• BLKNM

• HBLKNM

• XBLKNM

• LOC

• PROHIBIT

• RLOC

• RLOC_ORIGIN

• RLOC_RANGE

Most constraints can be specified either in the schematic or in the UCF file.

In a constraints file, each placement constraint acts upon one or more symbols. Every symbol in a design carries a

unique name, which is defined in the input file. Use this name in a constraint statement to identify the symbol.

Note: The UCF and NCF files are case sensitive. Identifier names (names of objects in the design, such as net

names) must exactly match the case of the name as it exists in the source design netlist. However, any Xilinx

constraint keyword (for example, LOC, PROHIBIT, RLOC, BLKNM) can be entered in either all

upper-case or all lower-case letters; mixed case is not allowed.

The following sections describe various types of placement constraints, explains the method of determining the symbol

name for each, and provides examples.

BUFT Constraint Examples

 89 - libguide

You can constrain internal 3-state buffers (BUFTs) to an individual BUFT location, a list of BUFT locations, or a

rectangular block of BUFT locations. BUFT constraints all refer to locations with a prefix of TBUF, which is the name

of the physical element on the device.

BUFT constraints can be assigned from the schematic or through the UCF file. From the schematic, LOC constraints are

attached to the target BUFT. The constraints are then passed into the EDIF netlist file and after mapping are read by

PAR. Alternatively, in a constraints file a BUFT is identified by a unique instance name.

In the XC3000, BUFT locations are not straightforward. View the device in EPIC to determine the exact BUFT

names.

In XC4000 or Spartans, BUFT locations are identified by the adjacent CLB. Thus, TBUF_R1C1.1 is just above

CLB_R1C1, and TBUF_R1C1.2 is just below it. For XC4000 or Spartans, use the following syntax to denote fixed

locations.

TBUF_R C .1 .2

where row is the row location and col is the column location; they can be any number between 0 and 99, inclusive. They

must be less than or equal to the number of CLB rows or columns in the target device. The suffixes have the following

meanings.

• 1 indicates that the instance should be placed above the CLB.

• 2 indicates that the instance should be placed below the CLB.

In the XC5200, BUFT locations are identified by the adjacent slice. From bottom to top, they are number 0, 1, 2, and 3.

Thus, TBUF_R1C1.0 is located toward the bottom of the row. TBUF_R1C1.3 is located toward the top of the row. For

an XC5200, Use the following syntax to denote fixed locations.

TBUF_R C .0 .1 .2 .3

where row is the row location and col is the column location; they can be any number between 0 and 99, inclusive. They

must be less than or equal to the number of CLB rows or columns in the target device. The suffixes have the following

meanings.

• 0 indicates that the instance should be placed in the bottom buffer.

• 1 indicates that the instance should be placed in the buffer that is second from bottom.

• 2 indicates that the instance should be placed in the buffer that is second from top.

• 3 indicates that the instance should be placed in the top buffer.

For Virtex, use the following syntax to denote fixed locations.

TBUF_R C .0 .1

where row is the row location and col is the column location; they can be any number between 0 and 99, inclusive. They

must be less than or equal to the number of CLB rows or columns in the target device. The suffixes have the following

meanings.

• 0 indicates one TBUF at the specific row/column.

• 1 indicates the second TBUF at the specific row/column.

For the XC4000, Spartans, XC5200, or Virtex, use the following syntax to denote a range of locations from the lowest to

the highest.

 90 - libguide

TBUF_R C TBUF_R C

The following examples illustrate the format of BUFT LOC constraints. Specify LOC= and the BUFT

location.

The following statements place the BUFT in the designated location.

(XC3000)

(XC4000, Spartans)

(XC5200)

(Virtex)

The next statements place BUFTs at any location in the first column of BUFTs. The asterisk (*) is a wildcard

character.

(XC3000)

(XC4000, XC5200,

Spartans, Virtex)

The following statements place BUFTs within the rectangular block defined by the first specified BUFT in the upper left

corner and the second specified BUFT in the lower right corner.

(XC3000)

(XC4000, XC5200,

Spartans, Virtex)

In the following examples, the instance names of two BUFTs are /top-72/rd0 and/top-79/ed7.

Example 1

This example specifies a BUFT adjacent to a specific CLB.

Schematic

UCF

Place the BUFT adjacent to CLB R1C5. In XC4000 or Spartans, PAR uses either the longline above the row of CLBs or

the longline below. In an XC5200, PAR places the BUFT in one of the four slices of the CLB at row 1, column 5. In

Virtex, PAR places the BUFT in one of two slices of the CLB at row 1, column 5.

Example 2

The following example places a BUFT in a specific location.

Schematic

 91 - libguide

UCF

Place the BUFT adjacent to CLB R1C5. In an XC4000 or Spartan series device, .1 tag specifies the longline above the

row of CLBs; the .2 tag specifies the longline below it. In an XC5200 device, the .1 tag specifies the longline associated

with the slice above the bottom-most slice in the CLB at the location; the .1, .2, .3 tags specify slices above the .0 slice

for the specified row and column. In Virtex, the .1 tag specifies the second TBUF in CLB R1C5.

BUFTs that drive the same signal must carry consistent constraints. If you specify .1 or .2 for one of the BUFTs that

drives a given signal, you must also specify .1 or .2 on the other BUFTs on that signal; otherwise, do not specify any

constraints at all.

Example 3

The next example specifies a column of BUFTs.

Schematic

UCF

Place BUFTs in column 3 on any row. This constraint might be used to align BUFTs with a common enable signal. You

can use the wildcard (*) character in place of either the row or column number to specify an entire row or column of

BUFTs.

Example 4

This example specifies a row of BUFTs .

Schematic

UCF

Place the BUFT on one of the longlines in row 7 for any column. You can use the wildcard (*) character in place of

either the row or column number to specify an entire row or column of BUFTs.

CLB Constraint Examples
You can assign soft macros and flip-flops to a single CLB location, a list of CLB locations, or a rectangular block of

CLB locations. You can also specify the exact function generator or flip-flop within a CLB. CLB locations are identified

as CLB_RrowCcol for XC4000, XC5200, Spartans, and Virtex or aa for XC3000, where aa is a two-letter designator.

The upper left CLB is CLB_R1C1 (for XC4000, XC5200, Spartans, and Virtex) or AA (for XC3000).

CLB locations can be a fixed location or a range of locations. Use the following syntax to denote fixed

locations.

For XC4000 or Spartans:

CLB_R C .F .G .FFX .FFY

For XC5200:

CLB_R C .LC0 .LC1 .LC2 .LC3

For Virtex:

CLB_R C .S0 .S1

 92 - libguide

where

row is the row location and col is the column location; they can be any number between 0 and 99, inclusive, or *. They

must be less than or equal to the number of CLB rows or columns in the target device. The suffixes have the following

meanings.

.F means the CLB is mapped into the F function generator.

.G means the CLB is mapped into the G function generator.

.FFX indicates the X flip-flop in the CLB.

.FFY indicates the Y flip-flop in the CLB.

.LC0 means the bottom-most slice in the XC5200 CLB.

.LC1 means the slice above the .LC0 slice in the XC5200 CLB.

.LC2 means the slice above the .LC1 slice in the XC5200 CLB.

.LC3 means top-most slice in the XC5200 CLB.

.S0 means the left-most slice in the Virtex CLB.

.S1 means the right-most slice in the Virtex CLB.

Use the following syntax to denote a range of locations from the highest to the lowest.

CLB_R :CLB_R C

The following examples illustrate the format of CLB constraints. Enter LOC= and the pin or CLB location. If the target

symbol represents a soft macro, the LOC constraint is applied to all appropriate symbols (flip-flops, maps) contained in

that macro. If the indicated logic does not fit into the specified blocks, an error is

generated.

The following statements place logic in the designated CLB.

(XC3000)

(XC4000, Spartans)

LOC=CLB_R1C1.LC0 (XC5200)

LOC=CLB_R1C1.S0 (Virtex)

The following statements place logic within the first column of CLBs. The asterisk (*) is a wildcard

character.

(XC3000)

(XC4000, Spartans)

LOC=CLB_R*C1.LC0 (XC5200)

LOC=CLB_R*C1.S0 (Virtex)

The next two statements place logic in any of the three designated CLBs. There is no significance to the order of the

LOC statements.

 93 - libguide

(XC3000)

(XC4000, Spartans,

XC5200, Virtex)

The following statements place logic within the rectangular block defined by the first specified CLB in the upper left

corner and the second specified CLB towards the lower right corner.

(XC3000)

(XC4000, XC5200,

Spartans, Virtex)

The next statement places logic in the X flip-flop of CLB_R2C2. For the Y flip-flop, use the FFY

tag.

(XC4000, Spartans)

You can prohibit PAR from using a specific CLB, a range of CLBs, or a row or column of CLBs. Such prohibit

constraints can be assigned only through the User Constraints File (UCF). CLBs are prohibited by specifying a

PROHIBIT constraint at the design level, as shown in the following examples.

Example 1

Schematic

UCF

Do not place any logic in the CLB in row 1, column 5. CLB R1C1 is in the upper left corner of the

device.

Example 2

Schematic

UCF

Do not place any logic in the rectangular area bounded by the CLB R1C1 in the upper left corner and CLB R5C7 in the

lower right.

Example 3

Schematic

UCF

Do not place any logic in any row of column 3. You can use the wildcard (*) character in place of either the row or

 94 - libguide

column number to specify an entire row or column of CLBs.

Example 4

Schematic

UCF

Do not place any logic in either CLB R2C4 or CLB R7C9.

Delay Locked Loop (DLL) Constraint Examples (Virtex Only)
You can constrain Virtex DLL elementsCLKDLL and CLKDLLHFto a specific physical site name. Specify

LOC=DLL and a numeric value (0 through 3) to identify the location.

Following is an example.

Schematic

UCF

Edge Decoder Constraint Examples (XC4000 Only)
In an XC4000 design, you can assign the decode logic to a specified die edge or half-edge. All elements of a single

decode function must lie along the same edge; they cannot be split across two edges of the die. If you use decoder

constraints, you must assign all decode inputs for a given function to the same edge. From the schematic, attach LOC

constraints to the decode logic  either a DECODE macro or a WAND gate with the DECODE attribute. The

constraints are then passed into the EDIF netlist and after mapping is read by PAR.

The format of decode constraints is LOC= and the decode logic symbol location. If the target symbol represents a soft

macro containing only decode logic, for example, DECODE8, the LOC constraint is applied to all decode logic

contained in that macro. If the indicated decode logic does not fit into the specified decoders, an error is

generated.

To constrain decoders to precise positions within a side, constrain the associated pads. However, because PAR

determines decoder edges before processing pad constraints, it is not enough to constrain the pads alone. To constrain

decoders to a specific die side, use the following rule. For every output net that you want to constrain, specify the side

for at least one of its input decoders (WAND gates), using one of the following.

The "Legal Edge Designations for Edge Decoders" table shows the legal edge designations.

Example 1

Schematic

UCF

 95 - libguide

Place the decoder along the top edge of the die.

Example 2

Schematic

UCF

Place the decoder logic along the left edge of the die.

Example 3

Schematic

UCF

Place decoders along the top half of the left edge of the die. The first letter in this code represents the die edge, and the

second letter represents the desired half of that edge.

Table 12-9Legal Edge Designations for Edge Decoders

Edge Code Edge Location

T Top edge

B Bottom edge

L Left edge

R Right edge

TL Left half of top edge

TR Right half of top edge

BL Left half of bottom edge

BR Right half of bottom edge

LT Top half of left edge

LB Bottom half of left edge

RT Top half of right edge

RB Bottom half of right edge

Note: The edges referred to in these constraints are die edges, which do not necessarily correspond to package

edges. View the device in EPIC to determine which pins are on which die edge.

Flip-Flop Constraint Examples
Flip-flops can be constrained to a specific CLB, a range of CLBs, a row or column of CLBs, a specific half-CLB, or one

 96 - libguide

of four specific slices of the XC5200 CLB. Flip-flop constraints can be assigned from the schematic or through the UCF

file.

From the schematic, attach LOC constraints to the target flip-flop. The constraints are then passed into the EDIF netlist

and are read by PAR after the design is mapped.

The following examples show how the LOC constraint is applied to a schematic and to a UCF (User Constraints File).

The instance names of two flip-flops, /top-12/fdrd and /top-54/fdsd, are used to show how you would enter the

constraints in the UCF.

Example 1

Schematic

UCF

Place the flip-flop in the CLB in row 1, column 5. CLB R1C1 is in the upper left corner of the

device.

Example 2

Schematic

UCF

Place the flip-flop in the rectangular area bounded by the CLB R1C1 in the upper left corner and CLB R5C7 in the lower

right corner.

Example 3

Schematic

UCF

Place the flip-flops in any row of column 3. You can use the wildcard (*) character in place of either the row or column

number to specify an entire row or column of CLBs.

In the following example, repeating the LOC constraint and separating each such constraint by a comma specifies

multiple locations for an element. When you specify multiple locations, PAR can use any of the specified

locations.

Example 4

Schematic

UCF

Place the flip-flop in either CLB R2C4 or CLB R7C9.

Example 5

 97 - libguide

Schematic

UCF

Place the flip-flop in CLB R3C5 and assign the flip-flop output to the XQ pin. (Note: Use the FFY tag to indicate the YQ

pin of the CLB.) If either the FFX or FFY tags are specified, the wildcard (*) character cannot be used for the row or

column numbers.

Example 6

Schematic

UCF

Do not place the flip-flop in any column of row 5. You can use the wildcard (*) character in place of either the row or

column number to specify an entire row or column of CLBs.

The XC5200 CLB is divided into four specific slices for every row and column location on the array. In order to place a

flip-flop in a specific slice, use the .LC0, .LC1, .LC2, or .LC3 extension on the location constraint as shown in the

following example.

Example 7

Schematic

UCF

Place the flip-flop in the top slice of the XC5200 CLB in row 1, column 5.

Global Buffer Constraint Examples
XC3000

You cannot assign placement to the GCLK or ACLK buffers in the XC3000 family, since there is only one each, and

their placements are fixed on the die.

XC4000, XC5200, Spartans

For the XC4000, XC5200, and Spartans, you can constrain a global buffer  BUFG, BUFGP, BUFGS, BUFGLS,

BUFGE, or BUFFCLK to a corner of the die. From the schematic, attach LOC constraints to the global buffer

symbols; specify LOC= and the global clock buffer location. The constraints are then passed into the EDIF netlist and

after mapping are read by PAR.

Following is an example.

Schematic

UCF

Place the global buffer in the top left corner of the die. The following table shows the legal corner

designations.

 98 - libguide

Table 12-10Legal Corner Designations for Global Buffers

Corner Code Corner Location

TL Top left corner

TR Top right corner

BL Bottom left corner

BR Bottom right corner

If a global buffer is sourced by an external signal, the dedicated IOB for that buffer must not be used by any other signal.

For example, if a BUFGP is constrained to TL, the PGCK1 pin must be used to source it, and no other I/O can be

assigned to that pin.

