
Development System Reference Guide—May 1998 4-1

Chapter 4

Using Timing Constraints

The timing constraints described in this chapter are compatible with
the following families.

• XC3000A/L

• XC3100A/L

• XC4000E/L

• XC4000EX/XL/XLA/XV

• XC5200

• Virtex

• Spartan

• SpartanXL

This chapter describes how you specify timing constraints, and
contains the following sections.

• “Timing Requirements and Xilinx Software”

• “Entering Timing Specifications”

• “Specifying Groups”

• “Defining a Clock Period (PERIOD Constraint)”

• “OFFSET Timing Specifications”

• “Ignoring Selected Paths (TIG)”

• “Basic FROM –TO Syntax”

• “Specifying Timing Points”

• “Using TPTHRU or TPSYNC in a FROM–TO Constraint”

• “Specifying Time Delay in TS Attributes”

Development System Reference Guide

4-2 Xilinx Development System

• “Using the PRIORITY Keyword”

• “Sample Schematic Using TIMESPEC/TIMEGRP Symbol”

• “Prorating Constraints”

• “Additional Timing Constraints”

• “Constraints Priority”

• “Syntax Summary”

Timing Requirements and Xilinx Software
Xilinx software enables you to specify precise timing requirements
for your Xilinx FPGA designs. You can specify the timing
requirements for any nets or paths in your design. One way of
specifying path requirements is to first identify a set of paths by
identifying a group of start and end points. The start and end points
can be flip-flops, I/O pads, latches, or RAMs. You can then control
the worst-case timing on the set of paths by specifying a single delay
requirement for all paths in the set.

The primary method of specifying timing requirements is by entering
them on the schematic. However, you can also specify timing
requirements in constraints files (UCF and PCF). For detailed
information about the constraints you can use with your schematic-
entry software, refer to the “Attributes, Constraints, and Carry Logic”
chapter of the Libraries Guide.

Once you define timing specifications and then map the design, PAR
places and routes your design based on these requirements.

To analyze the results of your timing specifications, use TRACE
(Timing Report and Circuit Evaluator). Refer to the “TRACE” chapter
for more information.

Entering Timing Specifications
This section describes the basic methods for entering timing
specifications in a schematic or User Constraints File (UCF).

The following notes apply to Mentor Graphics users.

• The term attribute in this chapter is equivalent to property as used
in the Mentor Graphics environment.

Using Timing Constraints

Development System Reference Guide—May 1998 4-3

• The Mentor netlist writer (ENWRITE) converts all property
names to lowercase letters, and the Xilinx netlist reader
EDIF2NGD then converts the property names to uppercase
letters. Because property names are processed in this way, you
must enter variable text in certain constraints in upper case
letters only. This requirement is discussed in the following
sections.

• “Entering Timing Specifications in a Schematic”

• “Creating New Groups from Existing Groups”

Entering Timing Specifications in a Schematic
The TIMESPEC schematic primitive, as illustrated in the “TIMESPEC
Primitive” figure, serves as a placeholder for timing specifications,
which are called TS attribute definitions. Every TS attribute must be
defined in a TIMESPEC primitive, and only TIMESPEC primitives
can carry TS attribute definitions. Every TS attribute begins with the
letters ‘‘TS” and ends with a unique identifier that can consist of
letters, numbers, or the underscore character (_).

TS attribute definitions can be any length, but only 30 characters are
displayed in the TIMESPEC window. Each TIMESPEC primitive can
hold up to eight TS attributes. If you want to include more than eight
TS attributes, you can use multiple TIMESPEC primitives in your
schematic.

Figure 4-1 TIMESPEC Primitive

How you add a TIMESPEC primitive to your schematic depends on
your specific schematic-entry software. Refer to the appropriate
Xilinx Interface User Guide for step-by-step instructions.

X7430

TIMESPEC
TS01=FROM:FFS:TO:PADS:25

Development System Reference Guide

4-4 Xilinx Development System

A TS attribute defines the allowable delay for paths in your design.
The basic syntax for a TS attribute is as follows.

TSidentifier=FROMsource_group TO dest_group delay

TSidentifier is a unique name for the TS attribute, source_group and
dest_group are groups of start points and end points, and delay defines
the maximum delay for the paths between the start points and end
points. The delay parameter defines the maximum delay for the
attribute. Nanoseconds are the default units for specifying delay time
in TS attributes. You can also specify delay using other units, such as
picoseconds or megahertz.

Note: Keywords, such as FROM, TO, and TS appear in the
documentation in upper case; however, you can enter them in the
TIMESPEC primitive in either upper or lower case. The characters in
the keywords must be all upper case or all lower case. Examples of
acceptable keywords are: FROM, TO, from, to. Examples of
unacceptable keywords are: From, To, fRoM, tO.

Note: The Mentor netlist writer (ENWRITE) converts all property
names to lower case letters, and the Xilinx netlist reader EDIF2NGD
then converts the property names to upper case letters. To ensure
references from one constraint to another are processed correctly, a
TSidentifier name should contain only upper case letters on a Mentor
Schematic (TSMAIN, for example, but not TSmain or TSMain). Also,
if a TSidentifier name is referenced in a property value, it must be
entered in upper case letters. For example, the TSID1 in the second
constraint below must be entered in upper case letters to match the
TSID1 name in the first constraint.

TSID1 = FROM gr1 TO gr2 50;
TSMAIN = FROM here TO there TSID1 /2;

The basic TS attribute is described in detail in the “Basic FROM –TO
Syntax” section. More detailed forms of the attribute are also
described in that section.

Note: A colon may be used as a separator instead of a space in all
timing specifications.

Using Timing Constraints

Development System Reference Guide—May 1998 4-5

Entering Timing Specifications in a Constraints File
You can enter timing specifications as constraints in a UCF file. When
you then run NGDBuild on your design, your timing specifications
are added to the design database as part of the NGD file.

The basic syntax for a timing specification entered in a constraints file
is the TS attribute syntax described in the “Basic FROM –TO Syntax”
section.

Although not required, Xilinx recommends that NET and INST
names be enclosed in double quotes to avoid errors. Additionally,
inverted signal names that contain a tilde, for example, ~OUTSIG1,
must always be enclosed in double quotes. Other special characters
that must be enclosed in quotes are the asterisk (*) and question mark
(?).

You can use the wildcard character (*) to traverse the hierarchy of a
directory within a UCF or NCF file. Consider the following directory
hierarchy.

With the example hierarchy, the following specifications illustrate the
scope of the wildcard.

INST * => <everything>
INST /* => <everything>
INST /*/ => <$A1,$B1,$C1>
INST $A1/* => <$A21,$A22,$A3,$A4>
INST $A1/*/ => <$A21,$A22>
INST $A1/*/* => <$A3,$A4>
INST $A1/*/*/ => <$A3>
INST $A1/*/*/* => <$A4>
INST $A1/*/*/*/ => <$A4>
INST /*/*22/ => <$A22,$B22,$C22>

$A21 $A22

$A3

$A4

$A1

$B21 $B22

$B3

$B1

$C21 $C22

$C3

$C1

X8571

Development System Reference Guide

4-6 Xilinx Development System

INST /*/*22 =>
<$A22,$A3,$A4,$B22,$B3,$C22,$C3>
INST /*/*22/* => <$A3,$A4,$B3,$C22,$C3>

Specifying Groups
 In a TS attribute, you specify the set of paths to be analyzed by
grouping start and end points in one of the following ways.

• Refer to a predefined group by specifying one of the
corresponding keywords — FFS, PADS, LATCHES, or RAMS.

• Create your own groups within a predefined group by tagging
symbols with TNM (pronounced tee-name) attributes.

• Create groups that are combinations of existing groups using
TIMEGRP symbols.

• Create groups by pattern matching on net names.

The following sections discuss each method in detail.

Using Predefined Groups
You can refer to a group of flip-flops, input latches, pads, or RAMs by
using the corresponding keywords.

From-To statements enable you to define timing specifications for
paths between predefined groups. The following examples are TS
attributes that reside in the TIMESPEC primitive or are entered in the
UCF. This method enables you to easily define default timing
specifications for the design, as illustrated by the following examples.

Keyword Description

FFS CLB or IOB flip-flops only; not flip-flops built from
function generators (Shift Register LUTs in Virtex
also)

LATCHES CLB or IOB latches only; not latches built from func-
tion generators

PADS Input/Output pads

RAMS For architectures with RAMS (LUT RAMS and Block
RAMS for Virtex)

Using Timing Constraints

Development System Reference Guide—May 1998 4-7

Schematic syntax in TIMESPEC primitive

TS01=FROM FFS TO FFS 30
TS02=FROM LATCHES TO LATCHES 25
TS03=FROM PADS TO RAMS 70
TS04=FROM FFS TO PADS 55

UCF syntax

TIMESPEC TS01=FROM FFS TO FFS 30;
TIMESPEC TS02=FROM LATCHES TO LATCHES 25;
TIMESPEC TS03=FROM PADS TO RAMS 70;
TIMESPEC TS04=FROM FFS TO PADS 55;

A predefined group can also carry a name qualifier; the qualifier can
appear any place where the predefined group is used. This name
qualifier restricts the number of elements being referred to. The
syntax used is as follows.

predefined group (name_qualifier [name_qualifier])

name_qualifier is the full hierarchical name of the net that is sourced by
the primitive being identified.

The name qualifier can include wildcard characters (*) to indicate any
number of characters (or ? to indicate a single character) which allows
the specification of more than one net or allows you to shorten the
full hierarchical name to something that is easier to type.

As an example, specifying the group FFS(MACRO_A/Q?) selects
only the flip-flops driving the Q0, Q1, Q2 and Q3 nets in the
following macro.

Development System Reference Guide

4-8 Xilinx Development System

Figure 4-2 Using Qualifiers with Predefined Groups

To create more specific groups see the following section.

Creating User-Defined Groups Using TNMs
A TNM (timing name) is an attribute that can be used to identify the
elements that make up a group which can then be used in a timing
specification. A TNM is a property that you place directly on your
schematic to tag a specific net, element pin, primitive or macro.
All symbols tagged with the TNM identifier are considered a group.
Place TNM attributes directly on your schematic or in a UCF file
using the following syntax.