Virtex

You can constrain a Virtex global bufferBUFGP, and IBUFG_selectIO variantsto a specific buffer site name or

dedicated global clock pad in the device model. From the schematic, attach LOC constraints to the global buffer

symbols. Specify LOC= and GCLKBUF plus a number (0 through 3) to create a specific buffer site name in the device

model. Or, specify LOC= and GCLKPAD plus a number (0 through 3) to create a specific dedicated global clock pad in

the device model.The constraints are then passed into the EDIF netlist and after mapping are read by

PAR.

Following is an example.

Schematic

UCF

Schematic

UCF

I/O Constraint Examples
You can constrain I/Os to a specific IOB. You can assign I/O constraints from the schematic or through the UCF

file.

From the schematic, attach LOC constraints to the target PAD symbol. The constraints are then passed into the netlist file

and read by PAR after mapping.

Alternatively, in the UCF file a pad is identified by a unique instance name. The following example shows how the LOC

constraint is applied to a schematic and to a UCF (User Constraints File). In the examples, the instance names of the I/Os

are /top-102/data0_pad and /top-117/q13_pad. The example uses a pin number to lock to one pin.

Schematic

UCF

 99 - libguide

Place the I/O in the IOB at pin 17. For pin grid arrays, a pin name such as B3 or T1 is used.

IOB Constraint Examples
You can assign I/O pads, buffers, and registers to an individual IOB location. IOB locations are identified by the

corresponding package pin designation.

The following examples illustrate the format of IOB constraints. Specify LOC= and the pin location. If the target symbol

represents a soft macro containing only I/O elements, for example, INFF8, the LOC constraint is applied to all I/O

elements contained in that macro. If the indicated I/O elements do not fit into the specified locations, an error is

generated.

The following statement places the I/O element in location P13. For PGA packages, the letter-number designation is

used, for example, B3.

You can prohibit the mapper from using a specific IOB. You might take this step to keep user I/O signals away from

semi-dedicated configuration pins. Such prohibit constraints can be assigned only through the UCF

file.

IOBs are prohibited by specifying a PROHIBIT constraint preceded by the CONFIG keyword, as shown in the

following example.

Schematic

UCF

Do not place user I/Os in the IOBs at pins 36, 37, or 41. For pin grid arrays, pin names such as D14, C16, or H15 are

used.

Mapping Constraint Examples
Mapping constraints control the mapping of logic into CLBs. They have two parts. The first part is a FMAP, HMAP, or

CLBMAP component placed on the schematic. The second is a LOC constraint that can be placed on the schematic or in

the constraints file.

CLBMAP (XC3000 Only)

With the CLBMAP symbol, you can specify logic mapping at the schematic level for all XC3000 designs. It is used in

conjunction with standard logic elements, such as gates and flip-flops. It implicitly specifies the configuration of a CLB

by defining the signals on its pins. Use the CLBMAP symbol to control mapping when the default mapping is not

acceptable.

Enter the CLBMAP symbol on the schematic and assign signals to its pins. MAP processes this symbol and maps the

appropriate logic, as defined by the input and output signals, into one CLB. The easiest way to define a CLBMAP is to

connect a labeled wire segment to each pin, which connects that pin to the net carrying the same

label.

If a CLBMAP specifies an illegal CLB configuration, MAP issues an error explaining why the CLBMAP is

illegal.

A CLBMAP can be either closed or open. A closed CLBMAP must specify both the input and output signals for that

CLB. MAP maps a closed CLBMAP exactly as specified, unless the indicated configuration is illegal. MAP does not add

any logic to a CLB specified with a closed CLBMAP.

 100 - libguide

An open CLBMAP specifies the minimum amount of logic to place within a CLB. MAP attempts to place more logic

within the CLB as long as the CLB remains valid. MAP only adds logic on the inputs to the CLB. It does not add logic

on the output signals. MAP assigns those signals to the CLB output pins and maps the source logic into the CLB as

appropriate. Use an open CLBMAP to specify the minimum function of a CLB.

Specify whether a CLBMAP is open or closed by attaching the appropriate MAP attribute to the symbol. See the "Map

Attributes for CLBMAP Symbols" table for the exact conventions.

The default configuration for a CLBMAP is unlocked and open.

Table 12-11Map Attributes for CLBMAP Symbols

Closed CLB Open CLB

Pins locked MAP=PLC MAP=PLO

Pins unlocked MAP=PUC MAP=PUO (default)

Note: Currently, pin locking is not supported. PLC and PLO are translated into PUC and PUO,

respectively.

Example 1

Schematic

UCF

Place the CLBMAP in CLB CLB_R1C1.

Example 2

Schematic

UCF

Place the CLBMAP in the area bounded by CLB AA in the upper left corner and CLB EE in the lower

right.

FMAP and HMAP

The FMAP and HMAP symbols control mapping in an XC4000 or Spartan series design. They are similar to the

XC3000 CLBMAP symbol. The FMAP may also be used to control mapping XC5200 or Virtex designs.

FMAP and HMAP control the mapping of logic into function generators. These symbols do not define logic on the

schematic; instead, they specify how portions of logic shown elsewhere on the schematic should be mapped into a

function generator.

The FMAP symbol defines mapping into a four-input (F) function generator. The mapper assigns this function to an F or

G function generator for XC4000 and Spartans, so you are not required to specify whether it belongs in F or G. For the

XC5200, the four-input function generator defined by the FMAP will be assigned to one of the four slices of the CLB.

 101 - libguide

For Virtex, the four-input function generator defined by the FMAP will be assigned to one of the two slices of the

CLB.

The HMAP symbol defines mapping into a three-input (H) function generator for XC4000 and Spartans. If the HMAP

has two FMAP outputs and, optionally, one normal (non-FMAP) signal as its inputs, The mapper places all the logic

related to these symbols into one CLB.

An example of how to use these symbols in your schematic appears in the "FMAP and HMAP Schematics" figure

and the "Implementation of FMAP and HMAP" figure .

For the FMAP symbol as with the CLBMAP primitive, MAP=PUC or PUO is supported, as well as the LOC constraint.

(Currently, pin locking is not supported. MAP=PLC or PLO is translated into PUC and PUO,

respectively.)

For the HMAP symbol, only MAP=PUC is supported.

Example 1

Schematic

UCF

Place the FMAP or HMAP symbol in the CLB at row 7, column 3.

Example 2

Schematic

UCF

Place the FMAP or HMAP symbol in either the CLB at row 2, column 4 or the CLB at row 3, column

4.

Example 3

Schemati

c

UCF

Place the FMAP or HMAP symbol in the area bounded by CLB R5C5 in the upper left corner and CLB R10C8 in the

lower right.

Example 4 (XC4000, Spartans)

Schematic

UCF

Place the FMAP in the F function generator of CLB R10C11. The .G extension specifies the G function generator. An

HMAP can only go into the H function generator, so there is no need to specify this placement

explicitly.

 102 - libguide

The XC5200 CLB is divided into four specific slices for every row and column location in the array. In order to place a

function generator in a specific slice, use the .LC0, .LC1, .LC2., or LC3 extension on the location constraint on the

FMAP as shown in the following example.

Example 5 (XC5200)

Schematic

UCF

Place the FMAP in the top slice of the XC5200 CLB in row 10, column 11.

The Virtex CLB is divided into two specific slices for every row and column location in the array. In order to place a

function generator in a specific slice, use the .S0 (left-most slice) or .S1 (right-most slice) extension on the location

constraint on the FMAP as shown in the following example.

Example 6 (Virtex)

Schematic

UCF

Place the FMAP in the left-most slice of the Virtex CLB in row 10, column 11.

Figure 12-2FMAP and HMAP Schematics

 103 - libguide

Figure 12-3Implementation of FMAP and HMAP

 104 - libguide

RAM and ROM Constraint Examples
You can constrain a ROM or RAM to a specific CLB, a range of CLBs, or a row or column of CLBs. Memory

constraints can be assigned from the schematic or through the UCF file.

From the schematic, attach the LOC constraints to the memory symbol. The constraints are then passed into the netlist

file and after mapping they are read by PAR. For more information on attaching LOC constraints, see the appropriate

interface user guide.

Alternatively, in the constraints file a memory is identified by a unique instance name. One or more memory instances of

type ROM or RAM can be found in the input file. All memory macros larger than 16 x 1 or 32 x 1 are broken down into

these basic elements in the netlist file.

In the following examples, the instance name of the ROM primitive is /top-7/rq. The instance name of the RAM

primitive, which is a piece of a RAM64X8 macro, is /top-11-ram64x8/ram-3.

Example 1

Schematic

UCF

Place the memory in the CLB in row 1, column 5. CLB R1C1 is in the upper left corner of the device. You can only

apply a single-CLB constraint such as this to a 16 x 1 or 32 x 1 memory.

Example 2

 105 - libguide

Schematic

UCF

Place the memory in either CLB R2C4 or CLB R7C9.

Example 3

Schematic

UCF

Place the LogiBlox module in the rectangular area bounded by the CLB R1C1 in the upper left corner and CLB R5C7 in

the lower right.

From the schematic, attach the LOC constraint to the LogiBlox symbol for the bigram block.

In the UCF file, the /* is appended to the end of the LogiBlox symbol instance. The wildcard (*) character here specifies

all instances that begin with the /top-17/bigram/ prefix, that is, all RAM elements within the LogiBlox

block.

Example 4

Schematic

UCF

Do not place the memory in any column of row 5. You can use the wildcard (*) character in place of either the row or

column number in the CLB name to specify an entire row or column of CLBs.

RAMB4 (Block RAM) Constraint Examples (Virtex Only)
You can constrain a Virtex block RAM to a specific CLB, a range of CLBs, or a row or column of CLBs. Memory

constraints can be assigned from the schematic or through the UCF file. From the schematic, attach the LOC constraints

to the memory symbol. The constraints are then passed into the netlist file and after mapping they are read by PAR. For

more information on attaching LOC constraints, see the appropriate interface user guide. Alternatively, in the constraints

file a memory is identified by a unique instance name.

A Virtex block RAM has a different row/column grid specification than CLBs and TBUFs. It is specified using

RAMB4_RnCn where the numeric row and column numbers refer to the block RAM grid array. A block RAM located

at RAMB4_R3C1 is not located at the same site as a flip-flop located at CLB_R3C1.

For example, assume you have a device with two columns of block RAM, each column containing four blocks, where

one column is on the right side of the chip and the other is on the left. The block RAM located in the upper left corner is

RAMB4_R0C0. Because there are only two columns of block RAM, the block located in the upper right corner is

RAMB4_R0C1.

Schematic

UCF

 106 - libguide

Relative Location (RLOC) Constraints
Note: This section applies all FPGA families except XC3000.

The RLOC constraint groups logic elements into discrete sets. You can define the location of any element within the set

relative to other elements in the set, regardless of eventual placement in the overall design. For example, if RLOC

constraints are applied to a group of eight flip-flops organized in a column, the mapper maintains the columnar order and

moves the entire group of flip-flops as a single unit. In contrast, absolute location (LOC) constraints constrain design

elements to specific locations on the FPGA die with no relation to other design elements.

Benefits and Limitations of RLOC Constraints
RLOC constraints allow you to place logic blocks relative to each other to increase speed and use die resources

efficiently. They provide an order and structure to related design elements without requiring you to specify their absolute

placement on the FPGA die. They allow you to replace any existing hard macro with an equivalent that can be directly

simulated.

In the Unified Libraries, you can use RLOC constraints with BUFT- and CLB-related primitives, that is, DFF, HMAP,

FMAP, and CY4 primitives. You can also use them on non-primitive macro symbols. There are some restrictions on the

use of RLOC constraints on BUFT symbols; for details, see the "Fixing Members of a Set at Exact Die Locations"

section. You cannot use RLOC constraints with decoders, clocks, or I/O primitives. LOC constraints, on the other hand,

can be used on all primitives: BUFTs, CLBs, IOBs, decoders, and clocks.

The following symbols (primitives) accept RLOCs.

1. Registers

2. FMAP

3. HMAP

4. F5MAP

5. CY4

6. CY_MUX

7. ROM

8. RAM

9. RAMS, RAMD

10. BUFT

11. WAND primitives that do not have a DECODE attribute attached

12. LUTs, F5MUX, F6MUX, MUXCY, XORCY, MULT_AND, SRL16, SRL16E

 107 - libguide

Guidelines for Specifying Relative Locations
General syntax for assigning elements to relative locations is

RLOC=R C

where m and n are relative row numbers and column numbers, respectively.

The extension uses the LOC extension syntax as appropriate; for example .1 and .2 for TBUF

location.

The extension is required for XC5200 designs in order to fully specify the order of the elements (.LC0, .LC1, .LC2,

.LC3). It is required for Virtex designs to specify the spatial relationship of the objects in the RPM (.S0,

.S1).

The row and column numbers can be any positive or negative integer including zero. Absolute die locations, in contrast,

cannot have zero as a row or column number. Because row and column numbers in RLOC constraints define only the

order and relationship between design elements and not their absolute die locations, their numbering can include zero or

negative numbers. Even though you can use any integer in numbering rows and columns for RLOC constraints, it is

recommended that you use small integers for clarity and ease of use.

It is not the absolute values of the row and column numbers that is important in RLOC specifications but their relative

values or differences. For example, if design element A has an RLOC=R3C4 constraint and design element B has an

RLOC=R6C7 constraint, the absolute values of the row numbers (3 and 6) are not important in themselves. However,

the difference between them is important; in this case, 3 (6 -3) specifies that the location of design element B is three

rows away from the location of design element A. To capture this information, a normalization process is used at some

point in the design implementation. In the example just given, normalization would reduce the RLOC on design element

A to R0C0, and the RLOC on design element B to R3C3.

In Xilinx programs, rows are numbered in increasing order from top to bottom, and columns are numbered in increasing

order from left to right. RLOC constraints follow this numbering convention.

The "Different RLOC Specifications for Four Flip-flop Primitives for an XC4000 or Spartan Series Design"

figure demonstrates the use of RLOC constraints. Four flip-flop primitives named A, B, C, and D are assigned RLOC

constraints as shown. These RLOC constraints require each flip-flop to be placed in a different CLB in the same column

and stacked in the order shown  A above B, C, and D. Within a CLB, however, they can be placed either in the FFX or

FFY position.

If you wish to place more than one of these flip-flop primitives per CLB, you can specify the RLOCs as shown in the

"Different RLOC Specifications for Four Flip-flop Primitives for an XC4000 or Spartan Series Design" figure.
The arrangement in the figure requires that A and B be placed in a single CLB and that C and D be placed in another

CLB immediately below the AB CLB. However, within a CLB, the flip-flops can be placed in either of the two flip-flop

positions, FFX or FFY.

To control the ordering of these flip-flop primitives specifically, you can use the extension field, as shown in the

"Different RLOC Specifications for Four Flip-flop Primitives for an XC4000 or Spartan Series Design" figure. In
this figure, the same four flip-flops are constrained to use specific resources in the CLBs. This specification always

ensures that these elements are arranged exactly as shown A must be placed in the FFX spot, B in the same CLB at the

FFY spot, and so on.

Figure 12-4Different RLOC Specifications for Four Flip-flop Primitives for an XC4000 or Spartan

Series Design

 108 - libguide

RLOC Sets
RLOC constraints give order and structure to related design elements. This section describes RLOC sets, which are

groups of related design elements to which RLOC constraints have been applied. For example, the four flip-flops in the

"Different RLOC Specifications for Four Flip-flop Primitives for an XC4000 or Spartan Series Design" figure are

related by RLOC constraints and form a set. Elements in a set are related by RLOC constraints to other elements in the

same set. Each member of a set must have an RLOC constraint, which relates it to other elements in the same set. You

can create multiple sets, but a design element can belong to one set only.

Sets can be defined explicitly through the use of a set parameter or implicitly through the structure of the design

hierarchy.

Four distinct types of rules are associated with each set.

• Definition rules define the requirements for membership in a set.

• Linkage rules specify how elements can be linked to other elements to form a single set.

• Modification rules dictate how to specify parameters that modify RLOC values of all the members of the

set.

• Naming rules specify the nomenclature of sets.

These rules are discussed in the sections that follow.

The following sections discuss three different set constraints U_SET, H_SET, and HU_SET. Elements must be tagged

 109 - libguide

with both the RLOC constraint and one of these set constraints to belong to a set.

U_SET

U_SET constraints enable you to group into a single set design elements with attached RLOC constraints that are

distributed throughout the design hierarchy. The letter U in the name U_SET indicates that the set is user-defined.

U_SET constraints allow you to group elements, even though they are not directly related by the design hierarchy. By

attaching a U_SET constraint to design elements, you can explicitly define the members of a set. The design elements

tagged with a U_SET constraint can exist anywhere in the design hierarchy; they can be primitive or non-primitive

symbols. When attached to non-primitive symbols, the U_SET constraint propagates to all the primitive symbols with

RLOC constraints that are below it in the hierarchy.

The syntax of the U_SET constraint is the following.

U_SET=

where set_name is the user-specified identifier of the set. All design elements with RLOC constraints tagged with the

same U_SET constraint name belong to the same set. Names therefore must be unique among all the sets in the

design.

H_SET

In contrast to the U_SET constraint, which you explicitly define by tagging design elements, the H_SET (hierarchy set)

is defined implicitly through the design hierarchy. The combination of the design hierarchy and the presence of RLOC

constraints on elements defines a hierarchical set, or H_SET set. You do not use an HSET constraint to tag the design

elements to indicate their set membership. The set is defined automatically by the design

hierarchy.

All design elements with RLOC constraints at a single node of the design hierarchy are considered to be in the same

H_SET set unless they are tagged with another type of set constraint such as RLOC_ORIGIN or RLOC_RANGE. If you

explicitly tag any element with an RLOC_ORIGIN, RLOC_RANGE, U_SET, or HU_SET constraint, it is removed from

an H_SET set. Most designs contain only H_SET constraints, since they are the underlying mechanism for relationally

placed macros. The RLOC_ORIGIN or RLOC_RANGE constraints are discussed further in the "Fixing Members of a

Set at Exact Die Locations" section.

NGDBuild recognizes the implicit H_SET set, derives its name, or identifier, attaches the H_SET constraint to the

correct members of the set, and writes them to the output file.

The syntax of the H_SET constraint as generated by NGDBuild follows.

H_SET=

set_name is the identifier of the set and is unique among all the sets in the design. The base name for any H_SET is

"hset," to which NGDBuild adds a hierarchy path prefix to obtain unique names for different H_SET sets in the

NGDBuild output file.

HU_SET

The HU_SET constraint is a variation of the implicit H_SET (hierarchy set). Like H_SET, HU_SET is defined by the

design hierarchy. However, you can use the HU_SET constraint to assign a user-defined name to the

HU_SET.

The syntax of the HU_SET constraint is the following.

HU_SET=

where set_name is the identifier of the set; it must be unique among all the sets in the design. You must define the base

 110 - libguide

names to ensure unique hierarchically qualified names for the sets after the mapper resolves the design and attaches the

hierarchical names as prefixes.

This user-defined name is the base name of the HU_SET set. Like the H_SET set, in which the base name of "hset" is

prefixed by the hierarchical name of the lowest common ancestor of the set elements, the user-defined base name of an

HU_SET set is prefixed by the hierarchical name of the lowest common ancestor of the set

elements.

The HU_SET constraint defines the start of a new set. All design elements at the same node that have the same

user-defined value for the HU_SET constraint are members of the same HU_SET set. Along with the HU_SET

constraint, elements can also have an RLOC constraint. The presence of an RLOC constraint in an H_SET constraint

links the element to all elements tagged with RLOCs above and below in the hierarchy. However, in the case of an

HU_SET constraint, the presence of an RLOC constraint along with the HU_SET constraint on a design element does

not automatically link the element to other elements with RLOC constraints at the same hierarchy level or

above.

Figure 12-5Macro A Instantiated Twice

 111 - libguide

Note: In the "Macro A Instantiated Twice" figure and the other related figures shown in the subsequent

sections, the italicized text prefixed by => is added by NGDBuild during the design flattening process. You

add all other text.

The "Macro A Instantiated Twice" figure demonstrates a typical use of the implicit H_SET (hierarchy set). The

figure shows only the first "RLOC" portion of the constraint. In a real design, the RLOC constraint must be specified

completely with RLOC=RmCn. In this example, macro A is originally designed with RLOC constraints on four

flip-flops  A, B, C, and D. The macro is then instantiated twice in the design  Inst1 and Inst2. When the design is

flattened, two different H_SET sets are recognized because two distinct levels of hierarchy contain elements with RLOC

constraints. NGDBuild creates and attaches the appropriate H_SET constraint to the set members: H_SET=Inst1/hset for

the macro instantiated in Inst1, and H_SET=Inst2/hset for the macro instantiated in Inst2. The design implementation

programs place each of the two sets individually as a unit with relative ordering within each set specified by the RLOC

constraints. However, the two sets are regarded to be completely independent of each other.

 112 - libguide

The name of the H_SET set is derived from the symbol or node in the hierarchy that includes all the RLOC elements. In

the "Macro A Instantiated Twice" figure , Inst1 is the node (instantiating macro) that includes the four flip-flop

elements with RLOCs shown on the left of the figure. Therefore, the name of this H_SET set is the hierarchically

qualified name of "Inst1" followed by "hset." The Inst1 symbol is considered the "start" of the H_SET, which gives a

convenient handle to the entire H_SET and attaches constraints that modify the entire H_SET. Constraints that modify

sets are discussed in the "Set Modifiers" section.

The "Macro A Instantiated Twice" figure demonstrates the simplest use of a set that is defined and confined to a

single level of hierarchy. Through linkage and modification, you can also create an H_SET set that is linked through two

or more levels of hierarchy. Linkage allows you to link elements through the hierarchy into a single set. On the other

hand, modification allows you to modify RLOC values of the members of a set through the

hierarchy.

RLOC Set Summary

The following table summarizes the RLOC set types and the constraints that identify members of these

sets.

Table 12-12Summary of Set Types

Type Definition Naming Linkage Modificati
on

Set A set is a

collection

of elements

to which

relative

location

constraints

are

applied.

U_SET=
name

All

elements

with the

same

user-tagged

U_SET

constraint

value are

members of

the same

U_SET set.

The name

of the set is

the same as

the

user-define

d name

without any

hierarchical

qualificatio

n.

U_SET

links

elements to

all other

elements

with the

same value

for the

U_SET

constraint.

U_SET is

modified by

applying

RLOC_ORI

GIN or

RLOC_RA

NGE

constraints

on, at most,

one of the

U_SET

constraint-t

agged

elements.

H_SET RLOC on The lowest H_SET H_SET is

 113 - libguide

(implicit

through

hierarchy)

is not

available as

a constraint

that you can

attach to

symbols.

the node.

Any other

constraint

removes a

node from

the H_SET

set.

common

ancestor of

the

members

defines the

start of the

set. The

name is the

hierarchicall

y qualified

name of the

start

followed by

the base

name,

"hset."

links

elements to

other

elements at

the same

node that

do not have

other

constraints.

It links

down to all

elements

that have

RLOC

constraints

and no

other

constraints.

Similarly, it

links to

other

elements up

the

hierarchy

that have

RLOC

constraints

but no other

constraints.

modified by

applying

RLOC_ORI

GIN and

RLOC_RA

NGE at the

start of the

set: the

lowest

common

ancestor of

all the

elements of

the set.

HU_SET=
name

All

elements

with the

same

hierarchicall

y qualified

name are

members of

the same

set.

The lowest

common

ancestor of

the

members is

prefixed to

the

user-define

d name to

obtain the

name of the

set.

HU_SET

links to

other

elements at

the same

node with

the same

HU_SET

constraint

value. It

links to

elements

with RLOC

constraints

below.

The start of

the set is

made up of

the

elements on

the same

node that

are tagged

with the

same

HU_SET

constraint

value. An

RLOC_ORI

GIN or an

RLOC_RA

NGE can be

 114 - libguide

applied to,

at most, one

of these

start

elements of

an HU_SET

set.

Set Linkage
The example in the "Three H_SET Sets" figure explains and illustrates the process of linking together elements

through the design hierarchy. Again, the complete RLOC specification, RLOC=RmCn, is required for a real

design.

Note: In this and other illustrations in this section, the sets are shaded differently to distinguish one set from

another.

Figure 12-6Three H_SET Sets

 115 - libguide

As noted previously, all design elements with RLOC constraints at a single node of the design hierarchy are considered

to be in the same H_SET set unless they are assigned another type of set constraint, an RLOC_ORIGIN constraint, or an

RLOC_RANGE constraint. In the "Three H_SET Sets" figure, RLOC constraints have been added on primitives and

non-primitives C, D, F, G, H, I, J, K, M, N, O, P, Q, and R. No RLOC constraints were placed on B, E, L, or S. Macros C

and D have an RLOC constraint at node A, so all the primitives below C and D that have RLOCs are members of a

single H_SET set. Furthermore, the name of this H_SET set is "A/hset" because it is at node A that the set starts. The

start of an H_SET set is the lowest common ancestor of all the RLOC-tagged constraints that constitute the elements of

that H_SET set. Because element E does not have an RLOC constraint, it is not linked to the A/hset set. The

RLOC-tagged elements M and N, which lie below element E, are therefore in their own H_SET set. The start of that

 116 - libguide

H_SET set is A/E, giving it the name "A/E/hset."

Similarly, the Q and R primitives are in their own H_SET set because they are not linked through element L to any other

design elements. The lowest common ancestor for their H_SET set is L, which gives it the name "A/D/L/hset." After the

flattening, NGDBuild attaches H_SET=A/hset to the F, G, H, O, P, J, and K primitives; H_SET=A/D/L/hset to the Q and

R primitives; and H_SET=A/E/hset to the M and N primitives.

Consider a situation in which a set is created at the top of the design. In the "Three H_SET Sets" figure, there would

be no lowest common ancestor if macro A also had an RLOC constraint, since A is at the top of the design and has no

ancestor. In this case, the base name "hset" would have no hierarchically qualified prefix, and the name of the H_SET set

would simply be "hset."

Set Modification
The RLOC constraint assigns a primitive an RLOC value (the row and column numbers with the optional extensions),

specifies its membership in a set, and links together elements at different levels of the hierarchy. In the "Three H_SET

Sets" figure, the RLOC constraint on macros C and D links together all the objects with RLOC constraints below them.

An RLOC constraint is also used to modify the RLOC values of constraints below it in the hierarchy. In other words,

RLOC values of elements affect the RLOC values of all other member elements of the same H_SET set that lie below the

given element in the design hierarchy.

The Effect of the Hierarchy on Set Modification

When the design is flattened, the row and column numbers of an RLOC constraint on an element are added to the row

and column numbers of the RLOC constraints of the set members below it in the hierarchy. This feature gives you the

ability to modify existing RLOC values in submodules and macros without changing the previously assigned RLOC

values on the primitive symbols. This modification process also applies to the optional extension field. However, when

using extensions for modifications, you must ensure that inconsistent extensions are not attached to the RLOC value of a

design element that may conflict with RLOC extensions placed on underlying elements. For example, if an element has

an RLOC constraint with the FFX extension, all the underlying elements with RLOC constraints must either have the

same extension, in this case FFX, or no extension at all; any underlying element with an RLOC constraint and an

extension different from FFX, such as FFY or F, is flagged as an error.

After resolving all the RLOC constraints, extensions that are not valid on primitives are removed from those primitives.

For example, if NGDBuild generates an FFX extension to be applied on a primitive after propagating the RLOC

constraints, it applies the extension if and only if the primitive is a flip-flop. If the primitive is an element other than a

flip-flop, the extension is ignored. Only the extension is ignored in this case, not the entire RLOC

constraint.

The "Adding RLOC Values Down the Hierarchy" figure illustrates the process of adding RLOC values down the

hierarchy. The row and column values between the parentheses show the addition function performed by the mapper.

The italicized text prefixed by => is added by MAP during the design resolution process and replaces the original RLOC

constraint that you added.

Figure 12-7Adding RLOC Values Down the Hierarchy

 117 - libguide

 118 - libguide

The ability to modify RLOC values down the hierarchy is particularly valuable when instantiating the same macro more

than once. Typically, macros are designed with RLOC constraints that are modified when the macro is instantiated. The

"Modifying RLOC Values of Same Macro and Linking Together as One Set" figure is a variation of the sample

design in the "Macro A Instantiated Twice" figure . The RLOC constraint on Inst1 and Inst2 now link all the objects

in one H_SET set. Because the RLOC=R0C0 modifier on the Inst1 macro does not affect the objects below it, the

mapper only adds the H_SET tag to the objects and leaves the RLOC values as they are. However, the RLOC=R0C1

modifier on the Inst2 macro causes MAP to change the RLOC values on objects below it, as well as to add the H_SET

tag, as shown in the italicized text.

Figure 12-8Modifying RLOC Values of Same Macro and Linking Together as One Set

Separating Elements from H_SET Sets

The HU_SET constraint is a variation of the implicit H_SET (hierarchy set). The HU_SET constraint defines the start of

a new set. Like H_SET, HU_SET is defined by the design hierarchy. However, you can use the HU_SET constraint to

assign a user-defined name to the HU_SET.

 119 - libguide

The "HU_SET Constraint Linking and Separating Elements from H_SET Sets" figure demonstrates how

HU_SET constraints designate elements as set members, break links between elements tagged with RLOC constraints in

the hierarchy to separate them from H_SET sets, and generate names as identifiers of these

sets.