Q3

MACRO_

D

CE

CLR

Vcc

Q

D

CE

CLR

Q
Q2

Using Timing Constraints

Development System Reference Guide—May 1998 4-9

Schematic syntax

TNM=identifier

UCF syntax

{NET | INST | PIN } object_name TNM=identifier;

identifier is a value that consists of any combination of letters,
numbers, or underscores. Keep the TNM short for convenience and
clarity.

Do not use the reserved words FFS, LATCHES, PADS, RAMS,
RISING, FALLING, TRANSHI, TRANSLO, or EXCEPT, as identifiers.
The constraints in the table below are also reserved words and should
not be used as identifiers.

Reserved Words (Constraints)

ADD FAST NODELAY

ALU FBKINV OPT

ASSIGN FILE OSC

BEL F_SET RES

BLKNM HBLKNM RLOC

CAP HU_SET RLOC_ORIGIN

CLKDV_DIVIDE H_SET RLOC_RANGE

CLBNM INIT SCHNM

CMOS INIT OX SLOW

CYMODE INTERNAL STARTUP_WAIT

DECODE IOB SYSTEM

DEF IOSTANDARD TNM

DIVIDE1_BY LIBVER TRIM

DIVIDE2_BY LOC TS

DOUBLE LOWPWR TTL

DRIVE MAP TYPE

DUTY_CYCLE_
CORRECTION

MEDFAST USE_RLOC

EQN MEDSLOW U_SET

FAST MINIM

Development System Reference Guide

4-10 Xilinx Development System

Note: If you want to use a keyword as an identifier, you can enclose
the keyword in quotation marks. In the TNM statement TNM=RAMS
”CMOS”, CMOS is treated as an identifier instead of a keyword.

You can specify as many groups of end points as are necessary to
describe the performance requirements of your design. However, to
simplify the specification process and reduce the place and route
time, use as few groups as possible.

A predefined group can be used in a TNM specification, using the
following syntax on a schematic or UCF file.

Schematic syntax

TNM=predefined_group identifier

UCF syntax

{NET | INST | PIN } object_name TNM=predefined_group identifier;

The object_name is the net, pin, or instance name.

The predefined_group is one of the groups (for example, FFS or RAMS)
defined in the “Using Predefined Groups” section and identifier is a
value that consists of any combination of letters, numbers, or under-
scores. Paths defined by the TNM are traced forward if placed on a
net or pin, through any number of gates or buffers, until they reach a
member of the predefined_group. That element is added to the speci-
fied TNM group. TNM does not trace through the element to the next
element; forward tracing stops at the element. This mechanism is
called forward tracing. If TNM is placed on an instance, paths are
traced “downward” through a hierarchy instead of forward along a
net.

Note: If a TNM is placed on an input pad net, the constraint only
applies to the input pad. In that case, refer to the “Creating User-
Defined Groups Using TNM_NET” section.

The specification shown below, when attached to a net, would create
a group called FIFO_CORE consisting of all of the RAM primitives
traced forward on the net. The specification shows the schematic and
UCF syntax.

Schematic syntax

TNM=RAMS FIFO_CORE

Using Timing Constraints

Development System Reference Guide—May 1998 4-11

UCF syntax

NET net_name TNM=RAMS FIFO_CORE;

The following figure illustrates the preceding TNM identifier. The
two RAMs traced forward from the net are included in the group.
The flip flop is not.

Figure 4-3 TNM Placed on a Net

A defined net in a TNM statement can have a name qualifier (for
example, TMM=FFS (FRED*) GRP_A), as described in the “Creating
Groups by Pattern Matching” section.

You can use several methods for tagging groups of end points:
placing identifiers on nets, macro or primitive pins, primitives, or
macro symbols. Which method you choose depends on how the path
end points are related in your design. For each of these elements, you
can use the predefined group syntax described earlier in this section.

D Q

D O
WE
A0
A1
A2
A3
A4

D O
WE
A0
A1
A2
A3
A4

CLOCK

D3

D2

D1

TNM=RAMS:FIFO_CORE

Q3

X8526

Development System Reference Guide

4-12 Xilinx Development System

The following subsections discuss the different methods of placing
TNMs in your design. The same TNM attribute can be used as many
ways and as many times as necessary to get the TNM applied to all of
the elements in the desired group.

You can place TNM attributes in either of two places: in the schematic
as discussed in this section or in a constraints file (UCF or NCF).

The syntax for specifying TNMs in a UCF or NCF constraints file is
described in the “Attributes, Constraints, and Carry Logic” chapter of
the Libraries Guide.

Placing TNMs on Nets

The TNM attribute can be placed on any net in the design. The
attribute indicates that the TNM value should be attached to all valid
elements fed by all paths that fan forward from the tagged net.
Forward tracing stops at any flip-flop, latch, RAM or pad. See the
“TNM Placed on a Net” figure. TNMs do not propagate across IBUFs
if they are attached to the input pad net. Also refer to the “Creating
User-Defined Groups Using TNM_NET” section.

Placing TNMs on Macro or Primitive Pins

The TNM attribute can be placed on any macro or component pin in
the design if the design entry package allows placement of attributes
on macro or primitive pins. The attribute indicates that the TNM
value should be attached to all valid elements fed by all paths that fan
forward from the tagged pin. Forward tracing stops at any flip-flop,
latch, RAM or pad. The following illustration shows the valid
elements for a TNM attached to the schematic a macro pin.

Using Timing Constraints

Development System Reference Guide—May 1998 4-13

Figure 4-4 TNM Placed on a Macro Pin

The syntax for the UCF file would be

PIN pin_name TNM=FFS FLOPS;

Placing TNMs on Primitive Symbols

You can group individual logic primitives explicitly by flagging each
symbol, as illustrated by the following figure.

EN
D Q

EN

D Q
I

O

DI DO

ADDRS
WE

DI DO

ADDRS
WE

D

X8528

TNM=FFS:FLOPS

MEM

WE
A0
A1
A2
A3

O

FLOPS

DI DO

FLOPS

Development System Reference Guide

4-14 Xilinx Development System

Figure 4-5 TNM on Primitive Symbols

In the figure, the flip-flops tagged with the TNM form a group called
“‘FLOPS.” The untagged flip-flop on the right side of the drawing is
not part of the group.

Place only one TNM on each symbol, driver pin, or macro driver pin.

Schematic syntax

TNM=FLOPS

UCF syntax

INST symbol_name TNM=FLOPS;

Placing TNMs on Macro Symbols

A macro is an element that performs some general purpose higher
level function. It typically has a lower level design that consists of
primitives, other macros, or both, connected together to implement
the higher level function. An example of a macro function is a 16-bit
counter.

D

TNM=FLOPS

TNM=FLOPS

Q

D Q

D Q

LOGIC

LOGIC

X8532

CLK

Using Timing Constraints

Development System Reference Guide—May 1998 4-15

A TNM attribute attached to a macro indicates that all elements
inside the macro (at all levels of hierarchy below the tagged macro)
are part of the named group.

When a macro contains more than one symbol type and you want to
group only a single type, use the TNM identifier in conjunction with
one of the predefined groups: FFS, RAMS, PADS, or LATCHES as
indicated by the following syntax examples.

Schematic syntax

TNM=FFS identifier
TNM=RAMS identifier
TNM=LATCHES identifier
TNM=PADS identifier

UCF syntax

INST macro_name TNM=FFS identifier;
INST macro_name TNM=RAMS identifier;
INST macro_name TNM=LATCHES identifier;
INST macro_name TNM=PADS identifier;

If multiple symbols of the same type are contained in the same
hierarchical block, you can simply flag that hierarchical symbol, as
illustrated by the following figure. In the figure, all flip-flops
included in the macro are tagged with the TNM ‘‘FLOPS”. By tagging
the macro symbol, you do not have to tag each underlying symbol
individually.

Development System Reference Guide

4-16 Xilinx Development System

Figure 4-6 TNM on Macro Symbol

Placing TNMs on Nets or Pins to Group Flip-Flops
and Latches

You can easily group flip-flops, latches, or both by flagging a common
input net, typically either a clock net or an enable net. If you attach a
TNM to a net or driver pin, that TNM applies to all flip-flops and
input latches that are reached through the net or pin. That is, that
path is traced forward, through any number of gates or buffers, until
it reaches a flip-flop or input latch. That element is added to the
specified TNM group.

The following figure illustrates the use of a TNM on a net that traces
forward to create a group of flip-flops.

TNM=FFS:FLOPS

Q5
Q4
Q3
Q2
Q1
Q0
EN

Using Timing Constraints

Development System Reference Guide—May 1998 4-17

In the figure, the attribute TNM=FLOPS traces forward to the first
two flip-flops, which form a group called FLOPS. The bottom flip-
flop is not part of the group FLOPS

Figure 4-7 TNM on Net Used to Group Flip-Flops

The following figure illustrates placing a TNM on a clock net, which
traces forward to all three flip-flops and forms the group Q_FLOPS.

AND

FD Q

O

Pxx

X8553

FD Q

FD Q

Pxx

Pxx O

O

O

D1 D

C

D

C

D

C

IBUF
TNM=FLOPS

IBUF

GCLK

O

O

O CLK

XNOR

INV

INV

CLKNI

IPAD

IPAD

IPAD
I ICLKIN

I

I AIN0

BIN0

I

I

A0

B0

1

2

1

2

OBUF

OBUF

OBUF

I O
OPAD

OPAD

OPAD

I O

I O

BIT00

BIT01

BIT02

O

O

O

BIT0

BIT1

BIT2

D3

D2

Pxx

Pxx

Pxx

Development System Reference Guide

4-18 Xilinx Development System

Figure 4-8 TNM on Clock Pin Used to Group Flip-Flops

The TNM parameter on nets or pins is allowed to have a qualifier.

For example, on schematics

TNM=FFS data

TNM=RAMS fifo

TNM=LATCHES capture

In UCF files

{NET | PIN } net_or_pin_name TNM=FFS data;

{NET | PIN } net_or_pin_name TNM=RAMS fifo;

{NET | PIN } net_or_pin_name TNM=LATCHES capture;

A qualified TNM is traced forward until it reaches the first storage
element (flip-flop, latch, or RAM). If that type of storage element
matches the qualifier, the storage element is given that TNM value.
Whether or not there is a match, the TNM is not traced through that
storage element.