Figure 12-9HU_SET Constraint Linking and Separating Elements from H_SET Sets

 120 - libguide

The user-defined HU_SET constraint on E separates its underlying design elements, namely H, I, J, K, L, and M from

the implicit H_SET=A/hset that contains primitive members B, C, F, and G. The HU_SET set that is defined at E

includes H, I, and L (through the element J). The mapper hierarchically qualifies the name value "bar" on element E to

be A/bar, since A is the lowest common ancestor for all the elements of the HU_SET set, and attaches it to the set

 121 - libguide

member primitives H, I, and L. An HU_SET constraint on K starts another set that includes M, which receives the

HU_SET=A/E/bar constraint after processing by the mapper. In the "HU_SET Constraint Linking and Separating

Elements from H_SET Sets" figure, the same name field is used for the two HU_SET constraints, but because they are

attached to symbols at different levels of the hierarchy, they define two different sets.

Figure 12-10Linking Two HU_SET Sets

 122 - libguide

The "Linking Two HU_SET Sets" figure shows how HU_SET constraints link elements in the same node together by

naming them with the same identifier. Because of the same name, "bar," on two elements, D and E, the elements tagged

with RLOC constraints below D and E become part of the same HU_SET.

Set Modifiers
A modifier, as its name suggests, modifies the RLOC constraints associated with design elements. Since it modifies the

RLOC constraints of all the members of a set, it must be applied in a way that propagates it to all the members of the set

easily and intuitively. For this reason, the RLOC modifiers of a set are placed at the start of that set. The following set

modifiers apply to RLOC constraints.

• RLOC

The RLOC constraint associated with a design element modifies the values of other RLOC constraints below the

element in the hierarchy of the set. Regardless of the set type, RLOC row, column, and extension values on an

element always propagate down the hierarchy and are added at lower levels of the hierarchy to RLOC constraints on

elements in the same set.

• RLOC_ORIGIN (see the "RLOC_ORIGIN" section)

• RLOC_RANGE (see the "RLOC_RANGE" section)

Using RLOCs with Xilinx Macros

Xilinx-supplied flip-flop macros include an RLOC=R0C0 constraint on the underlying primitive, which allows you to

attach an RLOC to the macro symbol. This symbol links the underlying primitive to the set that contains the macro

symbol. Simply attach an appropriate RLOC constraint to the instantiation of the actual Xilinx flip-flop macro. The

mapper adds the RLOC value that you specified to the underlying primitive so that it has the desired

value.

Figure 12-11Typical Use of a Xilinx Macro

 123 - libguide

For example, in the "Typical Use of a Xilinx Macro" figure , the RLOC = R1C1 constraint is attached to the

instantiation (Inst1) of the FDRE macro. It is added to the R0C0 value of the RLOC constraint on the flip-flop within the

macro to obtain the new RLOC values.

If you do not put an RLOC constraint on the flip-flop macro symbol, the underlying primitive symbol is the lone

member of a set. the mapper removes RLOC constraints from a primitive that is the only member of a set or from a

macro that has no RLOC objects below it.

LOC and RLOC Propagation through Design Flattening

NGDBuild continues to propagate LOC constraints down the design hierarchy. It adds this constraint to appropriate

objects that are not members of a set. While RLOC constraint propagation is limited to sets, the LOC constraint is

applied from its start point all the way down the hierarchy.

When the design is flattened, the row and column numbers of an RLOC constraint on an element are added to the row

and column numbers of the RLOC constraints of the set members below it in the hierarchy. This feature gives you the

ability to modify existing RLOC values in submodules and macros without changing the previously assigned RLOC

values on the primitive symbols.

 124 - libguide

Specifying RLOC constraints to describe the spatial relationship of the set members to themselves allows the members of

the set to float anywhere on the die as a unit. You can, however, fix the exact die location of the set members. The

RLOC_ORIGIN constraint allows you to change the RLOC values into absolute LOC constraints that respect the

structure of the set.

The design resolution program, NGDBuild, translates the RLOC_ORIGIN constraint into LOC constraints. The row and

column values of the RLOC_ORIGIN are added individually to the members of the set after all RLOC modifications

have been made to their row and column values by addition through the hierarchy. The final values are then turned into

LOC constraints on individual primitives.

Fixing Members of a Set at Exact Die Locations

As noted in the previous section, you can fix the members of a set at exact die locations with the RLOC_ORIGIN

constraint. You must use the RLOC_ORIGIN constraint with sets that include BUFT symbols. However, for sets that do

not include BUFT symbols, you can limit the members of a set to a certain range on the die. In this case, the set could

"float" as a unit within the range until a final placement. Since every member of the set must fit within the range, it is

important that you specify a range that defines an area large enough to respect the spatial structure of the

set.

The syntax of this constraint is the following.

RLOC_RANGE=R C :R C

where the relative row numbers (m1, m2) and column numbers (n1, n2) can be non-zero positive numbers, or the

wildcard (*) character. This syntax allows for three kinds of range specifications as follows.

• Rr1Cc1:Rr2Cc2  A rectangular region enclosed by rows r1, r2, and columns c1, c2

• R*Cc1:R*Cc2  A region enclosed by the columns c1 and c2 (any row number)

• Rr1C*:Rr2C*  A region enclosed by the rows r1 and r2 (any column number)

For the second and third kinds of specifications with wildcards, applying the wildcard character (*) differently on either

side of the separator colon creates an error. For example, specifying R*C1:R2C* is an error since the wildcard asterisk is

applied to rows on one side and to columns on the other side of the separator colon.

Specifying a Range or Area

To specify a range or area, use the following syntax, which is equivalent to placing an RLOC_RANGE constraint on the

schematic.

RLOC_RANGE=R C :R C

The range identifies a rectangular area. You can substitute a wildcard (*) character for either the row number or the

column number of both corners of the range.

Note: The bounding rectangle applies to all elements in a relationally placed macro, not just to the origin of the set.

See the "Relationally Placed Macros (RPMs)" section for more information.

The values of the RLOC_RANGE constraint are not simply added to the RLOC values of the elements. In fact, the

RLOC_RANGE constraint does not change the values of the RLOC constraints on underlying elements. It is an

additional constraint that is attached automatically by the mapper to every member of a set. The RLOC_RANGE

constraint is attached to design elements in exactly the same way as the RLOC_ORIGIN constraint. The values of the

RLOC_RANGE constraint, like RLOC_ORIGIN values, must be non-zero positive numbers since they directly

correspond to die locations.

 125 - libguide

If a particular RLOC set is constrained by an RLOC_ORIGIN or an RLOC_RANGE constraint in the design netlist and

is also constrained in the UCF file, the UCF file constraint overrides the netlist constraint.

Toggling the Status of RLOC Constraints

Another important set modifier is the USE_RLOC constraint. It turns the RLOC constraints on and off for a specific

element or section of a set. RLOC can be either TRUE or FALSE.

The application of the USE_RLOC constraint is strictly based on hierarchy. A USE_RLOC constraint attached to an

element applies to all its underlying elements that are members of the same set. If it is attached to a symbol that defines

the start of a set, the constraint is applied to all the underlying member elements, which represent the entire set. However,

if it is applied to an element below the start of the set (for example, E in the "Using the USE_RLOC Constraint to

Control RLOC Application on H_SET and HU_SET Sets" figure), only the members of the set (H and I) below the

specified element are affected.You can also attach the USE_RLOC constraint directly to a primitive symbol so that it

affects only that symbol.

Figure 12-12Using the USE_RLOC Constraint to Control RLOC Application on H_SET and HU_SET

Sets

 126 - libguide

When the USE_RLOC=FALSE constraint is applied, the RLOC and set constraints are removed from the affected

symbols in the NCD file. This process is different than that followed for the RLOC_ORIGIN constraint. For

RLOC_ORIGIN, the mapper generates and outputs a LOC constraint in addition to all the set and RLOC constraints in

the PCF file. The mapper does not retain the original constraints in the presence of a USE_RLOC=FALSE constraint

because these cannot be turned on again in later programs.

The "Using the USE_RLOC Constraint to Control RLOC Application on H_SET and HU_SET Sets"

figure illustrates the use of the USE_RLOC constraint to mask an entire set as well as portions of a

set.

Applying the USE_RLOC constraint on U_SET sets is a special case because of the lack of hierarchy in the U_SET set.

Because the USE_RLOC constraint propagates strictly in a hierarchical manner, the members of a U_SET set that are in

different parts of the design hierarchy must be tagged separately with USE_RLOC constraints; no single USE_RLOC

 127 - libguide

constraint is propagated to all the members of the set that lie in different parts of the hierarchy. If you create a U_SET set

through an instantiating macro, you can attach the USE_RLOC constraint to the instantiating macro to allow it to

propagate hierarchically to all the members of the set. You can create this instantiating macro by placing a U_SET

constraint on a macro and letting the mapper propagate that constraint to every symbol with an RLOC constraint below it

in the hierarchy.

The "Using the USE_RLOC Constraint to Control RLOC Application on U_SET Sets" figure illustrates an

example of the use of the USE_RLOC=FALSE constraint. The USE_RLOC=FALSE on primitive E removes it from the

U_SET set, and USE_RLOC=FALSE on element F propagates to primitive G and removes it from the U_SET

set.

Figure 12-13Using the USE_RLOC Constraint to Control RLOC Application on U_SET Sets

While propagating the USE_RLOC constraint, the mapper ignores underlying USE_RLOC constraints if it encounters

elements higher in the hierarchy that already have USE_RLOC constraints. For example, if the mapper encounters an

underlying element with a USE_RLOC=TRUE constraint during the propagation of a USE_RLOC=FALSE constraint, it

ignores the newly encountered TRUE constraint.

Choosing an RLOC Origin when Using Hierarchy Sets

To specify a single origin for an RLOC set, use the following syntax, which is equivalent to placing an RLOC_ORIGIN

attribute on the schematic.

RLOC_ORIGIN=R C

The set_name can be the name of any type of RLOC set  a U_SET, an HU_SET, or a system-generated H_SET.

The origin itself is expressed as a row number and a column number representing the location of the elements at

 128 - libguide

RLOC=R0C0.

When the RLOC_ORIGIN constraint is used in conjunction with an implicit H_SET (hierarchy set), it must be placed on

the element that is the start of the H_SET set, that is, on the lowest common ancestor of all the members of the

set.

If you apply an RLOC_ORIGIN constraint to an HU_SET constraint, place it on the element at the start of the HU_SET

set, that is, on an element with the HU_SET constraint. However, since there could be several elements linked together

with the HU_SET constraint at the same node, the RLOC_ORIGIN constraint can be applied to only one of these

elements to prevent more than one RLOC_ORIGIN constraint from being applied to the HU_SET set.

Similarly, when used with a U_SET constraint, the RLOC_ORIGIN constraint can be placed on only one element with

the U_SET constraint. If you attach the RLOC_ORIGIN constraint to an element that has only an RLOC constraint, the

membership of that element in any set is removed, and the element is considered the start of a new H_SET set with the

specified RLOC_ORIGIN constraint attached to the newly created set.

Figure 12-14Using an RLOC_ORIGIN Constraint to Modify an H_SET Set

 129 - libguide

In the "Using an RLOC_ORIGIN Constraint to Modify an H_SET Set" figure , the elements B, C, D, F, and G are

members of an H_SET set with the name A/hset. This figure is the same as the "Adding RLOC Values Down the

 130 - libguide

Hierarchy" figure except for the presence of an RLOC_ORIGIN constraint at the start of the H_SET set (at A). The

RLOC_ORIGIN values are added to the resultant RLOC values at each of the member elements to obtain the values that

are then converted by the mapper to LOC constraints. For example, the RLOC value of F, given by adding the RLOC

value at E (R0C1) and that at F (R0C0), is added to the RLOC_ORIGIN value (R2C3) to obtain the value of (R2C4),

which is then converted to a LOC constraint, LOC = CLB_R2C4.

Figure 12-15Using an RLOC_ORIGIN to Modify H_SET and HU_SET Sets

The "Using an RLOC_ORIGIN to Modify H_SET and HU_SET Sets" figure shows an example of an

RLOC_ORIGIN constraint modifying an HU_SET constraint. The start of the HU_SET A/bar is given by element D or

E. The RLOC_ORIGIN attached to E, therefore, applies to this HU_SET set. On the other hand, the RLOC_ORIGIN at

A, which is the start of the H_SET set A/hset, applies to elements B and C, which are members of the H_SET

set.

Timing Constraints

 131 - libguide

This section describes the syntax for using timing constraints in a UCF file. Timing constraints allow you to specify the

maximum allowable delay or skew on any given set of paths or nets in your design.

There are three steps for applying timing specifications to a design.

1. Add TNM attributes to symbols on your schematic to group them into sets. This step is not necessary if you are

using only predefined sets. This step can be performed in the schematic or in a constraints file. See the "Entering

Timing Specifications" section in the Development Systems Reference Guide for instructions.

2. Add a TIMEGRP symbol and add attributes to the symbol. These attributes can combine the sets defined in step 1

or by pattern matching into additional, more complex, sets, or they can match patterns. This step is optional. You

can define these groups on the schematic or in the constraints file.

3. Add a TIMESPEC symbol and add attributes to the symbol, defining the timing requirements for the sets defined

in steps 1 and 2. You can define the timing requirements on the schematic or in the constraints

file.

TNM Attributes
Timing name (TNM) attributes can be used to identify the elements that make up a group and give them a name that can

later be used in an actual timing specification. The value of the attribute can take several forms and there are several

attachment mechanisms by which the attribute can identify the elements that make up a group.

TNM attributes can be attached to a net, an element pin, a primitive, or a macro.

TNMs on Nets

The TNM attribute can be placed on any net in the design. It is used to indicate that the TNM value should be attached to

all valid elements fed by all paths that fan forward from the tagged net. Forward tracing stops at any flip-flop, latch,

RAM or pad. TNMs do not propagate across IBUFs if they are attached to the input pad net. (Use TNM_NET if you

want to trace forward from an input pad net.)

TNMs on Macro or Primitive Pins

The TNM attribute can be placed on any macro or component pin in the design if the design entry package allows

placement of attributes on macro or primitive pins. It is used to indicate that the TNM value should be attached to all

valid elements fed by all paths that fan forward from the tagged pin. Forward tracing stops at any flip-flop, latch, RAM

or pad.

TNMs on Primitives

Attaching a TNM attribute directly to a primitive defines that primitive as part of the named

group.

TNMs on Macro Symbols

A TNM attribute attached to a macro indicates that all elements inside the macro (at all levels of hierarchy below the

tagged macro) are part of the named group.

TIMEGRP Constraints
It is sometimes convenient to use existing TNMs to create new groups or to define a group based on the output nets that

the group sources. A set of grouping mechanisms has been created to do this. The Timing Group primitive (TIMEGRP)

serves as the host for these attributes. Because they contain no keyword, the attributes make no sense when used

 132 - libguide

alone.

You can either attach a TIMEGRP constraint to the TIMEGRP schematic symbol or specify it with the TIMEGRP

keyword in the UCF file. In the UCF file, the statement syntax is as follows.

TIMEGRP =

where timegrp_parameter is identical to the text you would attach to the TIMEGRP schematic symbol.

You can create groups using the following four methods.