D Q

Q1

D Q

CLOCK

TNM=Q_FLOPS

D Q
D1

D3

D2 Q2

Q3

X8531

Using Timing Constraints

Development System Reference Guide—May 1998 4-19

TNM parameters on nets or pins are never traced through a storage
element (flip-flop, latch or RAM). In previous XACTstep® software
releases, they were traced through some pins on input latches and
RAMs. If you rely on this behavior, move the TNM parameter so that
it reaches the target flip-flop directly or place a TNM parameter on
the target flip-flop symbol.

Creating User-Defined Groups Using TNM_NET
A TNM_NET (timing name for nets) is an attribute that can be used
to identify the elements that make up a group which can then be used
in a timing specification. Essentially TNM_NET is equivalent to TNM
on a net except for pad nets.

A TNM_NET is a property that you normally use in conjunction with
an HDL design to tag a specific net. All nets tagged with the
TNM_NET identifier are considered a group. The UCF syntax is as
follows.

NET net_name TNM_NET=identifier;

identifier is a value that consists of any combination of letters,
numbers, or underscores. Keep the TNM_NET short for convenience
and clarity. The basic syntax rules for TNM_NET and TNM are iden-
tical. Refer to the “Creating User-Defined Groups Using TNMs”
section for details.

The TNM_NET attribute can be used to define certain types of nets
that cannot be adequately described by the TNM constraint. This
attribute is specifically targeted for use in HDL designs.

For example, consider the following design.

C
INTCLK

BUFG
PADCLK

FFA

C

FFB

X8347

IPAD

Development System Reference Guide

4-20 Xilinx Development System

In the preceding design, a TNM associated with the PAD symbol only
includes the PAD symbol as a member in a timing analysis group. For
example, the following UCF file entry creates a time group that
includes the IPAD symbol only.

NET PADCLK TNM=PADS(*) PADGRP; (UCF file example)

However, using TNM to define a time group for the net PADCLK
creates an empty time group.

NET PADCLK TNM=FFS(*) FFGRP; (UCF file example)

All properties that apply to a pad are transferred from the net to the
PAD symbol. Since the TNM is transferred from the net to the PAD
symbol, the qualifier, “FFS(*)” does not match the PAD symbol.

To overcome this obstacle for schematic designs using TNM, you can
create a time group for the INTCLK net.

NET INTCLK TNM=FFS(*) FFGRP; (UCF file example)

However, for HDL designs, the only meaningful net names are the
ones connected directly to pads. Then, use TNM_NET to create the
FFGRP time group.

NET PADCLK TNM_NET=FFS(*) FFGRP; (UCF file example)

NGDBuild does not transfer a TNM_NET attribute from a net to a
PAD as it does with TNM.

TNM_NET can be used in NCF or UCF files as a property attached to
an object in an input netlist (EDIF or XNF). TNM_NET is not
supported in PCF files.

TMN_NET can only be used with nets. If TNM_NET is used with any
other object such as a pin or symbol, a warning is generated and the
TNM_NET definition is ignored.

Creating New Groups from Existing Groups
In addition to naming groups using the TNM identifier, you can also
define groups in terms of other groups. You can create a group that is
a combination of existing groups by defining a TIMEGRP attribute as
follows.

Schematic syntax in TIMEGRP primitive

newgroup=existing_grp1 existing_grp2 [existing_grp3 . . .]

Using Timing Constraints

Development System Reference Guide—May 1998 4-21

UCF syntax

TIMEGRP newgroup=existing_grp1 existing_grp2 [existing_grp3 . . .];

newgroup is a newly created group that consists of existing groups
created via TNMs, predefined groups, or other TIMEGRP attributes.

The Mentor netlist writer (ENWRITE™) converts all property names
to lower case letters, and the Xilinx netlist reader EDIF2NGD then
converts the property names to upper case letters. To ensure refer-
ences from one constraint to another are processed correctly,

• Group names should contain only upper case letters on a Mentor
Schematic (MY_FLOPS, for example, but not my_flops or
My_flops).

• If a group name appears in a property value, it must also be
expressed in upper case letters. For example, the GROUP3 in the
first constraint below must be entered in upper case letters to
match the GROUP3 in the second constraint.

Schematic syntax in TIMEGRP primitive

GROUP1 = gr2 GROUP3
GROUP3 = FFS except grp5

UCF syntax

TIMEGRP GROUP1 = gr2 GROUP3;
TIMEGRP GROUP3 = FFS except grp5;

TIMEGRP attributes reside in the TIMEGRP primitive, as illustrated
in the figure below. Once you create a TIMEGRP attribute definition
within a TIMEGRP primitive, you can use it in the TIMESPEC
primitive. Each TIMEGRP primitive can hold up to eight group
definitions. Since your design might include more than eight
TIMEGRP attributes, you can use multiple TIMEGRP primitives.

Development System Reference Guide

4-22 Xilinx Development System

Figure 4-9 TIMEGRP Primitive

You can place TIMEGRP attributes in either of two places: in the
TIMEGRP primitive on the schematic as discussed in this section or
in a constraints file (UCF or NCF). The syntax for specifying
TIMEGRPs in a UCF or NCF constraints file is described in the
“Attributes, Constraints, and Carry Logic” chapter of the Libraries
Guide.

You can use TIMEGRP attributes to create groups using the following
methods.

• Combining multiple groups into one

• Creating groups by exclusion

• Defining flip-flop subgroups by clock sense

The following subsections discuss each method in detail.

Combining Multiple Groups into One
You can define a group by combining other groups. The following
syntax example illustrates the simple combining of two groups.

Schematic syntax in TIMEGRP primitive

big_group=small_group medium_group

UCF syntax

TIMEGRP big_group=small_group medium_group ;

In this syntax example, small_group and medium_group are existing
groups defined using a TNM or TIMEGRP attribute. Within the
TIMEGRP primitive, TIMEGRP attributes can be listed in any order;

X4330

TIMEGRP
some_ffs=flips:flops

Using Timing Constraints

Development System Reference Guide—May 1998 4-23

that is, you can create a TIMEGRP attribute that references another
TIMEGRP attribute that appears after the initial definition.

Warning: A circular definition, as shown below, causes an error
when you run your design through NGDBuild.

Schematic syntax in TIMEGRP primitive

many_ffs=ffs1 ffs2
ffs1=many_ffs ffs3

UCF syntax

TIMEGRP many_ffs=ffs1 ffs2;
TIMEGRP ffs1=many_ffs ffs3;

Creating Groups by Exclusion
You can define a group that includes all elements of one group except
the elements that belong to another group, as illustrated by the
following syntax examples.

Schematic syntax in TIMEGRP primitive

group1=group2 EXCEPT group3

UCF syntax

TIMEGRP group1=group2 EXCEPT group3;

• group1 represents the group being defined. It contains all of the
elements in group2 except those that are also in group3.

• group2 and group3 can be a valid TNM, predefined group, or
TIMEGRP attribute.

As illustrated by the following example, you can specify multiple
groups to include or exclude when creating the new group.

Schematic syntax in TIMEGRP primitive

group1=group2 group3:EXCEPT group4 group5

UCF syntax

TIMEGRP group1=group2 group3:EXCEPT group4 group5;

Development System Reference Guide

4-24 Xilinx Development System

The example defines a group1 that includes the members of group2
and group3, except for those members that are part of group4 or
group5. All of the groups before the keyword EXCEPT are included,
and all of the groups after the keyword are excluded.

Certain reserved words cannot be used as group names. These
reserved words are described in the “Creating User-Defined Groups
Using TNMs” section.

Defining Flip-Flop Subgroups by Clock Sense
You can create subgroups using the keywords RISING and FALLING
to group flip-flops triggered by rising and falling edges.

Schematic syntax in TIMEGRP primitive

group1=RISING ffs
group2=RISING ffs_group
group3=FALLING ffs
group4=FALLING ffs_group

UCF syntax

TIMEGRP group1=RISING ffs;
TIMEGRP group2=RISING ffs_group;
TIMEGRP group3=FALLING ffs;
TIMEGRP group4=FALLING ffs_group;

group1 to group4 are new groups being defined. The ffs_group must be
a group that includes only flip-flops.

Note: Keywords, such as EXCEPT, RISING, and FALLING, appear in
the documentation in upper case; however, you can enter them in the
TIMEGRP primitive in either lower or upper case. You cannot enter
them in a combination of lower and upper case.

The following example defines a group of flip-flops that switch on the
falling edge of the clock.

Schematic syntax in TIMEGRP primitive

falling_ffs=FALLING ffs

UCF syntax

TIMEGRP falling_ffs=FALLING ffs;

Using Timing Constraints

Development System Reference Guide—May 1998 4-25

Defining Latch Subgroups by Gate Sense
Groups of type LATCHES (no matter how these groups are defined)
can be easily separated into transparent high and transparent low
subgroups. The TRANSHI and TRANSLO keywords are provided for
this purpose, and are used in TIMEGRP statements like the RISING
and FALLING keywords for flip-flop groups. For example

Schematic syntax in TIMEGRP primitive

lowgroup=TRANSLO latchgroup
highgroup=TRANSHI latchgroup

UCF syntax

TIMEGRP lowgroup=TRANSLO latchgroup;
TIMEGRP highgroup=TRANSHI latchgroup;

Creating Groups by Pattern Matching
When creating groups, you can use wildcard characters to define
groups of symbols whose associated net names match a specific
pattern.

How to Use Wildcards to Specify Net Names

The wildcard characters, * and ?, enable you to select a group of
symbols whose output net names match a specific string or pattern.
The asterisk (*) represents any string of zero or more characters. The
question mark (?) indicates a single character.

For example, DATA* indicates any net name that begins with
“DATA,” such as DATA, DATA1, DATA22, DATABASE, and so on.
The string NUMBER? specifies any net names that begin with
‘‘NUMBER” and end with one single character, for example,
NUMBER1, NUMBERS but not NUMBER or NUMBER12.

You can also specify more than one wildcard character. For example,
*AT? specifies any net names that begin with any series of characters
followed by ‘‘AT” and end with any one character such as BAT1,
CAT2, and THAT5. If you specify *AT??, you would match BAT11,
CAT26, and THAT50.

Development System Reference Guide

4-26 Xilinx Development System

Pattern Matching Syntax

The syntax for creating a group using pattern matching is shown
below.