1. Combine multiple groups into one; use the following syntax.

where new_group is the group being defined; group1, group2, and so forth can be a valid TNM-defined group,

predefined group (FFS, PADS, RAMS, LATCHES), or group defined with another TIMEGRP attribute. You can

create a time group attribute that references another TIMEGRP attribute that appears after the initial definition. Do

not use reserved words such as FFS, PADS, RISING, FALLING, or EXCEPT as group names.

Example

Schematic

UCF

2. Create groups by exclusion; use the following syntax.

:EXCEPT

where new_group is the group being defined; group1 and group2 can be a valid TNM-defined group, predefined

group (FFS, PADS, RAMS, LATCHES), or group defined with another TIMEGRP attribute. Do not use reserved

words such as FFS, PADS, RISING, FALLING, or EXCEPT as group names.

Example

Schematic

UCF

You can also specify multiple groups to include or exclude when creating the new group.

:EXCEPT

where group1, group2, group3, and groupn can be a valid TNM-defined group, predefined group (FFS, PADS,

RAMS, LATCHES), or group defined with another TIMEGRP attribute. Do not use reserved words such as FFS,

PADS, RISING, FALLING, or EXCEPT as group names.

3. Define groups of flip-flops triggered by rising and falling clock edges; use the following

syntax.

= RISING FALLING ffs

where group must be a group that includes only flip-flops. FFS is a predefined group.

 133 - libguide

Example

Defining a group of flip-flops that switch on the falling edge of the clock.

Schematic

UCF

4. Use wildcard characters to define groups of symbols whose associated signal names match a specific pattern; use

this syntax.

where predefined_group can be one of the following predefined groups: FFS, PADS, RAMS, LATCHES.

pattern is the string characterizing the output net names of the blocks that you want to include in the new group. It

can be any string of characters used with one or more wildcard characters, which can be either of the

following.

An asterisk (*) matches any string of zero or more characters.

A question mark (?) matches one character.

Example

Group created by pattern matching.

Schematic

UCF

TIMESPEC Constraints
After you have defined appropriate groups by attaching TNM attributes to symbols and, optionally, by combining these

groups using the TIMEGRP symbol, the next step is to add the timing specifications to the constraints file with the

TSidentifier constraint. You can define these timing requirements by the following means.

The actual timing specifications take the form of attributes that are attached to a timing specification (TIMESPEC)

primitive. The TIMESPEC primitive acts as a place to attach attributes and keeps the attributes together. More than one

TIMESPEC primitive can be used in a design at any level of the hierarchy.

The sources and destinations can be any synchronous point in the design. The timing allowance specified is used

explicitly by the timing analysis tools. There is no hidden accounting for any clock inversions between registers clocked

by the same clock, etc.

If paths are not specified, they are ignored for the purposes of timing analysis. The forms described here require the

definition of a source and a destination for a specification.

Basic Form

Syntax for defining a maximum allowable delay is as follows.

TS =FROM: :TO:

where

 134 - libguide

identifier is an ASCII string made up of the characters A...Z, a...z, 0...9.

source_group and dest_group are user-defined or predefined groups.

allowable_delay is the timing requirement.

units is an optional field to indicate the units for the allowable delay. Default units are nanoseconds, but the timing

number can be followed by ps, ns, us, ms, GHz, MHz, or kHz to indicate the intended units.

In a schematic the timespec attribute is attached to the TIMESPEC symbol.

Defining Intermediate Points on a Path

It is sometimes convenient to define intermediate points on a path to which a specification applies. This defines the

maximum allowable delay and has the following syntax.

TS =FROM: THRU THRU :TO:

where

identifier is an ASCII string made up of the characters A...Z, a...z, 0...9.

source_group and dest_group are user-defined or predefined groups.

thru_point is an intermediate point used to qualify the path, defined using a TPTHRU attribute.

allowable_delay is the timing requirement.

units is an optional field to indicate the units for the allowable delay. Default units are nanoseconds, but the timing

number can be followed by ps, ns, us, ms, GHz, MHz, or kHz to indicate the intended units.

Worst Case Allowable Delay (MAXDELAY)

Syntax for maximum delay is as follows.

TS =MAXDELAY FROM: :TO:

Syntax for maximum delay using a through point is as follows.

TS =MAXDELAY FROM: THRU THRU

:TO:

where

identifier is an ASCII string made up of the characters A...Z, a...z, 0...9.

source_group and dest_group are user-defined or predefined groups.

thru_point is an intermediate point used to qualify the path, defined using a TPTHRU attribute.

allowable_delay is the timing requirement.

units is an optional field to indicate the units for the allowable delay.

Linked Specifications

This allows you to link the timing number used in one specification to another specification in terms of fractions or

multiples.

Note: Circular links are not allowed.

Syntax is as follows.

TS =FROM: :TO: / *

 135 - libguide

where

identifier is an ASCII string made up of the characters A...Z, a...z, 0...9.

source_group and dest_group are user-defined or predefined groups.

another_Tsid is a the name of another timespec.

number is a floating point number.

Defining Priority for Equivalent Level Specifications

A conflict between two specifications at the same level of priority can be resolved by defining their priority. You can do

this by adding the following text to each of the conflicting specifications.

PRIORITY

where

normal_timespec_syntax is the timing specification.

integer represents the priority. The smaller the number, the higher the priority.

Ignoring Paths

Paths exercising a certain net can be ignored because from a timing specification point of view, all paths through a net,

instance, or instance pin may not be important.

Syntax is as follows.

TIG=TS

where identifier is the timing specification name of the specific timespec for which any paths through the tagged object

should be ignored. The attribute can be attached to a net, macro pin or primitive pin. Paths that fan forward from the

attribute's point of application are treated as if they don't exist from the viewpoint of timing analysis against the timing

specification.

Examples

The following attribute would be attached to a net to inform the timing analysis tools that it should ignore paths through

the net for specification TS43.

The following attribute would be created in a UCF file to inform the timing analysis tools that it should ignore paths

through the net $1I567/sometimes_slow for specification TS_fast and TS_really_fast.

Ignoring Paths Through Primitives

The tracing rules for how PAR's timing analysis handles the traversal of primitives are the same as those used for user

driven timing analysis. If a user wishes to override the default behavior for an element, the element can be tagged with

an override attribute in the PCF file. For more information, see the "Ignoring Selected Paths (TIG)" section in the

Development System Reference Guide.

Defining a Clock Period

A clock period specification is used to define to the timing analysis tools the allowable time for paths between elements

clocked by the flagged clock signal.

Note: The definition of a clock period is different from a FROM:TO style specification, because the timing

analysis tools will automatically take into account any inversions of the clock signal at register clock

 136 - libguide

pins.

There are two methods for specifying clock periods.

1. The quick, convenient way to define the clock period for registers attached to a particular clock net is to attach the

following parameter directly to a net in the path that drives the register clock pin(s).

PERIOD= HIGH LOW

where

period is the required clock period.

units is an optional field to indicate the units for the clock period. The default units are nanoseconds, but the

timing number can be followed by ps, ns, us, or ms to indicate the intended units.

HIGH or LOW can be optionally specified to indicate whether the first pulse is to be High or

Low.

high_or_low_time is the optional High or Low time depending on the preceding keyword. If an actual time is

specified it must be less than the period. If no High or Low time is specified the default duty cycle is

50%.

hi_lo_units is an optional field to indicate the units for the duty cycle. The default is nanoseconds (ns), but the

High or Low time number can be followed by ps, us, ms, or % if the High or Low time is an actual time

measurement.

The PERIOD constraint is forward-traced in exactly the same fashion as a TNM would be and attaches itself to all

of the flip-flops that the forward tracing reaches. There are no rules about not tracing through certain elements. If

you need a more complex form of tracing behavior, for example, where gated clocks are used in the design, you

must place the PERIOD on a particular net, or use the preferred method as described in the following

paragraphs.

2. The preferred method for defining a clock period allows more complex derivative relationships to be defined as

well as a simple clock period. The following attribute is attached to a TIMESPEC symbol in conjunction with a

TNM attribute attached to the relevant clock net.

TS =PERIOD HIGH LOW

where

identifier is a reference identifier that has a unique name.

TNM_reference is the identifier name that is attached to a clock net (or a net in the clock path) using a TNM

attribute.

period is the required clock period.

units is an optional field to indicate the units for the clock period. Default units are nanoseconds, but the timing

number can be followed by ps, ns, us, or ms to indicate the intended units.

HIGH or LOW can be optionally specified to indicate whether the first pulse is to be High or

Low.

high_or_low_time is the optional High or Low time depending on the preceding keyword. If an actual time is

specified it must be less than the period. If no High or Low time is specified, the default duty cycle is 50

 137 - libguide

percent.

hi_lo_units is an optional field to indicate the units for the duty cycle. The default is ns, but the High or Low time

number can be followed by ps, ns, us, ms, or % if the High or Low time is an actual time

measurement.

Example

Clock net sys_clk has the attribute tnm=master_clk attached to it and the following attribute is attached to a

TIMESPEC primitive.

Specifying Derived Clocks

The preferred method of defining a clock period uses an identifier, allowing another clock period specification to

reference it. To define the relationship in the case of a derived clock, use the following

syntax.

TS =PERIOD HIGH LOW

where

identifier is a reference identifier that has a unique name.

TNM_reference is the identifier name that is attached to a clock net or a net in the clock path using a TNM

attribute.

another_PERIOD_identifier is a the name of the identifier used on another period specification.

number is a floating point number.

HIGH or LOW can be optionally specified to indicate whether the first pulse is to be High or

Low.

high_or_low_time is the optional High or Low time. This must be less than the period, depending on the preceding

keyword. The default duty cycle is 50 percent.

hi_lo_units is an optional field to indicate the units for the duty cycle. The default is nanoseconds (ns), but the High or

Low time number can be followed by ps, us, ms, or % if the High or Low time is an actual time

measurement.

Example

Clock net sub_clk has the attribute tnm=slave_clk attached to it and the following attribute is attached to a TIMESPEC

primitive.

Controlling Net Skew

You can control the maximum allowable skew on a net by attaching the MAXSKEW attribute directly to the net. Syntax

is as follows.

MAXSKEW=

where

allowable_skew is the timing requirement.

units is an optional field to indicate the units for the allowable delay. Default units are nanoseconds, but the timing

number can be followed by ps, ns, us, ms, GHz, MHz, or kHz to indicate the intended units.

 138 - libguide

Controlling Net Delay

You can control the maximum allowable delay on a net by attaching the MAXDELAY attribute directly to the net.

Syntax is as follows.

MAXDELAY=

where

allowable_delay is the timing requirement.

units is an optional field to indicate the units for the allowable delay. Default units are nanoseconds, but the timing

number can be followed by ps, ns, us, ms, GHz, MHz, or kHz to indicate the intended units.

Physical Constraints
Note: The information in this section applies only to FPGA families.

When a design is mapped, the logical constraints found in the netlist and the UCF file are translated into physical

constraints; that is, constraints that apply to a specific architecture. These constraints are found in a mapper-generated

file called the Physical Constraints File (PCF). The file contains two sections, the schematic section and the user section.

The schematic section contains the physical constraints based on the logical constraints found in the netlist and the UCF

file. The user section can be used to add any physical constraints.

PCF File Syntax
The structure of the PCF file is as follows.

You should put all user-entered physical constraints after the "schematic end" statement.

Note: Do not edit the schematic constraints. They are overwritten every time the mapper generates a new PCF

file.

Global constraints need not be attached to any object but should be entered in a constraints file.

The end of each constraint statement must be indicated with a semi-colon.

Note: In all of the constraints files (NCF, UCF, and PCF), instance or variable names that match internal reserved

words will be rejected unless the names are enclosed in double quotes. It is good practice to enclose all

names in double quotes. For example, the following entry would not be accepted because the word net is a

reserved word.

Following is the recommended way to enter the constraint.

or

Syntax Descriptions

 139 - libguide

A description of each legal physical constraint follows.

Note: Although this section describes the constraint's syntax for the PCF file, it is preferable to place any

user-generated constraint in the UCF file  not in an NCF or PCF file.

COMPGRP
Description

Identifies a group of components.

Syntax

COMPGRP EXCEPT ;

where

comp_item is one of the following,

• COMPONENT "comp_name"

• COMPGRP "group_name"

FREQUENCY
Description

Identifies the minimum operating frequency for all input pads and sequential output to sequential input pins clocked by

the specified net. If no net name is given, the constraint applies to all clock nets in the design that do not have a specific

clock frequency constraint.

Syntax

TS =FREQUENCY ;

FREQUENCY= ;

where

frequency_item is one of the following,

• NET "net_name"

• TIMEGRP "group_name"

• ALLCLOCKNETS

frequency_value is one of the following,

• frequency_number units

• units can be GHz, MHz, or kHz (gigahertz, megahertz, or kilohertz)

• TSidentifier [{/ |*} real_number]

INREG
Description

Forces the placement of a flip-flop or latch close to the IOB so that the two elements can be connected using fast routes.

 140 - libguide

Because XC5200 IOBs do not have flip-flops or latches, you can apply this attribute to meet fast setup timing

requirements if a flip-flop or latch is driven by an IOB.

Syntax

NET " " INREG ;

where net_name is the name of the net that connects the IOB to the INREG instance.

LOCATE
Description

Specifies a single location, multiple single locations, or a location range.

Syntax

Single or multiple single locations

COMP " " LOCATE= SOFT LEVEL ;

COMPGRP " " LOCATE= SOFT LEVEL ;

MACRO " " LOCATE= SOFT LEVEL ;

Range of locations

COMP " " LOCATE= SOFT SITE : SITE " " LEVEL

COMPGRP " " LOCATE= SOFT SITE " " : SITE " " LEVEL

MACRO " " LOCATE= SOFT SITE " " : SITE " " LEVEL

where

site_name is a component site (that is, a CLB or IOB location).

site_item is one of the following,

• SITE "site_name"

• SITEGRP "site_group_name"

n is 0, 1, 2, 3, or 4.

LOCK
Description

Locks a net that has been previously placed or routed (that is, cannot be unplaced, unrouted, moved, swapped, or

deleted). Can also be used to lock all nets.

Syntax

A specific net

LOCK;

All nets

ROUTING LOCK;

 141 - libguide

MAXDELAY
Description

Identifies a maximum total delay for a net or path in the design. If a net is specified, the maximum delay constraint

applies to all driver-to-load connections on the net. If a path is specified, the delay value is the constraint for the path

including net and component delays.