Schematic syntax in TIMEGRP primitive

group=predefined_group(pattern)

UCF syntax

TIMEGRP group=predefined_group(pattern) ;

predefined_group can only be one of the following predefined groups—
FFS, LATCHES, PADS, or RAMS. The pattern is any string of
characters used in conjunction with one or more wildcard characters.

Warning: When specifying a net name, you must use its full hierar-
chical path name so PAR can find the net in the flattened design.

For flip-flops, input latches, and RAMs, specify the output net name.
For pads, specify the external net name.

The following example illustrates creating a group that includes the
flip-flops that source nets whose names begin with $1I3/FRED.

Schematic syntax in TIMEGRP primitive

group1=ffs($1I3/FRED*)

UCF syntax

TIMEGRP group1=ffs($1I3/FRED*);

The following example illustrates a group that excludes certain flip-
flops whose output net names match the specified pattern.

Schematic syntax in TIMEGRP primitive

this_group=ffs EXCEPT ffs(a*)

UCF syntax

TIMEGRP this_group=ffs EXCEPT ffs(a*);

In this example, this_group includes all flip-flops except those
whose output net names begin with the letter “a.”

The following defines a group named “some_latches”.

Schematic syntax in TIMEGRP primitive

some_latches=latches($1I3/xyz*)

Using Timing Constraints

Development System Reference Guide—May 1998 4-27

UCF syntax

TIMEGRP some_latches=latches($113/xyz*);

The group some_latches contains all input latches whose output
net names start with “$1I3/xyz.”

Additional Pattern Matching Details

In addition to using pattern matching when you create timing
groups, you can specify a predefined group qualified by a pattern any
place you specify a predefined group. The syntax below illustrates
how pattern matching can be used within a timing specification.

Schematic syntax in TIMESPEC primitive

TSidentifier=FROMpredefined_group(pattern) TO predefined_group
(pattern) delay

UCF syntax

TIMESPEC TSidentifier=FROMpredefined_group(pattern) TO
predefined_group (pattern) delay;

Instead of specifying just one pattern, you can also specify a list of
patterns separated by a colon (:) as illustrated below.

Schematic syntax in TIMEGRP primitive

some_ffs=ffs(a*:b?:c*d)

UCF syntax

TIMEGRP some_ffs=ffs(a*:b?:c*d);

The group some_ffs contains flip-flops whose output net names

• Start with the letter “a”

or

• Contain two characters; the first character is “b”

or

• Start with “c” and end with “d”

Development System Reference Guide

4-28 Xilinx Development System

Defining a Clock Period (PERIOD Constraint)
A clock period specification checks timing clocked by the net (all
paths that terminate at a register clocked by the specified net).

The period specification is attached to the clock net. The definition of
a clock period is unlike a FROM-TO style specification because the
timing analysis tools automatically take into account any inversions
of the clock net at register clock pins.

A PERIOD constraint on the clock net in the following figure would
generate a check for delays on all paths that terminate at a pin that
has a setup or hold timing constraint relative to the clock net. This
could include the data paths D1 to CLB1.D, CLB1.Q to CLB2.D, as
well as the path EN to CLB2.EC (if the reset/enable were synchro-
nous with respect to the clock).

Figure 4-10 Paths for PERIOD Constraint

Simple Method
A simple method of defining a clock period is to attach the following
attribute directly to a net in the path that drives the register clock
pins.

Schematic syntax

PERIOD = period { HIGH | LOW } [high_or_low_time]

Interconnect
and Logic

Interconnect
and Logic

D

CLB1

R
Q D

CLB2

EC

Q

D0

D1

OUT0

OUT1

CLK

EN

X8533

PERIOD=100:HIGH:50

Using Timing Constraints

Development System Reference Guide—May 1998 4-29

UCF syntax

[period_item] PERIOD = period { HIGH | LOW }
[high_or_low_time];

period_item is one of the following,

• NET “net_name”

• TIMEGRP “group_name”

• ALLCLOCKNETS (PCF only)

period is the required clock period. The default units are nanoseconds,
but the timing number can be followed by ps, ns, us, or ms. Units
may be entered with or without a leading space, and are case-
insensitive. The HIGH|LOW keyword indicates whether the first pulse
in the period is high or low, and the optional high_or_low_time is the
duty cycle of the first pulse. If an actual time is specified, it must be
less than the period. If no high or low time is specified the default
duty cycle is 50%. The default units for high_or_low_time is ns, but the
number can be followed by % or by ps, ns, us or ms if you want to
specify an actual time measurement.

The PERIOD constraint is forward traced in exactly the same way a
TNM would be and attaches itself to all of the flip-flops that the
forward tracing reaches. If a more complex form of tracing behavior
is required (for example, where gated clocks are used in the design),
you must place the PERIOD on a particular net or use the preferred
method described next.

Preferred Method
The preferred method for defining a clock period allows more
complex derivative relationships to be defined as well as a simple
clock period. The following attribute is attached to a TIMESPEC
symbol in conjunction with a TNM attribute attached to the relevant
clock net.

Schematic syntax in a TIMSPEC symbol

TSidentifier=PERIOD TNM_reference period {HIGH | LOW}
[high_or_low_time]

Development System Reference Guide

4-30 Xilinx Development System

UCF syntax

TIMESPEC TSidentifier=PERIOD TNM_reference period {HIGH |
LOW} [high_or_low_time];

identifier is a reference identifier that has a unique name.

TNM_reference is the identifier name that is attached to a clock net (or
a net in the clock path) using a TNM attribute.

• NET “net_name”

• TIMEGRP “group_name”

• ALLCLOCKNETS

The variable name period is the required clock period. The default
units for period are nanoseconds, but the number can be followed by
ps, ns, us, or ms. Units may be entered with or without a leading
space, and are case-insensitive. The HIGH|LOW keyword indicates
whether the first pulse in the period is high or low, and the optional
high_or_low_time is the polarity of the first pulse. If an actual time is
specified, it must be less than the period. If no high or low time is
specified the default duty cycle is 50%. The default units for
high_or_low_time is ns, but the number can be followed by % or by ps,
ns, us, or ms if you want to specify an actual time measurement.

Example

Clock net sys_clk has the attribute tnm=master_clk attached to it
and the following attribute is attached to a TIMESPEC primitive.

Schematic syntax in a TIMESPEC symbol

TS_master=PERIOD master_clk 50 HIGH 30

UCF syntax

TIMESPEC TS_master=PERIOD master_clk 50 HIGH 30 ;

This period constraint applies to the net master_clk, and defines a
clock period of 50 nanoseconds, with an initial 30 nanosecond high
time.

Using Timing Constraints

Development System Reference Guide—May 1998 4-31

Specifying Derived Clocks
The preferred method of defining a clock period uses an identifier,
allowing another clock period specification to reference it. To define
the relationship in the case of a derived clock, use the following
syntax.

Schematic syntax in a TIMSPEC symbol

TSidentifier=PERIOD TNM_reference another_PERIOD_identifier
[{/ |* }number] [{HIGH|LOW} high_or_low_time]

UCF syntax

TIMESPEC TSidentifier=PERIOD TNM_reference
another_PERIOD_identifier
[{/ |* }number] [{HIGH|LOW} high_or_low_time];

• identifier is a reference identifier that has a unique name.

• TNM_reference is the identifier name that is attached to a clock net
or a net in the clock path using a TNM attribute.

• another_PERIOD_identifier is the name of the identifier used on
another period specification.

• number is a floating point number.

• The HIGH|LOW keyword indicates whether the first pulse in the
period is high or low, and the optional high_or_low_time is the
polarity of the first pulse. If an actual time is specified it must be
less than the period. If no high or low time is specified, the
default duty cycle is 50%. The default units for high_or_low_time
is ns, but the number can be followed by % or by ps, ns, us, or ms
if you want to specify an actual time measurement.

Example

 A clock net has the attribute tnm=slave_clk attached to it and the
following attribute is attached to a TIMESPEC primitive.

Schematic syntax in a TIMESPEC symbol

ts_slave1=PERIOD slave_clk TS_master *4

UCF syntax

TIMESPEC ts_slave1=PERIOD slave_clk TS_master
*4;

Development System Reference Guide

4-32 Xilinx Development System

OFFSET Timing Specifications
Offsets are used to define the timing relationship between an external
clock and its associated data-in or data-out pin. Using this option
allows you to do the following.

• Calculate whether a setup time is being violated at a flip-flop
whose data and clock inputs are derived from external nets.

• Specify the delay of an external output net derived from the Q
output of an internal flip-flop being clocked from an external
device pin.

Following are some of the advantages of using the OFFSET
constraint.

• Includes the clock path delay for each individual synchronous
elements

• Subtracts the clock path delay from the data path delay for inputs
and adds the clock path delay to the data path delay for outputs

• Includes paths for all synchronous element types (FFS, RAMS,
and LATCHES)

• Utilizes a global syntax that allows all inputs or outputs to be
constrained by a clock

• Allows specifying IO constraints either directly as the setup and
clock-to-out required by a device (IN BEFORE and OUT AFTER)
or indirectly as the time used by the path external to the device
(IN AFTER and OUT BEFORE)

There are basically three types of offset specifications.

• Global

• Net-specific

• Group

Since the global and group OFFSET constraints are not associated
with a single data net or component, these two types can also be
entered on a TIMESPEC symbol in the design netlist with Tsid.

Using Timing Constraints

Development System Reference Guide—May 1998 4-33

Schematic syntax in a TIMESPEC symbol

TSid=[TIMEGRP name] OFFSET = {IN |OUT} offset_time [units]
{BEFORE|AFTER} clk_name [TIMEGRPgroup_name]

UCF syntax

[TIMEGRP name] OFFSET = {IN |OUT} offset_time [units]
{BEFORE|AFTER} clk_name [TIMEGRPgroup_name];

Note: In the UCF file, you cannot specify the TSid format.

See the next section and the “Group OFFSET” section for syntax
details. As with the PERIOD and MAXDELAY timing specifications,
if the same TSid is defined in the design netlist (or NCF) and the UCF
file, the UCF file takes precedence.

The following subsections describe the use of each type of OFFSET in
PCF and UCF files and explain the scope of each specification.

Global OFFSET
Release 1.5 supports the use of the global OFFSET constraint. Release
1.5 also supports the use of time groups within global OFFSET
constraints. On a schematic, enter the global OFFSET in the
TIMESPEC symbol.

UCF syntax

OFFSET = {IN |OUT} offset_time [units] {BEFORE|AFTER}
clk_name [TIMEGRPgroup_name];

PCF syntax

OFFSET = {IN |OUT} offset_time [units] {BEFORE|AFTER} COMP
clk_iob_name [TIMEGRPgroup_name];

offset_time is the external offset and units is an optional field that
indicates the units for the offset time. The default units are
nanoseconds, but the timing number can be followed by ps, ns, us,
ms, GHz, MHz, or KHz to show the intended units.

The UCF syntax variable clk_name is the fully hierarchical net name of
the clock net between its pad and its input buffer.

The clk_iob_name is the block name of the clock IOB.

Development System Reference Guide

4-34 Xilinx Development System

The optional TIMEGRP group_name defines a group of registers that
will be analyzed. By default, all registers clocked by clk_name will be
analyzed.

IN | OUT specifies that the offset is computed with respect to an input
IOB or an output IOB. For a bidirectional IOB, the IN | OUT syntax
lets you specify the flow of data (input or output) on the IOB.

BEFORE | AFTER indicates whether data is to arrive (input) or leave
(output) the device before or after the clock input.

All inputs/outputs are offset relative to clk_name or iob_name. For
example, OFFSET IN 20 ns BEFORE clk1 dictates that all inputs
will have data present at the pad at least 20 ns before the triggering
edge of clk1 arrives at the pad.

Using Timing Constraints

Development System Reference Guide—May 1998 4-35

Net-Specific OFFSET Constraints
The OFFSET constraint can also be used to specify a constraint for a
specific data net in a UCF file or schematic or a specific input or
output component in a PCF file.

Schematic syntax when attached to a net

OFFSET = {IN |OUT} offset_time [units] {BEFORE|AFTER}
clk_name [TIMEGRPgroup_name]

UCF syntax

NET name OFFSET = {IN |OUT} offset_time [units]
{BEFORE|AFTER} clk_name [TIMEGRPgroup_name];

PCF syntax

COMP “iob_name” OFFSET = {IN |OUT} offset_time [units]
{BEFORE|AFTER} COMP “clk_iob_name” [TIMEGRP
“group_name”];

The PCF file uses blocks (comps) instead of nets.

If COMP “iob_name“ is omitted in the PCF or NET “name” is omitted
in the UCF, the specification is assumed to be global.

offset_time is the external offset.

units is an optional field that indicates the units for offset time. The
default units are in nanoseconds, but the timing number can be
followed by ps, ns, us, GHz, MHz, or KHz to indicate the intended
units.

clk_iob_name is the block name of the clock IOB.

It is possible for one offset constraint to generate multiple data and
clock paths (for example, when both data and clock inputs have more
than a single sequential element in common).

Examples

The offset constraint examples in this section apply to the following
figures.

Development System Reference Guide

4-36 Xilinx Development System

Figure 4-11 OFFSET Example Schematic

Figure 4-12 OFFSET IN Timing Diagram

Figure 4-13 OFFSET OUT Timing Diagram

Example 1— OFFSET IN BEFORE

OFFSET IN BEFORE defines the available time for data to propagate
from the pad and setup at the synchronous element (COMP). The
time can be thought of as the time differential of data arriving at the
edge of the device before the next clock edge arrives at the device. See
the “OFFSET Example Schematic” figure and the “OFFSET IN Timing
Diagram” figure. The equation that defines this relationship is as
follows.

CLK

DATA
TSUDATA_IN

CLK_SYS

TCLK

TDATA TQ

TCO

Q_OUTQ

COMP

FPGA Boundary

X8737

DATA_IN

CLK_SYS

TIN_AFTER TIN_BEFORE

TP

X8735

Q_OUT

CLK_SYS

TOUT_AFTER

TP

TOUT_BEFORE

X8736

Using Timing Constraints

Development System Reference Guide—May 1998 4-37

 TDATA + TSU - TCLK < TIN_BEFORE

For example, if TIN_BEFORE equals 20 ns, the following syntax applies.

Schematic syntax attached to DATA_IN

OFFSET=IN 20.0 BEFORE CLK_SYS

UCF syntax

NET DATA_IN OFFSET=IN 20.0 BEFORE CLK_SYS;

PCF syntax

COMP DATA_IN OFFSET=IN 20.0 ns BEFORE COMP
CLK_SYS;

This constraint indicates that the data will be present on the
DATA_IN pad at least 20 ns before the triggering edge of the clock net
arrives at the clock pad.

To ensure that the timing requirements are met, the timing analysis
software verifies that the maximum delay along the path DATAIN to
COMP (minus the 20.0 ns offset) would be less than or equal to the
minimum delay along the reference path CLOCK to COMP.

Example 2 — OFFSET IN AFTER

This constraint describes the time used by the data external to the
FPGA. OFFSET subtracts this time from the PERIOD declared for the
clock to determine the available time for the data to propagate from
the pad and setup at the synchronous element. The time can be
thought of as the differential of data arriving at the edge of the device
after the current clock edge arrives at the edge of the device. See the
“OFFSET Example Schematic” figure and the “OFFSET OUT Timing
Diagram” figure. The equation that defines this relationship is as
follows.

 TDATA + TSU - TCLK < TP - TIN_AFTER

TP is the clock period.

For example, if TIN_AFTER equals 30 ns, the following syntax applies.

Schematic syntax attached to DATA_IN

OFFSET=IN 30.0 AFTER CLK_SYS;

Development System Reference Guide

4-38 Xilinx Development System

UCF syntax

NET DATA_IN OFFSET=IN 30.0 AFTER CLK_SYS;

PCF syntax

COMP DATA_IN OFFSET=IN 30.0 ns AFTER COMP
CLK_SYS;

This constraint indicates that the data will arrive at the pad of the
device (COMP) no more than 30 ns after the triggering edge of the
clock arrives at the clock pad. The path DATA_IN to COMP would
contain the setup time for the COMP data input relative to the
CLK_SYS input.

Verification is almost identical to Example 1, except that the offset
margin (30.0 ns) is added to the data path delay. This is caused by the
data arriving after the reference input. The timing analysis software
verifies that the data can be clocked in prior to the next triggering
edge of the clock.

A PERIOD or FREQUENCY is required only for offset OUT
constraints with the BEFORE keyword or offset IN with the AFTER
keyword.

Example 3 — OFFSET OUT AFTER

This constraint defines the time available for the data to propagate
from the synchronous element to the pad. This time can also be
considered as the differential of data leaving the edge of the device
after the current clock edge arrives at the edge of the device. See the
“OFFSET Example Schematic” figure and the “OFFSET OUT Timing
Diagram” figure.

The equation that defines this relationship is as follows.

 TQ + TCO - TCLK < TOUT_AFTER

For example, if TOUT_AFTER equals 35 ns, the following syntax
applies.

Schematic syntax attached to Q_OUT

OFFSET=OUT 35.0 AFTER CLK_SYS

Using Timing Constraints

Development System Reference Guide—May 1998 4-39

UCF syntax

NET Q_OUT OFFSET=OUT 35.0 AFTER CLOCK;

PCF syntax

COMP Q_OUT OFFSET=OUT 35.0 ns AFTER COMP
CLK_SYS;

This constraint calls for the data to leave the FPGA 35 ns after the
present clock input arrives at the clock pad. The path COMP to
Q_OUT would include the CLOCK-to-Q delay (component delay).

Verification involves ensuring that the maximum delay along the
reference path (CLK_SYS to COMP) and the maximum delay along
the data path (COMP to Q_OUT) does not exceed the specified offset.

Example 4 — OFFSET OUT BEFORE

This constraint defines the time used by the data external to the
FPGA. OFFSET subtracts this time from the clock PERIOD to
determine the available time for the data to propagate from the
synchronous element to the pad. The time can also be considered as
the differential of data leaving the edge of the device before the next
clock edge arrives at the edge of the device See the “OFFSET Example
Schematic” figure and the “OFFSET OUT Timing Diagram” figure.
The equation that defines this relationship is as follows.

 TQ + TCO + TCLK < TP - TOUT_BEFORE

For example, if TOUT_BEFORE equals 15 ns, the following syntax
applies.

Schematic syntax attached to Q_OUT

OFFSET=OUT 15.0 BEFORE CLK_SYS

UCF syntax

NET Q_OUT OFFSET=OUT 15.0 BEFORE CLK_SYS;

PCF syntax

COMP Q_OUT OFFSET=OUT 15.0 ns BEFORE COMP
CLK_SYS;

Development System Reference Guide

4-40 Xilinx Development System

This constraint states that the data clocked to Q_OUT must leave the
FPGA 15 ns before the next triggering edge of the clock arrives at the
clock pad. The path COMP to Q_OUT includes the CLK_SYS-to-Q
delay (component delay). The data clocked to Q_OUT will leave the
FPGA 15.0 ns before the next clock input.

Verification involves ensuring that the maximum delay along the
reference path (CLK_SYS to COMP) and the maximum delay along
the data path (COMP to Q_OUT) do not exceed the clock period
minus the specified offset.

As in Example 2, a PERIOD or FREQUENCY constraint is required
only for offset OUT constraints with the BEFORE keyword or offset IN
with the AFTER keyword.

Specific OFFSET Constraints with Timegroups

A clock register time group allows you to define a specific set of regis-
ters to which an OFFSET constraint applies based on a clock edge.
Consider the following example.

Figure 4-14 Using Timegroups with Registers

You can define time groups for the registers A, B and C, even though
these registers have the same data and clock source. The syntax is as
follows.

X8458

CBA

DATA

CLOCK

Using Timing Constraints

Development System Reference Guide—May 1998 4-41

Schematic syntax in TIMEGRP primitive

AB=RISING FFS
C =FALLING FFS;

UCF /PCF syntax

TIMEGRP AB=RISING FFS;
TIMEGRP C =FALLING FFS;

Schematic syntax attached to DATA

OFFSET=IN 10 BEFORE CLOCK TIMEGRP AB

OFFSET=IN 20 BEFORE CLOCK TIMEGRP C

UCF syntax

NET DATA OFFSET=IN 10 BEFORE CLOCK TIMEGRP AB;

NET DATA OFFSET=IN 20 BEFORE CLOCK TIMEGRP C;

PCF syntax

COMP DATA OFFSET=IN 10 BEFORE COMP CLOCK TIMEGRP
AB;

COMP DATA OFFSET=IN 20 BEFORE COMP CLOCK TIMEGRP
C;

Even though the registers A, B and C have a common data and clock
source, timing analysis applies two different offsets (10 ns and 20 ns).
Registers A and B belong to the offset with 10 ns and Register C
belongs to the offset with 20 ns.