Syntax

TS =MAXDELA PRIORITY ;

MAXDELAY= PRIORITY ;

MAXDELAY= PRIORITY ;

where

path is one of the following,

• PATH "path_name"

• ALLPATHS

• FROM group_item THRU group_item1... group_itemn

• FROM group_item THRU group_item1... group_itemn TO group_item

• THRU group_item1... group_itemn TO group_item.

path_value is one of the following:

• delay_time [units]

• units defaults to nanoseconds, but the delay time number can be followed by ps, ns, us, or ms (picoseconds,

nanoseconds, microseconds, or milliseconds) to specify the units

• frequency units

• units can be specified as GHz, MHz, or kHz (gigahertz, megahertz, or kilohertz)

• TSidentifier [{/ |*} real_number]

net_delay_item is one of the following:

• NET "net_name"

• TIMEGRP "group_name"

• ALLCLOCKNETS

MAXSKEW
Description

Specifies a maximum signal skew between a driver and loads on a specified clock signal. Skew is the difference between

minimum and maximum load delays on a clock net. If no signal is specified, this constraint applies to all signals which

have clock pins as loads and do not have a specified skew constraint.

 142 - libguide

Syntax

MAXSKEW= ;

where

skew_item is one of the following,

• NET "net_name"

• TIMEGRP "group_name"

• ALLCLOCKNETS

units defaults to nanoseconds, but the timing number can be followed by ps, ns, us, or ms (picoseconds, nanoseconds,

microseconds, or milliseconds) to indicate the intended units.

OFFSET
Description

Specifies the timing relationship between an external clock and its associated data-in- or

data-out-pin.

Can be used on a group of one or more data components or pads.

The OFFSET constraint can be a "global" constraint that applies to all data pad nets in the design for the specified clock.

When the NET "name" specifier is used, the constraint is associated with a single net. When the TIMEGRP "group"

specifier is used, the constraint is associated with a group of data pad nets.

Optionally, except for CPLDs, a time group qualifier, TIMEGRP "reggroup," can be added to any OFFSET constraint to

indicate that the offset applies only to registers specified in the qualifying group. When used with the "Group method,"

the "register time" group indicates to which design registers clocked by the clock IOB the offset

applies.

Syntax

Global method

OFFSET= IN OUT BEFORE AFTER NET " " TIMEGRP " "

Single net method

NET " " OFFSET= IN OUT BEFORE AFTER NET " " TIMEGRP

" " ;

Group method

TIMEGRP " " OFFSET= IN OUT BEFORE AFTER NET " "

TIMEGRP " " ;

where

group is the name of a time group containing IOB components or PAD bels.

offset_time is the external offset.

units defaults to nanoseconds, but the timing number can be followed by ps, ns, us, or ms (picoseconds, nanoseconds,

microseconds, or milliseconds) to indicate the intended units.

clk_iob_name is the block name of the clock IOB.

 143 - libguide

reggroup is a previously defined time group of register BELs. Only registers in the time group clocked by the specified

IOB component is checked against the specified offset time.

OUTREG
Description

Forces the placement of a flip-flop or latch close to the IOB so that the two elements can be connected using fast routes.

Because XC5200 IOBs do not have flip-flops or latches, you can apply this attribute to meet fast setup timing

requirements if a flip-flop or latch is driving an IOB.

Syntax

NET OUTREG;

where net_name is the name of the net that connects the IOB to the OUTREG instance.

PATH
Description

Assigns a path specification to a path.

Syntax

PATH ;

where

path_spec is one of the following,

• FROM group_item THRU group_item1... group_itemn

• FROM group_item THRU group_item1... group_itemn TO group_item

• THRU group_item1... group_itemn TO group_item.

group_item is one of the following,

• PIN "pin_name"

• NET "net_name"

• COMP "comp_name"

• MACRO "macro_name"

• TIMEGRP "group_name"

• BEL "instance_name"

BEL instance_name is the instance name of a basic element. Basic elements are the building blocks that make up a

CLB function generators, flip-flops, carry logic, and RAMs.

PENALIZE TILDE
Description

Penalizes those delays that are reported as only approximate (signified with a tilde (~) in delay reports) by a

user-specified percentage. When the penalize tilde constraint is applied to an approximate delay, the delay will be

 144 - libguide

penalized by the designated percentage in subsequent timing checks. Default for percent value is

zero.

Syntax

PENALIZE TILDE=

PERIOD
Description

Assigns a timing period to a timing specification.

Syntax

TS =PERIOD LOW HIGH ;

PERIOD= LOW HIGH ;

where

period_item is one of the following,

• NET "net_name"

• TIMEGRP "group_name"

• ALLCLOCKNETS

period_value is one of the following,

• time [units]

• units defaults to nanoseconds, but the timing number can be followed by ps, ns, us, or ms (picoseconds,

nanoseconds, microseconds, or milliseconds) to indicate the intended units.

• TS identifier [{/ | *} real_number]

HIGH or LOW can be optionally specified to indicate whether the first pulse is to be High or

Low.

high_or_low_time is the optional High or Low time, depending on the preceding keyword. If an actual time is specified,

it must be less than the period. If no High or Low time is specified, the default duty cycle is 50

percent.

hi_lo_units is an optional field to indicate the units for the duty cycle. The default is nanoseconds (ns), but the High or

Low time number can be followed by ps, us, ms, or % if the High or Low time is an actual time

measurement.

PIN
Description

Identifies a specific pin.

Syntax

PIN ;

where

 145 - libguide

pin_spec is one of the following,

• NET "net_name" BEL "instance_name"

• NET "net_name" COMP "comp_name"

• COMP "comp_name" NET "net_name"

• NET "net_name" MACRO "macro_name"

• MACRO "macro_name" NET "net_name"

• BEL "instance_name" NET "net_name"

BEL instance_name is the instance name of a basic element. Basic elements are the building blocks that make up a

CLB function generators, flip-flops, carry logic, and RAMs.

PRIORITIZE
Description

Assigns a weighted importance to a net or bus. Values range from 0 through 100, with 100 being the highest priority and

0 the lowest. The default is 3. Any net with a priority of 3 is not considered critical; no constraint will be generated. The

prioritize constraint is used by PAR, which assigns longlines by net priority and routes higher-priority nets before

routing lower-priority nets. The prioritize constraint is also used by BITGEN to determine which nets not to use for

tiedown. A net with a priority greater than 3 will only be used for tiedown as a last resort.

Syntax

NET PRIORITIZE=

PROHIBIT
Description

Disallows the use of a site or multiple sites within PAR, EPIC, and the CPLD fitter.

Syntax

Single or multiple single locations

PROHIBIT= ;

PROHIBIT= , ;

Range of locations

PROHIBIT= : ;

where

site_group is one of the following,

• SITE "site_name"

• SITEGRP "site_group_name"

site_name must be a valid site for the targeted device. (For example, CLB_R1C1.FFX is not a valid site for the

XC4000X or SpartanXL.)

 146 - libguide

Note: CPLDs do not support the "Range of locations" form of PROHIBIT.

SITEGRP
Description

Identifies a group of sites.

Syntax

SITEGRP ; EXCEPT ;

where

site_group is one of the following,

• SITE "site_name"

• SITEGRP "site_group_name"

site_name must be a valid site for the targeted device. (For example, CLB_R1C1.FFX is not a valid site for the

XC4000X or SpartanXL.)

TEMPERATURE
Description

Allows the specification of the operating temperature.

Note: Each architecture has its own specific range of valid operating temperatures. If the entered temperature does

not fall within the supported range, the constraint is ignored and an architecture-specific default value is

used instead.

Syntax

TEMPERATURE= C F K

where

value is an integer or a real number specifying the temperature.

C, K, and F are the temperature units. F is degrees Fahrenheit, K is degrees Kelvin, and C is degrees Celsius, the

default.

TIMEGRP (Timing Group)
Description

Defines objects that are to be treated as a group for timing considerations.You can refer to a group of flip-flops, input

latches, pads, or RAMs by using the corresponding keywords.

Keyword Description

FFS CLB or IOB flip-flops only; not flip-flops built from

function generators

LATCHES CLB or IOB latches only; not latches built from function

 147 - libguide

generators

PADS Input/output pads

RAMS For architectures with RAMS

Syntax

TIMEGRP EXCEPT

;

where

qualifier is RISING or FALLING.

group_spec is one of the following,

• PIN "pin_name"

• NET "net_name"

• BEL "instance_name"

• COMP "comp_name"

• MACRO "macro_name"

• TIMEGRP "group_name"

• FFS ["pattern"]

• LATCHES ["pattern"]

• RAMS ["pattern"]

• PADS ["pattern"]

BEL instance_name is the instance name of a basic element. Basic elements are the building blocks that make up a

CLB function generators, flip-flops, carry logic, and RAMs.

This example shows you one way to use the TIMEGRP attribute. If you have some outputs that can be slower than

others, you can create timespecs similar to those shown below for output signals obc_data(7:0) and

ingr_irq_n.

First create the Timegroups.

Then apply a timing spec to the Timegroups.

TIG (Timing Ignore)
Description

Identifies paths that can be ignored for timing purposes.

 148 - libguide

Syntax

=TS TS ;

where

ignore_item is one of the following,

• PIN "pin_name"

• NET "net_name"

• COMP "comp_name"

• MACRO "macro_name"

• PATH "path_name"

• BEL "instance_name"

• FROM group_item THRU group_item1... group_itemn

• FROM group_item THRU group_item1... group_itemnTO group_item

• THRU group_item... group_itemn TO group_item }

BEL instance_name is the instance name of a basic element. Basic elements are the building blocks that make up a

CLB function generators, flip-flops, carry logic, and RAMs.

For a detailed description of TIG, see the "Entering Timing Specifications" section in the Development System

Reference Guide.

TSidentifier
Description

Assigns a timing period or frequency to a timing specification.

Syntax

Period

=PERIOD LOW HIGH ;

PERIOD= LOW HIGH ;

where

period_item is one of the following,

• NET "net_name"

• TIMEGRP "group_name"

• ALLCLOCKNETS

period_value is one of the following,

• time [units]

• units defaults to nanoseconds, but the timing number can be followed by ps, ns, us, or ms (picoseconds,

 149 - libguide

nanoseconds, microseconds, or milliseconds) to indicate the intended units.

• TS identifier [{/ | *} real_number]

HIGH or LOW can be optionally specified to indicate whether the first pulse is to be High or

Low.

high_or_low_time is the optional High or Low time, depending on the preceding keyword. If an actual time is specified,

it must be less than the period. If no High or Low time is specified, the default duty cycle is 50

percent.

hi_lo_units is an optional field to indicate the units for the duty cycle. The default is nanoseconds (ns), but the High or

Low time number can be followed by ps, us, ms, or % if the High or Low time is an actual time

measurement.

Frequency

TS =FREQUENCY ;

FREQUENCY= ;

where

frequency_item is one of the following,

• NET "net_name"

• TIMEGRP "group_name"

• ALLCLOCKNETS

frequency_value is one of the following,

• frequency_number units

• units can be GHz, MHz, or kHz (gigahertz, megahertz, or kilohertz)

• TSidentifier [{/ |*} real_number]

VOLTAGE
Description

Allows the specification of the operating voltage. This provides a means of prorating delay characteristics based on the

specified voltage.

Note: Each architecture has its own specific range of supported voltages. If the entered voltage does not fall within

the supported range, the constraint is ignored and an architecture-specific default value is used

instead.

Syntax

VOLTAGE= V

where

value is an integer or real number specifying the voltage.

V specifies volts, the default voltage unit.

 150 - libguide

Relationally Placed Macros (RPMs)
The Xilinx libraries contain three types of elements.

• Primitives are basic logical elements such as AND2 and OR2 gates

• Soft macros are schematics made by combining primitives and sometimes other soft macros

• Relationally placed macros (RPMs) are soft macros that contain relative location constraint (RLOC) information,

carry logic symbols, and FMAP/HMAP symbols, where appropriate

The last item mentioned above, RPMs, applies only to FPGA families.

The relationally placed macro (RPM) library uses RLOC constraints to define the order and structure of the underlying

design primitives. Because these macros are built upon standard schematic parts, they do not have to be translated before

simulation. The components that are implemented as RPMs are listed in the "Relationally Placed Macros" section of

the "Selection Guide" chapter.

Designs created with RPMs can be functionally simulated. RPMs can, but need not, include all the following

elements.

• FMAPs, HMAPs, and CLB-grouping attributes to control mapping. FMAPs and HMAPs have pin-lock attributes,

which allow better control over routing. FMAPs and HMAPs are described in the "Mapping Constraint

Examples" section.

• Relative location (RLOC) constraints to provide placement structure. They allow positioning of elements relative to

each other. They are discussed in the "Benefits and Limitations of RLOC Constraints" section.

• Carry logic primitive symbols. Carry logic is discussed in the "Carry Logic in XC4000 and Spartans" section.

The RPM library offers the functionality and precision of the hard macro library with added flexibility. You can

optimize RPMs and merge other logic within them. The elements in the RPM library allow you to access carry logic

easily and to control mapping and block placement. Because RPMs are a superset of ordinary macros, you can design

them in the normal design entry environment. They can include any primitive logic. The macro logic is fully visible to

you and can be easily back-annotated with timing information.

Carry Logic in XC4000 and Spartans
In the XC4000 and Spartans, the CLB contains a feature called dedicated carry logic. This carry logic is independent of

the function generators, although it shares some of the same input pins. Dedicated interconnect propagates carry signals

through a column of CLBs.

This section describes the use of carry logic in XC4000 and Spartan series CLBs and lists all the carry logic

configuration mnemonics available.

Carry Logic Overview
The carry chain in XC4000E devices can run either up or down. At the top and bottom of columns where there are no

CLBs above and below, the carry is propagated to the right as shown in the figure below.

Figure 12-16Available XC4000E Carry Propagation Paths

 151 - libguide

In XC4000X, Spartan, and SpartanXL devices the carry chain travels upward only. Standard interconnect can be used to

route a signal in the downward direction. See the figure below.

Figure 12-17Available XC4000X, Spartan, and SpartanXL Carry Propagation Paths (dotted lines use

general interconnect)

 152 - libguide

The CY4_43 carry mode component (Force-G4) forces the signal on the G4 pin to pass through to the COUT pin. This

component is available only for XC4000X and SpartanXL devices.

Carry logic in each CLB can implement approximately 40 different functions, which you can use to build faster and

more efficient adders, subtracters, counters, comparators, and so forth. The "XC4000 and Spartans Carry Logic"

figure shows the carry logic in an XC4000 or Spartan series CLB.

Figure 12-18XC4000 and Spartans Carry Logic

 153 - libguide

Carry Logic Primitives and Symbols
The schematic capture libraries that Xilinx supports contain one generic carry logic primitive and several specific carry

mode primitive symbols. The generic carry logic primitive represents the complete carry logic in a single CLB and is

shown in the "Representative Carry Logic Symbol" figure.

Figure 12-19Representative Carry Logic Symbol

 154 - libguide

The carry mode primitive symbols represent unique carry modes, such as ADD-FG-CI. The "Carry Modes" table lists

the carry mode names and symbols.

To specify the particular mode that you wish, connect a carry mode symbol to the C0-C7 mode pins of the carry logic

symbol. It is the pair of symbols that defines the specific kind of carry logic desired.

A carry logic symbol requires you to place either a LOC or an RLOC constraint on it. If a LOC constraint is used, it must

be a single LOC= constraint; it cannot be an area or prohibit LOC constraint or use wildcards in its

syntax.

Table 12-13Carry Modes

Carry Mode Name Symbol

ADD-F-CI cy4_01

ADD-FG-CI cy4_02

ADD-G-F1 cy4_03

ADD-G-CI cy4_04

ADD-G-F3- cy4_05

ADDSUB-F-CI cy4_12

ADDSUB-FG-CI cy4_13

ADDSUB-G-CI cy4_15

ADDSUB-G-F1 cy4_14

ADDSUB-G-F3- cy4_16

FORCE-0 cy4_37

FORCE-1 cy4_38

FORCE-CI cy4_40

FORCE-F1 cy4_39

FORCE-F3- cy4_41

 155 - libguide

FORCE-G4 cy4_43*

EXAMINE-CI cy4_42

DEC-F-CI cy4_24

DEC-FG-0 cy4_26

DEC-FG-CI cy4_25

DEC-G-0 cy4_27

DEC-G-CI cy4_29

DEC-G-F1 cy4_28

DEC-G-F3- cy4_30

INC-F-CI cy4_17

INC-FG-1 cy4_19

INC-FG-CI cy4_18

INC-G-1 cy4_20

INC-G-CI cy4_22

INC-G-F1 cy4_21

INC-G-F3- cy4_23

SUB-F-CI cy4_06

SUB-FG-CI cy4_07

SUB-G-1 cy4_08

SUB-G-CI cy4_09

SUB-G-F1 cy4_10

SUB-G-F3- cy4_11

INCDEC-F-CI cy4_31

INCDEC-FG-1 cy4_33

INCDEC-FG-CI cy4_32

INCDEC-G-0 cy4_34

INCDEC-G-CI cy4_36

INCDEC-G-F1 cy4_35

*Available only for XC4000X and SpartanXL devices

Carry Logic Handling

 156 - libguide

The mapper checks for legal connections between carry logic symbols and also performs simple trimming on some carry

modes. CY4 symbols might be trimmed as follows.

• If neither the COUT0 pin nor the COUT pin is used, the CY4 symbol is removed from the design. However, if the

signal on the CIN pin connects to other logic, the mapper converts the CY4 to the EXAMINE-CI mode. An

EXAMINE-CI mode CY4 is trimmed only if there is no other load on the signal on the CIN pin.

• If the specified mode does not require any of the A0, B0, A1, B1, and/or ADD CY4 inputs, signals are removed

from these pins, which may save routing resources.

Carry Mode Configuration Mnemonics
The first step in configuring a CLB for carry logic is to choose the appropriate carry mode configuration mnemonic.

Each of the 43 possible configurations of the carry logic has been assigned a three-part mnemonic code, for

example:

• The first field (ADD) describes the operation performed in the CLB function generators, in this case, a binary

addition. By implication, the carry logic in this CLB calculates the carry for this

addition.

• The second field (FG) indicates which of the two function generators is used in the specified operation, in this case,

both F and G.

• The last field (CI) specifies the source of the carry-in signal to the CLB, in this case, the CIN pin

itself.

Consider another example:

This mnemonic describes a CLB in which the G function generator performs an increment/decrement function. The

carry-in to this CLB is sourced by the F1 pin.

All available carry mode configuration mnemonics are listed in the next section, the "Carry Logic Configurations"

section.

To determine which carry mode primitive corresponds to which mnemonic, see the "Carry Modes" table .

Carry Logic Configurations
This section lists and describes all the available carry mode configuration mnemonics. The following information is

given for each mnemonic.

• The name of the mode mnemonic.

• A brief description of the CLB function.

• The COUT0 and COUT equations performed by the carry logic.

• Default equations for the F and G function generators.

• Default assignments for the F4, G2, and G3 inputs.

The default F and G functions and default F4, G2, and G3 inputs are based on the generic CLB function described. You

can change these defaults as required, allowing for features such as parallel enable or synchronous reset. However, if

these defaults are changed, the CLB may no longer function as the mnemonic describes.

 157 - libguide

The COUT0 and COUT equations are absolutely determined by the carry mode configuration mnemonic. The only way

to change these carry logic outputs is by selecting a different mnemonic.

ADD-F-CI

The ADD-F-CI configuration performs a 1-bit addition of A+B in the F function generator, with the A and B inputs on

the F1 and F2 pins. The carry signal enters on the CIN pin, propagates through the F carry logic, and exits on the COUT

pin. This configuration can be used as the MSB of an adder, with the G function generator accessing the carry-out signal

or calculating a twos-complement overflow.

F=(F1@F2)@F4

COUT0=(F1*F2) + CIN*(F1+F2)

G=

COUT=COUT0

F4=CIN

G2=G2I (COUT0 for overflow, OFL=G2@G3, or for carry-out, CO=G2)

G3=G3I (CIN for overflow, OFL=G2@G3)

ADD-FG-CI

The ADD-FG-CI configuration performs a 2-bit addition of A+B in both the F and G function generators, with the

lower-order A and B inputs on the F1 and F2 pins, and the higher-order A and B inputs on the G1 and G4 pins. The

carry signal enters on the CIN pin, propagates through the F and G carry logic, and exits on the COUT pin. This

configuration comprises the middle bits of an adder.

F=(F1@F2)@F4

COUT0=(F1*F2) + CIN*(F1+F2)

G=(G4@G1)@G2

COUT=(G4*G1) + COUT0*(G4+G1)

F4=CIN

G2=COUT0

G3=G3I

ADD-G-F1

The ADD-G-F1 configuration performs a 1-bit addition of A+B in the G function generator, with the A and B inputs on

the G1 and G4 pins. The carry signal enters on the F1 pin, propagates through the G carry logic, and exits on the COUT

pin. This configuration comprises the LSB of an adder, where the carry-in signal is routed to F1. The F function

generator is not used.

F=

COUT0=F1

G=(G4@G1)@G2

COUT=(G4*G1) + COUT0*(G4+G1)

F4=F4I

G2=COUT0

 158 - libguide

G3=G3I

ADD-G-CI

The ADD-G-CI configuration performs a 1-bit addition of A+B in the G function generator, with the A and B inputs on

the G1 and G4 pins. The carry signal enters on the CIN pin, propagates through the G carry logic, and exits on the

COUT pin. This configuration is for the middle bit of an adder, where the F function generator is reserved for another

purpose.

F=

COUT0=CIN

G=(G4@G1)@G2

COUT=(G4*G1) + COUT0*(G4+G1)

F4=F4I

G2=COUT0

G3=G3I

ADD-G-F3-

The ADD-G-F3- configuration performs a 1-bit addition of A+B in the G function generator, with the A and B inputs on

the G1 and G4 pins. The carry signal enters on the F3 pin, is inverted by the F carry logic, propagates through the G

carry logic, and exits on the COUT pin. This configuration comprises the LSB of an adder, where the inverted carry-in

signal is routed to F3. The F function generator is not used.

F=

COUT0=~F3

G=(G4@G1)@G2

COUT=(G4*G1) + COUT0*(G4+G1)

F4=F4I

G2=COUT0

G3=G3I

SUB-F-CI

The SUB-F-CI configuration performs a 1-bit twos-complement subtraction of A-B in the F function generator, with the

A input on F1 and the B input on F2. The carry signal enters on the CIN pin, propagates through the F carry logic, and

exits on the COUT pin. This configuration can be used as the MSB of a subtracter, with the G function generator

accessing the carry-out signal or calculating a twos-complement overflow.

F=(F1@F2)@~F4=~(F1@F2@F4)

COUT0=(F1*~F2) + CIN*(F1+~F2)

G=

COUT=COUT0

F4=CIN

G2=G2I (COUT0 for overflow, OFL=G2@G3, or for carry-out, CO=G2)

G3=G3I (CIN for overflow, OFL=G2@G3)

 159 - libguide

SUB-FG-CI

The SUB-FG-CI configuration performs a 2-bit twos-complement subtraction of A-B in both the F and G function

generators. For the lower bit, the A input is on F1 and the B input is on F2. For the upper bit, the A input is on G4 and

the B input is on G1. The carry signal enters on the CIN pin, propagates through the F and G carry logic, and exits on the

COUT pin. This configuration comprises the middle bits of a subtracter.

F=(F1@F2)@~F4=~(F1@F2@F4)

COUT0=(F1*~F2) + CIN*(F1+~F2)

G=(G4@G1)@~G2=~(G4@G1@G2)

COUT=(G4*~G1) +COUT0*(G4+~G1)

F4=CIN

G2=COUT0

G3=G3I

SUB-G-1

The SUB-G-1 configuration performs a 1-bit twos-complement subtraction of A-B in the G function generator, with the

A input on G4 and the B input on G1. The carry-in is tied High (no borrow). The carry signal propagates through the G

carry logic and exits on the COUT pin. This configuration comprises the LSB of a subtracter with no carry-in. The F

function generator is not used.

F=

COUT0=1

G=(G4@G1)

COUT=(G4+~G1)

F4=F4I

G2=G2I

G3=G3I

SUB-G-CI

The SUB-G-CI configuration performs a 1-bit twos-complement subtraction of A-B in the G function generator, with

the A input on G4 and the B input on G1. The carry signal enters on the CIN pin, propagates through the G carry logic,

and exits on the COUT pin. This configuration is for the middle bit of a subtracter, where the F function generator is

reserved for another purpose.

F=

COUT0=CIN

G=(G4@G1)@~G2=~(G4@G1@G2)

COUT=(G4*~G1) + COUT0*(G4+~G1)

F4=F4I

G2=COUT0

G3=G3I

SUB-G-F1

 160 - libguide

The SUB-G-F1 configuration performs a 1-bit twos-complement subtraction of A-B in the G function generator, with

the A input on G4 and the B input on G1. The carry signal enters on the F1 pin, propagates through the G carry logic,

and exits on the COUT pin. This configuration comprises the LSB of a subtracter, where the carry-in signal is routed to

F1. The F function generator is not used.

F=

COUT0=F1

G=(G4@G1)@~G2=~(G4@G1@G2)

COUT=(G4*~G1) + COUT0*(G4+~G1)

F4=F4I

G2=COUT0

G3=G3I

SUB-G-F3-

The SUB-G-F3- configuration performs a 1-bit twos-complement subtraction of A-B in the G function generator, with

the A input on G4 and the B input on G1. The carry signal enters on the F3 pin, is inverted by the F carry logic,

propagates through the G carry logic, and exits on the COUT pin. This configuration comprises the LSB of a subtracter,

where the inverted carry-in signal is routed to F3. The F function generator is not used.

F=

COUT0=~F3

G=(G4@G1)@~G2=~(G4@G1@G2)

COUT=(G4*~G1) + COUT0*(G4+~G1)

F4=F4I

G2=COUT0

G3=G3I

ADDSUB-F-CI

The ADDSUB-F-CI configuration performs a 1-bit twos-complement add/subtract of A+B in the F function generator,

with the A input on F1 and the B input on F2. The carry signal enters on the CIN pin, propagates through the F carry

logic, and exits on the COUT pin. The F3 input indicates add (F3=1) or subtract (F3=0). This configuration can be used

as the MSB of an adder/subtracter, with the G function generator accessing the carry-out signal or calculating a

twos-complement overflow.

F=(F1@F2)@F4@~F3=~(F1@F2@F4@F3)

COUT0=F3*((F1*F2) + CIN*(F1+F2)) + ~F3*((F1*~F2) + CIN*(F1+~F2))

G=

COUT=COUT0

F4=CIN

G2=G2I (COUT0 for overflow, OFL=G2@G3, or for carry-out, CO=G2)

G3=G3I (CIN for overflow, OFL=G2@G3)

ADDSUB-FG-CI

 161 - libguide

The ADDSUB-FG-CI configuration performs a 2-bit twos- complement add/subtract of A+B in both the F and G

function generators. For the lower bit, the A input is on F1 and the B input is on F2. For the upper bit, the A input is on

G4 and the B input is on G1. The carry signal enters on the CIN pin, propagates through the F and G carry logic, and

exits on the COUT pin. The F3 and G3 inputs indicate add (F3=G3=1) or subtract (F3=G3=0): the add/subtract control

signal must be routed to both the F3 and G3 pins. This configuration comprises the middle bits of an

adder/subtracter.

F=(F1@F2)@F4@~F3=~(F1@F2@F4@F3)

COUT0=F3*((F1*F2) + CIN*(F1+F2)) + ~F3*((F1*~F2) + CIN*(F1+~F2))

G=(G4@G1)@G2@~G3=~(G4@G1@G2@G3)

COUT=F3*((G4*G1)+COUT0*(G4+G1))+~F3*((G4*~G1)+COUT0*(G4+~G1))

F4=CIN

G2=COUT0

G3=G3I

ADDSUB-G-CI

The ADDSUB-G-CI configuration performs a 1-bit twos-complement add/subtract of A+B in the G function generator,

with the A input on G4 and the B input on G1. The carry signal enters on the CIN pin, propagates through the G carry

logic, and exits on the COUT pin. The F3 and G3 inputs indicate add (F3=G3=1) or subtract (F3=G3=0): the

add/subtract control signal must be routed to both the F3 and G3 pins. This configuration is for the middle bit of an

adder/subtracter, where the F function generator is reserved for another purpose.

F=

COUT0=CIN

G=(G4@G1)@G2@~G3=~(G4@G1@G2@G3)

COUT=F3*((G4*G1)+COUT0*(G4+G1))+~F3*((G4*~G1)+COUT0*(G4+~G1))

F4=F4I

G2=COUT0

G3=G3I

ADDSUB-G-F1

The ADDSUB-G-F1 configuration performs a 1-bit twos-complement add/subtract of A+B in the G function generator,

with the A input on G4 and the B input on G1. The carry signal enters on the F1 pin, propagates through the G carry

logic, and exits on the COUT pin. The F3 and G3 inputs indicate add (F3=G3=1) or subtract (F3=G3=0): the

add/subtract control signal must be routed to both the F3 and G3 pins. This configuration comprises the LSB of an

adder/subtracter, where the carry-in signal is routed to F1. The F function generator is not

used.

F=

COUT0=F1

G=(G4@G1)@G2@~G3=~(G4@G1@G2@G3)

COUT=F3*((G4*G1)+COUT0*(G4+G1))+~F3*((G4*~G1)+COUT0*(G4+~G1))

F4=F4I

G2=COUT0

 162 - libguide

G3=G3I

ADDSUB-G-F3-

The ADDSUB-G-F3- configuration performs a 1-bit twos-complement add/subtract of A+B in the G function generator,

with the A input on G4 and the B input on G1. The carry signal enters on the F3 pin, is inverted by the F carry logic,

propagates through the G carry logic, and exits on the COUT pin. Because the F3 input also indicates add (F3=1) or

subtract (F3=0), the carry-in is always null (0 for add, 1 for subtract). This configuration comprises the LSB of an

adder/subtracter with no carry-in. The F function generator is not used.