However, you must use some caution when using timegroups with
registers. Consider the following diagram.

Development System Reference Guide

4-42 Xilinx Development System

Figure 4-15 Problematic Timegroup Definition

This circuit is identical to the “Using Timegroups with Registers”
figure except that an inverter has been inserted in the path to Register
B. In this instance, even though this register is a member of the time
group whose offset triggers on the rising edge, the addition of the
inverter classifies register B as triggering on the falling edge like
Register C.

Normally, the tools will move an inverter to the register, in which
case, B would be a part of the timegroup “Falling”. However if the
clock is gated with logic that inverts, then the inverter will not
become part of the register. In that case, one way to solve this
problem is to create a timegroup with an exception for Register B. See
the “Creating Groups by Exclusion” section for details.

Group OFFSET
You can also define OFFSET constraints within the TIMESPEC
primitive with a leading TIMEGRP reference.

Schematic syntax in TIMESPEC primitive

TSidentifier=TIMEGRP name OFFSET= {IN |OUT} offset_time
[units] {BEFORE|AFTER} clk_name [TIMEGRPgroup_name]

The UCF and PCF syntax do not require the TSidentifier.

X8459

CBA

DATA

CLOCK

Using Timing Constraints

Development System Reference Guide—May 1998 4-43

UCF syntax

[TIMEGRP name] OFFSET= {IN |OUT} offset_time [units]
{BEFORE|AFTER} clk_name [TIMEGRPgroup_name];

PCF syntax

[TIMEGRP name] OFFSET= {IN |OUT} offset_time [units]
{BEFORE|AFTER} COMP clk_iob_name [TIMEGRPgroup_name];

The timing group specified at the beginning has a different purpose
than the timegroup specified at the end. The first time group is a list
of data pads that the OFFSET applies to, while the last time group
(register time group) is a list of synchronous elements that specifies
which register elements clocked by clk_name or clk_iob_name should
be analyzed.

Note: If the first group has FFs or the second group has PADS,
NGDBuild generates an error.

offset_time is the external offset.

units is an optional field that indicates the units for offset time. The
default units are in nanoseconds, but the timing number can be
followed by ps, ns, us, GHz, MHz, or KHz to indicate the intended
units.

clk_iob_name is the block name of the clock IOB.

Ignoring Selected Paths (TIG)
In a design, some paths do not require timing analysis. These are
paths that exist in the design, but are never used during time-critical
operations. If you indicate a timing requirement on these paths, more
important paths might be slower, which can result in failure to meet
the timing requirements.

The value of TIG may be any of the following.

• Empty (global TIG that blocks all paths)

• A single TSid to block

• A comma separated list of TSids to block, for example

NET $1I567/$Sig_5 TIG=TS_fast, TS_even_faster;

Development System Reference Guide

4-44 Xilinx Development System

To indicate that all timing specifications through a net, primitive pin
or macro pin are to be ignored, attach the following attribute to the
desired element.

Schematic syntax

TIG

UCF syntax

{NET | PIN | INSTANCE} name TIG ;

If this attribute is attached to a net, primitive pin, or macro pin, all
paths that fan forward from the point of application of the attribute
are treated as if they don’t exist for the purposes of timing analysis
during implementation. In the following figure, NET C is ignored.
However, note that the lower path of NET B that runs through the
two OR gates would not be ignored.

Figure 4-16 TIG Example

The following attribute would be attached to a net to inform the
timing analysis tools that it should ignore paths through the net for
specification TS43:

Schematic syntax

TIG = TS43

UCF syntax

NETnet_name TIG = TS43;

D Q

D Q

D Q

D Q

TIG

Ignored Paths

NET C

NET B

NET A

X8529

Using Timing Constraints

Development System Reference Guide—May 1998 4-45

You cannot perform path analysis in the presence of combinatorial
loops. Therefore, the timing tools ignore certain connections to break
combinatorial loops. You can use the TIG constraint to direct the
timing tools to ignore specified nets or load pins, consequently
controlling how loops are broken.

Basic FROM –TO Syntax
Within the TIMESPEC primitive, you use the following syntax to
specify timing requirements between specific end points.

TSidentifier=FROMsource_group TO dest_group delay

TSidentifier=FROMsource_group delay

TSidentifier=TO dest_group delay

Unspecified FROM or TO, as in the second and third syntax state-
ments, implies all points.

The From-To statements are TS attributes that reside in the
TIMESPEC primitive. The parameters source_group and dest_group must
be one of the following.

• Predefined groups

• Previously created TNM identifiers

• Groups defined in TIMEGRP symbols

• TPSYNC groups

Predefined groups consist of FFS, LATCHES, RAMS, or PADS and are
discussed in the “Using Predefined Groups” section. TNMs are intro-
duced in the “Creating User-Defined Groups Using TNMs” section.
TIMEGRP symbols are introduced in the “Creating New Groups
from Existing Groups” section.

Note: Keywords, such as FROM, TO, and TS appear in the
documentation in upper case; however, you can enter them in the
TIMESPEC primitive in either upper or lower case. You cannot enter
them in a combination of lower and upper case.

The delay parameter defines the maximum delay for the attribute.
Nanoseconds are the default units for specifying delay time in TS
attributes. You can also specify delay using other units, such as
picoseconds or megahertz.

Development System Reference Guide

4-46 Xilinx Development System

Refer to the “Specifying Time Delay in TS Attributes” section later in
this chapter for more information on time delay. The delay can be a
function of another TIMESPEC (TS01*2).

The following examples illustrate the use of From-To TS attributes.

Schematic syntax in TIMESPEC primitive

TS01=FROM FFS TO FFS 30
TS_OTHER=FROM PADS TO FFS 25
TS_THIS=FROM FFS TO RAMS 35
TS_THAT=FROM PADS TO LATCHES 35

UCF syntax

TIMESPEC TS01=FROM FFS TO FFS 30;
TIMESPEC TS_OTHER=FROM PADS TO FFS 25;
TIMESPEC TS_THIS=FROM FFS TO RAMS 35;
TIMESPEC TS_THAT=FROM PADS TO LATCHES 35;

You can place TS attributes containing From-To statements in either
of two places: in the TIMESPEC primitive on the schematic as
discussed in this chapter or in a constraints (UCF) file. See the
“Attributes, Constraints, and Carry Logic” chapter of the Libraries
Guide for more information about specifying timing requirements in a
constraints file.

Specifying Timing Points
There are situations where a particular point or set of points in your
design needs to be flagged for reference in subsequent timing
specifications. Timing points are used for these specifications.

There are two types of timing points.

• A TPSYNC timing point is used to allow a point to be used as the
start or the end of timing path, even though the point may not
apply to a flip-flop, latch, RAM or I/O pad.

• A TPTHRU timing point identifies an intermediate point on a
path.

The following sections describe how these timing points are specified
in a schematic. The syntax for specifying TPSYNC and TPTHRU
constraints in a UCF or NCF constraints file is described in the
“Attributes, Constraints, and Carry Logic” chapter of the Libraries
Guide.

Using Timing Constraints

Development System Reference Guide—May 1998 4-47

Using TPSYNC to Define Synchronous Points
There are cases where the timing of a design must be defined from or
to a point in the design that is not a flip-flop, latch, RAM or I/O pad.
For example, you might want to specify a point at the output of a
latch defined using a function generator instead of a latch symbol.
The TPSYNC timing point identifies one or a group of these points.

 A TPSYNC attribute has the following syntax.

Schematic syntax

TPSYNC = identifier

UCF syntax

{NET | PIN | INST } TPSYNC= identifier;

identifier is a name that is used in timing specifications in the same
way that groups are used. The same identifier can be used on several
points which are then treated as a group from the point of view of
timing analysis. The identifier must be different from any identifier
used for a TNM attribute.

The way a TPSYNC timing point is used depends on the object to
which it is attached.

• Attached to a net, TPSYNC identifies the source of the net as a
potential source or destination for timing specifications.

• Attached to an output macro pin, TPSYNC identifies all of the
sources inside the macro that drive the pin to which the attribute
is attached as potential sources or destinations for timing
specifications. In the following diagram. POINTY applies to the
inverter.

TPSYNC=POINTX

X8524

Development System Reference Guide

4-48 Xilinx Development System

Figure 4-17 TPSYNCs Attached to Macro Pins

If the macro pin is an input pin (that is, there are no sources for
the pin in the macro), then all of the load pins in the macro are
flagged as synchronous points. In the preceding figure POINTX
applies to the input AND gate.

• Attached to a primitive pin, TPSYNC flags the primitive’s pin as
a potential source or destination for timing specifications;
TPSYNC applies to the pin it is attached to.

• Attached to a primitive symbol, TPSYNC identifies the output(s)
of that element as a potential source or destination for timing
specifications. See the following figure.

D Q

Q1

D Q

CLOCK

D Q
D1

D3

D2 Q2

Q3

X8551

TPSYNC=POINTX

TPSYNC=POINTY

TPSYNC=POINTX

X8552

Using Timing Constraints

Development System Reference Guide—May 1998 4-49

The use of a TPSYNC timing point to define a synchronous point in a
design implies that the flagged point cannot be merged into a
function generator. For example, consider the following diagram.

In this example, because of the TPSYNC definition, the two gates
cannot be merged into a single function generator.

Using TPTHRU to Define Through Points
The TPTHRU attribute defines an intermediate point in a path. A
point or group defined with TPTHRU attributes is used in detailed
timing specifications.

 A TPTHRU attribute has the following syntax.

TPTHRU = identifier

identifier is a name that is used in timing specifications in the same
way that groups are used. The same identifier can be used on several
points which are then treated as a group from the point of view of
timing analysis.

The identifier must be different from any identifier used for a TNM
attribute or TPSYNC.

Timing specifications using TPTHRU groups are described in the
“Specifying Time Delay in TS Attributes” section.

TPSYNC=FOO

Function
Generator

Function
Generator

X8758

Development System Reference Guide

4-50 Xilinx Development System

Using TPTHRU or TPSYNC in a FROM–TO
Constraint

It is sometimes convenient to define intermediate points on a path to
which a specification applies. This defines the maximum allowable
delay and has the following syntax.

Schematic syntax in TIMESPEC primitive

TSidentifier=FROMsource_group THRU thru_point [THRU
thru_point] TO dest_group allowable_delay [units]

TSidentifier=FROMsource_group THRU thru_point [THRU
thru_point] allowable_delay [units]

TSidentifier=THRU thru_point [THRU thru_point] TO dest_group
allowable_delay [units]

UCF syntax

TIMESPEC TSidentifier=FROMsource_group THRU thru_point
[THRU thru_point] TO dest_group allowable_delay [units];

TIMESPEC TSidentifier=FROMsource_group THRU thru_point
[THRU thru_point] allowable_delay [units];

TIMESPEC TSidentifier=THRU thru_point [THRU thru_point]
allowable_delay [units];

Unspecified FROM or TO, as in the second and third syntax state-
ments, implies all points.

• identifier is an ASCII string made up of the characters A..Z, a..z,
0..9, underbar (_), and forward slash (/).

• source_group and dest_group are user-defined, predefined groups
or TPSYNCs.

• thru_point is an intermediate point used to qualify the path,
defined using a TPTHRU attribute.

• allowable_delay is the timing requirement.

• units is an optional field to indicate the units for the allowable
delay. Default units are nanoseconds, but the timing number can
be followed by ps, ns, us, ms, GHz, MHz, or KHz to indicate the
intended units.

Using Timing Constraints

Development System Reference Guide—May 1998 4-51

The example shows how to use the TPTHRU attribute with the
THRU attribute on a schematic. The UCF syntax is as follows.

INST FLOPA TNM=A;
INST FLOPB TNM=B;
NET MYNET TPTHRU=ABC
TIMESPEC TSpath1=FROM A THRU ABC TO B 30;

The following schematic shows the placement of the TPTHRU
attribute and the resultant path that is defined.

Figure 4-18 TPTHRU Example

Specifying Time Delay in TS Attributes
Nanoseconds are the default units for specifying delay times in TS
attributes. However, after specifying the maximum delay or
minimum frequency numerically, you can enter the unit of measure
by specifying the following.

• PS for picoseconds, NS for nanoseconds, US for microseconds, or
MS for milliseconds

• MHZ for megahertz, KHZ for kilohertz, or GHz for gigahertz

D Q

D Q

D Q

D Q

X8525

TNM=A

FLOPA
FLOPB

TNM=B

TPTHRU=ABC

MYNET

TIMESPEC

TSpath1=FROM:A:THRU:ABC:TO:B:30

Development System Reference Guide

4-52 Xilinx Development System

As an alternate way of specifying time delay, you can specify one
time delay in terms of another. Instead of specifying a time or
frequency in a TS attribute definition, you can specify a multiple or
division of another TS attribute. This is useful in a system where all
clocks are derived from a master clock; in this situation, changing the
timing specification for the master clock changes the specification for
all clocks in the system.

Use the syntax below to specify a TS attribute delay in terms of
another.

Schematic syntax attached to TIMESPEC primitive

TSidentifier=specification reference_TS_attribute[{* |/ }number]

UCF syntax

TIMESPEC TSidentifier=specification: reference_TS_attribute[{* |/
}number];

number can be either a whole number or a decimal. The specification
can be any From-To statement as illustrated by the following
examples.

FROM PADS TO PADS
FROM group1 TO group2
FROM tnm_identifier TO FFS
FROM LATCHES TO group1

Use “*” to represent multiplication and “/” to represent division. The
specification type of the reference TS attribute does not need to be the
same as the TS attribute being defined; however, it must not be
specified in terms of TIG.

Examples

Examples of specifying a TS attribute in terms of another are as
follows. In these cases, assume that the reference attributes were
specified as delays (not frequencies).

In the example below, the paths between flip-flops and pads are
placed and routed so that their delay is at most 10 times the delay
specified in the TS05 attribute.

Using Timing Constraints

Development System Reference Guide—May 1998 4-53

Schematic syntax in TIMESPEC primitive

TS08=FROM FFS TO PADS TS05*10

UCF syntax

TIMESPEC TS08=FROM FFS TO PADS TS05*10;

In the example below, the paths between input and output pads are
placed and routed so that their delay is at most one-eighth the delay
specified in the TS07 attribute.

Schematic syntax in TIMESPEC primitive

TS1=FROM PADS TO PADS TS07/8

UCF syntax

TIMESPEC TS1=FROM PADS TO PADS TS07/8;

Note: When a reference attribute is specified as a frequency, a
multiple represents a faster specification; a division represents a
slower specification.

You can also specify a TS attribute in terms of a TS attribute that is
already a specification of another. The following example provides an
illustration.

Schematic syntax in TIMESPEC primitive

TS09=FROM FFS TO FFS 50
TS10=FROM FFS TO PADS TS09*2
TS11=FROM PADS TO PADS TS10*4

UCF syntax

TIMESPEC TS09=FROM FFS TO FFS 50;
TIMESPEC TS10=FROM FFS TO PADS TS09*2;
TIMESPEC TS11=FROM PADS TO PADS TS10*4;

Development System Reference Guide

4-54 Xilinx Development System

Using the PRIORITY Keyword
There may be situations where there is a conflict between two
TIMESPECs that cover the same path. In these cases you can define
the priority of a TIMESPEC using the following syntax.

normal_timespec_syntax PRIORITY integer

normal_timespec_syntax is a legal TIMESPEC and integer represents
the priority (the smaller the number, the higher the priority). The
number can be positive, negative, or zero, and the value only has
meaning when compared with other PRIORITY values.

Sample Schematic Using TIMESPEC/TIMEGRP
Symbol

TNM identifiers define symbols or groups of symbols that are used in
timing specifications. They can also define other groups. The
following figure shows an example of a TNM attribute attached to an
individual symbol. In this circuit, the flip-flop D_FF has the attribute
TNM=D_FF attached to it.

Using Timing Constraints

Development System Reference Guide—May 1998 4-55

Figure 4-19 Example of Using TNMs and TIMEGRPs in Your
Schematic

The TIMEGRP symbol contains an attribute that defines a group of
flip-flops called Q_FFS, which includes all flip-flops in the schematic
except the one labeled D_FF. You can then use the group Q_FFS to
create timing specifications in the TIMESPEC primitive. The flip-flop
D_FF has its clock enable driven at 1/2 of the clock frequency;
therefore, its flip-flop to pad and pad to flip-flop timing specifications
are longer than the flip-flop to pad specifications in the Q_FFS group.

C
CE

D Q

CLR

C
CE

D Q

CLR

C
CE

D Q

CLR

C
CE

D Q

CLR

C
CE

D Q

CLR

Q3

Q2

Q1

Q0

Q0

Q1

Q2

Q3D3

D2

D1

D0

+5
VCC

FDCE

FDCE

FDCE

FDCE

FDCE

D_FF

TNM=D_FF AND4

D_EN

RDATA RD_OUT

Q3_OUT

Q2_OUT

Q1_OUT

Q0_OUT

OPAD

OPAD

OPAD

OPAD

OPAD

OBUF

OBUF

OBUF

OBUF

OBUF

GND

INV

XOR2

XOR2

XOR2

DATA

CLK

IPAD

IPAD

D_IN

K_IN

IBUF

BUFG

C3

C2

AND2

AND3

X6170

Q_FFS=FFS:EXCEPT:D_FF TS_CLK_CYCLE=FROM:FFS:TO:FFS:50

TS_CTR=FROM:Q_FFS:TO:PADS=25

TS_D_O=FROM:D_FF:TO:PADS=50

TS_D_I=FROM:PADS:TO:D_FF=50

TIMEGRP TIMESPEC

Development System Reference Guide

4-56 Xilinx Development System

Prorating Constraints
The prorating constraints, VOLTAGE and TEMPERATURE, provide a
method for determining timing delay characteristics based on known
environmental parameters. On a schematic, you can enter these
constraints in any empty space. For Release 1.5 these two constraints
are supported only for the XC4000XL. New speed file releases for
existing architectures will support these two constraints.

VOLTAGE Constraint
This constraint allows the specification of the operating voltage. This
provides a means of prorating delay characteristics based on the
specified voltage.

Note: Each architecture has its own specific range of supported
voltages. If the entered voltage does not fall within the supported
range, the constraint is ignored and an architecture-specific default
value is used instead. The UCF syntax is as follows.

VOLTAGE=value[units]

value is an integer or real number specifying the voltage and units is
an optional parameter specifying the unit of measure. V specifies
volts, the default voltage unit.

TEMPERATURE Constraint
This constraint allows the specification of the operating temperature
which provides a means of prorating device delay characteristics
based on the specified junction temperature. Prorating is a linear
scaling operation on existing speed file delays and is applied globally
to all delays.

Note: Each architecture has its own specific range of valid operating
temperatures. If the entered temperature does not fall within the
supported range, the constraint is ignored and an architecture-
specific default value is used instead. The UCF syntax is as follows.

TEMPERATURE=value[C |F| K]

value is an integer or a real number specifying the temperature. C, K,
and F are the temperature units: F is degrees Fahrenheit, K is degrees
Kelvin, and C is degrees Celsius, the default.

Using Timing Constraints

Development System Reference Guide—May 1998 4-57

Additional Timing Constraints
There are additional properties and constraints you can specify for
the timing analysis tools. They are the following.

• Net skew control (MAXSKEW)

• Net delay control

• Path tracing control

• The DROP_SPEC constraint

Controlling Net Skew (MAXSKEW)
Skew is the difference between the minimum and maximum of the
maximum load delays on a net. You can control the maximum
allowable skew on a net by attaching the MAXSKEW attribute
directly to the net. Syntax is as follows.

skew_item MAXSKEW=allowable_skew [units];

allowable_skew is the timing requirement.

The default units for allowable_skew are nanoseconds, but the timing
number can be followed by ps, ns, us, ms, GHz, MHz, or KHz to
indicate the intended units.

skew_item is one of the following,

• NET “net_name”

• TIMEGRP “group_name” (PCF only)

• ALLCLOCKNETS (PCF only)

Note: TIMEGRP and ALLCLOCKNETS are supported in PCF files
only.