F=

COUT0=~F3

G=(G4@G1)

COUT=F3*G4*G1 + ~F3(G4+~G1)

F4=F4I

G2=COUT0

G3=G3I

INC-F-CI

The INC-F-CI configuration performs a 1-bit increment in the F function generator, with the input on the F1 pin. The

carry signal enters on the CIN pin, propagates through the F carry logic, and exits on the COUT pin. The G function

generator can be used to output the terminal count of a counter.

F=(F1@F4)

COUT0=CIN*F1

G=

COUT=COUT0

F4=CIN

G2=G2I (COUT0 for terminal count, TC=G2)

G3=G31

INC-FG-1

The INC-FG-1 configuration performs a 2-bit increment in both the F and G function generator, with the lower-order A

input on the F1 pin and the higher-order A input on the G4 pin. The carry-in is tied High. The carry signal propagates

through the F and G carry logic and exits on the COUT pin. This configuration comprises the two least significant bits of

an incrementer that is always enabled.

F=~(F1)

COUT0=F1

G=G2@G4

COUT=COUT0*G4

F4=F4I or CIN

G2=COUT0

G3=G3I or CIN

 163 - libguide

INC-FG-CI

The INC-FG-CI configuration performs a 2-bit increment in both the F and G function generators, with the lower-order

input on the F1 pin and the higher-order input on the G4 pin. The carry signal enters on the CIN pin, propagates through

the F and G carry logic, and exits on the COUT pin. This configuration comprises the middle bits of an

incrementer.

F=(F1@F4)

COUT0=CIN*F1

G=(G4@G2)

COUT=COUT0*G4

F4=CIN

G2=COUT0

G3=G3I

INC-G-1

The INC-G-1 configuration performs a 1-bit increment in the G function generator, with the input on the G4 pin. The

carry-in is tied High. The carry signal propagates through the G carry logic and exits on the COUT pin. This

configuration comprises the LSB of an incrementer that is always enabled. The F function generator is not used. This

configuration is identical to DEC-G-0, since the LSB of an incrementer is identical to the LSB of a

decrementer.

F=

COUT0=0

G=~(G4)

COUT=G4

F4=F4I

G2=G2I

G3=G3I

INC-G-F1

The INC-G-F1 configuration performs a 1-bit increment in the G function generator, with the input on the G4 pin. The

carry signal enters on the F1 pin, propagates through the G carry logic, and exits on the COUT pin. This configuration

comprises the LSB of an incrementer where F1 is an active-High enable. The F function generator is not

used.

F=

COUT0=F1

G=(G4@G2)

COUT=COUT0*G4

F4=F4I

G2=COUT0

G3=G3I

 164 - libguide

INC-G-CI

The INC-G-CI configuration does a 1-bit increment in the G function generator, with the input on the G4 pin. The carry

signal enters on the CIN pin, propagates through the G carry logic, and exits on the COUT pin. This configuration is for

the middle bit of an incrementer where the F function generator is reserved for another

purpose.

F=

COUT0=CIN

G=(G4@G2)

COUT=COUT0*G4

F4=F4I

G2=COUT0

G3=G3I

INC-G-F3-

The INC-G-F3- configuration performs a 1-bit increment in the G function generator, with the input on the G4 pin. The

carry signal enters on the F3 pin, is inverted in the F carry logic, propagates through the G carry logic, and exits on the

COUT pin. This configuration comprises the LSB of an incrementer where F3 is an active-Low enable. The F function

generator is not used.

F=

COUT0=~F3

G=(G4@G2)

COUT=COUT0*G4=~F3*G4

F4=F4I

G2=COUT0

G3=G3I

DEC-F-CI

The DEC-F-CI configuration performs a 1-bit decrement in the F function generator, with the input on the F1 pin. The

carry signal enters on the CIN pin, propagates through the F carry logic, and exits on the COUT pin. The G function

generator can be used to output the terminal count of a counter.

F=~(F1@F4)

COUT0=F1+CIN*~F1

G=

COUT=COUT0

F4=CIN

G2=G2I (COUT0 for terminal count, TC=G2)

G3=G3I

DEC-FG-0

The DEC-FG-0 configuration performs a 2-bit decrement in both the F and G function generator, with the lower-order

 165 - libguide

input on the F1 pin and the higher order input on the G4 pin. The carry-in is tied Low. The carry signal propagates

through the F and G carry logic and exits on the COUT pin. This configuration comprises the two least significant bits of

a decrementer that is always enabled.

F=~(F1)

COUT0=F1

G=~(G4@G2)

COUT=COUT=(COUT0*~G4) + G4

F4=F4I

G2=COUT0

G3=G3I

DEC-FG-CI

The DEC-FG-CI configuration performs a 2-bit decrement in both the F and G function generators, with the lower-order

input on the F1 pin and the higher-order input on the G4 pin. The carry signal enters on the CIN pin, propagates through

the F and G carry logic, and exits on the COUT pin. This configuration comprises the middle bits of a

decrementer.

F=~(F1@F4)

COUT0=F1+CIN*~F1

G=~(G4@G2)

COUT=G4+COUT0*~G4

F4=CIN

G2=COUT0

G3=G3I

DEC-G-0

The DEC-G-0 configuration performs a 1-bit decrement in the G function generator, with the input on the G4 pin. The

carry-in is tied High (no borrow). The carry signal propagates through the G carry logic and exits on the COUT pin. This

configuration comprises the LSB of a decrementer that is always enabled. The F function generator is not used. This

configuration is identical to INC-G-1, since the LSB of an incrementer is identical to the LSB of a

decrementer.

F=

COUT0=0

G=~(G4)

COUT=G4

F4=F4I

G2=G2I

G3=G3I

DEC-G-CI

The DEC-G-CI configuration does a 1-bit decrement in the G function generator, with the input on the G4 pin. The carry

 166 - libguide

signal enters on the CIN pin, propagates through the G carry logic, and exits on the COUT pin. This configuration is for

the middle bit of a decrementer, where the F function generator is reserved for another

purpose.

F=

COUT0=CIN

G=~(G4@G2)

COUT=G4+COUT0*~G4

F4=F4I

G2=COUT0

G3=G3I

DEC-G-F1

The DEC-G-F1 configuration performs a 1-bit decrement in the G function generator, with the input on the G4 pin. The

carry signal enters on the F1 pin, propagates through the G carry logic, and exits on the COUT pin. This configuration

comprises the LSB of a decrementer where F1 is an active-Low enable. The F function generator is not

used.

F=

COUT0=F1

G=~(G4@G2)

COUT=COUT0 + G4

F4=F4I

G2=COUT0

G3=G3I

DEC-G-F3-

The DEC-G-F3- configuration performs a 1-bit decrement in the G function generator, with the input on the G4 pin. The

carry signal enters on the F3 pin, is inverted in the F carry logic, propagates through the G carry logic, and exits on the

COUT pin. This configuration comprises the LSB of a decrementer, where F3 is an active-High enable. The F function

generator is not used.

F=

COUT0=~F3

G=~(G4@G2)

COUT=COUT0 + G4

F4=F4I

G2=COUT0

G3=G3I

INCDEC-F-CI

The INCDEC-F-CI configuration performs a 1-bit increment/decrement in the F function generator, with the input on the

F1 pin. The carry signal enters on the CIN pin, propagates through the F carry logic, and exits on the COUT pin. The F3

 167 - libguide

input indicates increment (F3=1) or decrement (F3=0). The G function generator can be used to output the terminal

count of a counter.

F=(F1@F4)@~F3

COUT0=~F3*(F1+ CIN) + F3*F1*CIN

G=

COUT=COUT0

F4=CIN

G2=G2I (COUT0 for terminal count, TC=G2)

G3=G31

INCDEC-FG-1

The INCDEC-FG-1 configuration performs a 2-bit increment/decrement in both the F and G function generator, with the

lower- order input on the F1 pin and the higher-order input on the G4 pin. The F3 and G3 inputs indicate increment

(F3=G3=1) or decrement (F3=G3=0): the increment/decrement control signal must be routed to both the F3 and G3 pins.

The carry-in is always active (High in increment mode and Low in decrement mode). The carry signal propagates

through the F and G carry logic and exits on the COUT pin. This configuration comprises the two least significant bits of

an incrementer/decrementer that is always enabled.

F=~(F1)

COUT0=F1

G=(G2@G4)@~G3

COUT=COUT=~F3*((COUT0*~G4)+G4) + F3*(G4*COUT0)

F4=F4I

G2=COUT0

G3=G3I

INCDEC-FG-CI

The INCDEC-FG-CI configuration performs a 2-bit increment/decrement in both the F and G function generators, with

the lower-order input on the F1 pin and the higher-order input on the G4 pin. The carry signal enters on the CIN pin,

propagates through the F and G carry logic, and exits on the COUT pin. The F3 and G3 inputs indicate increment

(F3=G3=1) or decrement (F3=G3=0): the increment/decrement control signal must be routed to both the F3 and G3 pins.

This configuration comprises the middle bits of an incrementer/decrementer.

F=(F1@F4)@~F3

COUT0=~F3*(F1+ CIN) + F3*F1*CIN

G=(G4@G2)@~G3

COUT=~F3*(G4+ COUT0) + F3*G4*COUT0

F4=CIN

G2=COUT0

G3=G3I

INCDEC-G-0

 168 - libguide

The INCDEC-G-0 configuration performs a 1-bit increment/decrement in the G function generator, with the input on the

G4 pin. The carry-in is tied High. The carry signal propagates through the G carry logic and exits on the COUT pin. This

configuration comprises the LSB of an incrementer/decrementer that is always enabled. The F function generator is not

used. F3 is not required for increment/decrement control, since the LSB of an incrementer is identical to the LSB of a

decrementer; this configuration is identical to INC-G-1 and DEC-G-0.

F=

COUT0=0

G=~(G4)

COUT=G4

F4=F4I

G2=G2I

G3=G3I

INCDEC-G-CI

The INCDEC-G-CI configuration performs a 1-bit increment/decrement in the G function generator, with the input on

the G4 pin. The carry signal enters on the CIN pin, propagates through the G carry logic, and exits on the COUT pin.

The F3 and G3 inputs indicate increment (F3=G3=1) or decrement (F3=G3=0): the increment/decrement control signal

must be routed to both the F3 and G3 pins. This configuration is for the middle bit of an incrementer/decrementer, where

the F function generator is reserved for another purpose, although the F3 pin is used by the carry

logic.

F=

COUT0=CIN

G=(G4@G2)@~G3

COUT=~F3*(G4+ COUT0) + F3*G4*COUT0

F4=F4I

G2=COUT0

G3=G3I

INCDEC-G-F1

The INCDEC-G-F1 configuration performs a 1-bit increment/decrement in the G function generator, with the input on

the G4 pin. The carry signal enters on the F1 pin, propagates through the G carry logic, and exits on the COUT pin. This

configuration comprises the LSB of an incrementer/decrementer where the carry-in signal is routed to F1. The carry-in is

active-High for an increment operation and active-Low for a decrement operation. The F function generator is not used.

The F3 and G3 inputs indicate increment (F3=G3=1) or decrement (F3=G3=0): the increment/decrement control signal

must be routed to both the F3 and G3 pins.

F=

COUT0=F1

G=(G4@G2)@~G3

COUT=F3*(G4*COUT0) + ~F3*(G4+COUT0)

F4=F4I

G2=COUT0

 169 - libguide

G3=G3I

FORCE-0

The FORCE-0 configuration forces the carry-out signal on the COUT pin to be 0.

COUT0=0

COUT=0

FORCE-1

The FORCE-1 configuration forces the carry-out signal on the COUT pin to be 1.

COUT0=1

COUT=1

FORCE-CI

The FORCE-CI configuration forces the signal on the CIN pin to pass through to the COUT pin.

COUT0=CIN

COUT=COUT0=CIN

FORCE-F1

The FORCE-F1 configuration forces the signal on the F1 pin to pass through to the COUT pin.

COUT0=F1

COUT=COUT0=F1

FORCE-F3-

The FORCE-F3- configuration forces the signal on the F3 pin to pass inverted to the COUT pin.

COUT0=~F3

COUT=COUT0=~F3

FORCE-G4

The FORCE-G4 configuration forces the signal on the G4 pin to pass through to the COUT pin (XC4000X and

SpartanXL only).

COUT0=0

COUT=G4

EXAMINE-CI

The EXAMINE-CI configuration allows the carry signal on the CIN pin to be used in the F or G function generators.

This configuration forces the signal on the CIN pin to pass through to the COUT pin and is equivalent to the FORCE-CI

configuration. EXAMINE-CI is provided for CLBs in which the carry logic is unused but the CIN signal is

required.

COUT0=CIN

COUT=COUT0=CIN

 170 - libguide

Carry Logic in XC5200
The XC5200 CLB contains a dedicated carry logic feature. This enhances the performance of arithmetic functions such

as adders, subtracters, counters, comparators, and so forth. A carry multiplexer (CY_MUX) represents the dedicated 2:1

multiplexer in each logic cell. The multiplexer performs a 1-bit high speed carry propagate per logic cell (four bits per

CLB).

In addition to providing a high speed carry propagate function, each CY_MUX can be connected to the CY_MUX in the

adjacent logic cell to provide cascadable decode logic. The "XC5200 Carry Logic" figure illustrates how the

four-input function generators can be configured to take advantage of the four cascaded

CY_MUXes.

Note: AND and OR cascading are specific cases of a generic decode.

Figure 12-20XC5200 Carry Logic

 171 - libguide

 172 - libguide

XC5200 Carry Logic Library Support
The design entry library contains one carry logic primitive and one carry logic macro. The carry multiplexer primitive

(CY_MUX) represents the dedicated 2:1 multiplexer that performs the high speed carry propagate function. The carry

initialize (CY_INIT) macro is used to initialize the carry chain for all arithmetic functions. The CY_INIT is implemented

by forcing a zero onto the select line of the CY_MUX such that the DI pin of the CY_MUX is selected to drive the CO

pin. See the "Carry Initialize Function XC5200" figure .

Figure 12-21Carry Initialize Function XC5200

Note: The XC5200 library contains a set of RPMs designed to take advantage of the logic. Using the macros as

they are or modifying them makes it much easier to take advantage of this feature.

Cascade Function
Each CY_MUX can be connected to the CY_MUX in the adjacent logic cell to provide cascadable decode logic. The

"CY_MUX Used for Decoder Cascade Logic XC5200" figure illustrates how the 4-input function generators can be

configured to take advantage of these four cascaded CY_MUXes.

Note: AND and OR cascading are specific cases of a general decode. In AND cascading, all bits are decoded

equal to logic one. In OR cascading, all bits are decoded equal to logic zero. The flexibility of the LUT

achieves this result.

Figure 12-22CY_MUX Used for Decoder Cascade Logic XC5200

 173 - libguide

 174 - libguide

Carry Logic in Virtex
The Virtex CLB contains a dedicated carry logic feature. This enhances the performance of arithmetic functions such as

adders, subtracters, counters, comparators, and so forth. For detailed information on Carry Logic in Virtex, refer to the

Xilinx web site, http://www.xilinx.com.

 175 - libguide