It is important to understand exactly what MAXSKEW defines.
Consider the following example.

Development System Reference Guide

4-58 Xilinx Development System

Figure 4-20 MAXSKEW

In the preceding diagram, for ta(1,2), 1 ns is the minimum delay and 2
ns is the maximum delay for the Register A clock. For tb(2,4), 2 ns is
the minimum delay and 4 ns is the maximum delay for the Register B
clock. MAXSKEW defines the maximum of tb minus the maximum of
ta, that is, 4-2=2. Since the data delay is greater than MAXSKEW (DD
is 2.5 while MAXSKEW is 2), no race condition occurs. However,
MAXSKEW does not account for the circumstance where one of the
registers is operating at minimum delay (for example, ta=1) while a
second register is operating at maximum delay (for example, tb=4).
Under those conditions, the skew is 3 ns (tb - ta= 3). Since the data
delay (DD = 2.5) is less than the skew, a race condition exists.

Controlling Net Delay (MAXDELAY)
You can control the maximum allowable delay on a net by attaching
the MAXDELAY attribute directly to the net. The UCF syntax is as
follows.

NETnet_name MAXDELAY=path_value [PRIORITY integer] ;

TSidentifier=MAXDELAY=path path_value [PRIORITY integer] ;

path MAXDELAY=path_value [PRIORITY integer] ;

net_delay_item MAXDELAY=delay_time [units] [PRIORITY
integer] ;

path is one of the following,

• PATH “path_name”

• ALLPATHS

• FROM group_item THRU group_item1... group_itemn

A

D

Using Timing Constraints

Development System Reference Guide—May 1998 4-59

• FROM group_item THRU group_item1... group_itemn TO
group_item

• THRU group_item1... group_itemn TO group_item

path_value is one of the following,

• delay_time [units]

units defaults to nanoseconds, but the delay time number can be
followed by ps, ns, us, or ms (picoseconds, nanoseconds, micro-
seconds, or milliseconds) to specify the units

• frequency units

units can be specified as GHz, MHz, or KHz (gigahertz, mega-
hertz, or kilohertz)

• TSidentifier [{/ |*} real_number]

net_delay_item is one of the following.

• NET “net_name”

• TIMEGRP “group_name”

• ALLCLOCKNETS

Controlling Path Tracing
Path tracing controls allows you to enable or disable specific paths
within device components (for example, CLBs and IOBs) for timing
analysis. These constraints can only be entered in a PCF file; they cannot
be applied during design entry or in a UCF or NCF file.

This constraint can be applied at a global or group scope. The path
tracing syntax is as follows.

[TIMEGRPpredefined_group] {ENABLE | DISABLE} = symbol;

symbol is a component delay symbol, and predefined_group (which is
optional) represents the name of a previously-defined time group. If
there is no TIMEGRP predefined_group qualifier, the path tracing
control applies to all logic cells in the design.

The symbol, which is case-insensitive, can be either of the following.

• A standard component delay symbol name (for example,
reg_sr_q or tbuf_i_o, as described in the following table).

Development System Reference Guide

4-60 Xilinx Development System

There is a one-to-many correspondence between these symbol
names and data book symbol names, and the data book symbols
to which each standard block delay signal applies varies from
one device family to another.

• A component delay specified in the Xilinx Programmable Logic
Data Book (for example, TILO (entered as TILO) or TCCK (entered
as TCCK)).

The following table describes the standard block delay symbols.

The IOB configuration for Virtex is somewhat different than the IOB
configuration for other architectures. See the following figure.

Table 4-1 Standard Block Delay Symbols for Path Tracing

Symbol Path Type Default

reg_sr_q Set/Reset to output propagation
delay

Disabled

lat_d_q Data to output transparent latch
delay

Disabled

ram_d_o RAM data to output propagation
delay

Disabled

ram_we_o RAM write enable to output propa-
gation delay

Enabled

tbuf_t_o TBUF tristate to output propagation
delay

Enabled

tbuf_i_o TBUF input to output propagation
delay

Enabled

io_pad_i IO pad to input propagation delay Enabled

io_t_pad IO tristate to pad propagation delay Enabled

io_o_i IO output to input propagation
delay. Disabled for tristated IOBs.

Enabled

io_o_pad IO output to pad propagation delay Enabled

Using Timing Constraints

Development System Reference Guide—May 1998 4-61

Figure 4-21 Simplified IOB Configurations and io_t_pad

For the Virtex IOB, there is no default path. If a latch is used (latch
mode), then io_t_pad controls the D to Q path through the latch. By
default D to Q is enabled which is different than other internal
latches. The clock to Q of the latch is not disabled by io_t_pad.

If a register is used instead of a latch, the clock to Q of the register is
not disabled by io_t_pad.

Path Tracing Examples

The PCF file constraint below prevents timing analysis on any path
that includes the I to O delay on a TBUF component. The constraint
applies to all TBUF components in the design.

DISABLE = "tbuf_i_o";

The PCF file constraint below disables the I to O delay on the TBUF
components in the group mygroup, if applicable.

TIMEGRP "mygroup" DISABLE = "tbuf_i_o";

Simplified IOB for standard architectures

Simplified IOB for Virtex

CLK

QDT

T
Path for io_t_pad

Pad

Pad

Latched Path
for Tristate control

X8678

Latch
or
FF

Development System Reference Guide

4-62 Xilinx Development System

The PCF file constraint below disables the TILO databook component
delay in the group mygroup, if applicable.

TIMEGRP "mygroup" DISABLE = "TILO";

The delay symbol names in the Xilinx Programmable Logic Data Book
do not always agree with the delay names reported in TRACE (the
Xilinx timing analyzer). To ensure your path tracing constraints are
processed correctly and to allow your constraints to be portable from
one device to another, use the delay names reported by TRACE
instead of the databook names.

You can control path tracing for a single instance by creating a group
containing only the instance, then specifying this group in a path
tracing constraint.

The DROP_SPEC Constraint
A constraint specified in a UCF constraints file takes precedence over
one with the same name in the input design. This allows you to
redefine or modify constraints without having to edit the input
design. The DROP_SPEC constraint allows you to specify that a
timing constraint defined in the input design should be dropped
from the analysis. The UCF syntax is as follows.

TS identifier = DROP_SPEC

identifier is the identifier name used with another timing specification.
This constraint can be used when new specifications defined in a
constraints file do not directly override all specifications defined in
the input design, and some of these input design specifications need
to be dropped.

While this timing command is not expected to be used much in an
input netlist (or NCF file), it is not illegal. If defined in an input
design this attribute must be attached to a TIMESPEC primitive.

Using Timing Constraints

Development System Reference Guide—May 1998 4-63

Constraints Priority
In some cases, two timing specifications cover the same path. For
cases where the two timing specifications on the path are mutually
exclusive, the following constraint rules apply.

• Priority depends on the file in which the constraint appears. A
constraint in a file accessed later in the design flow replaces a
constraint in a file accessed earlier in the design flow. Priority is
as follows (first listed is the highest priority, last listed is the
lowest).

• Constraints in a Physical Constraints File (PCF)

• Constraints in a User Constraints File (UCF)

• Constraints in a Netlist Constraints File (NCF)

• Attributes in a schematic

• If two timing specifications cover the same path, the priority is as
follows (first listed is the highest priority, last listed is the lowest).

• Timing Ignore (TIG)

• FROM:THRU:TO specifications

• FROM:TO specifications

• PERIOD specifications

• ALLPATHS type specifications (in PCF file only).

• FROM:THRU:TO or FROM:TO statements have a priority order
that depends on the type of source and destination groups
included in a statement. The priority is as follows (first listed is
the highest priority, last listed is the lowest).

• Both the source group and the destination group are user-
defined groups

• Either the source group or the destination group is a
predefined group

• Both the source group and the destination group are
predefined groups

Net delay and Net skew specifications are analyzed independently of
path delay analysis and do not interfere with one another.

Development System Reference Guide

4-64 Xilinx Development System

If two constraints are in the same category, the user-defined priority
described in the“Using the PRIORITY Keyword” section is used to
determine which constraint takes precedence.

Syntax Summary
The following sections summarize the syntax for timing constraints.

TNM Attributes
The following table lists the syntax used when creating TNMs, which
you enter directly on the primitive symbol, macro symbol, net, or
driver pin.

TNM Attribute Syntax Where Applied

Schematic syntax:
TNM=identifier
TNM=predefined_group identifier

UCF syntax:

{NET | PIN | INSTANCE} name TNM=identifier
{NET | PIN | INSTANCE} name TNM=predefined_group: identifier;

Net, Symbol, Pin,
Macro

Using Timing Constraints

Development System Reference Guide—May 1998 4-65

TIMEGRP Attributes
The following table lists the syntax used with the TIMEGRP
primitive.

Group Type TIMEGRP Attribute Syntax

Combine Schematic syntax in TIMEGRP primitive:
new_group=group1 group2 [group3 . . .]

UCF syntax:
TIMEGRP new_group=group1: group2 [group3 . . .];

Exclude Schematic syntax in TIMEGRP primitive:
new_group=group1[:group2 . . .] EXCEPT group3[group4 ...]

UCF syntax:
TIMEGRP new_group=group1[:group2 . . .] EXCEPT group3[group4 ...];

Clock Edge
(flip-flops)

Schematic syntax in TIMEGRP primitive:
new_group=RISING group1
new_group=FALLING group1

UCF syntax:
TIMEGRP new_group=RISING group1;
TIMEGRP new_group=FALLING group1;

Gate Edge
(latches)

Schematic syntax in TIMEGRP primitive:
new_group=TRANSHI group1
new_group=TRANSLOgroup1

UCF syntax:
TIMEGRP new_group=TRANSHI group1;
TIMEGRP new_group=TRANSLOgroup1;

Development System Reference Guide

4-66 Xilinx Development System

Pattern
Matching

Schematic syntax in TIMEGRP primitive:
new_group=predefined_group (name_qualifier1[name_qualifier2 . . .])

UCF syntax:
TIMEGRP new_group=predefined_group (name_qualifier1[name_qualifier2 .
. .]);

Net-specific
OFFSETs

Schematic syntax when attached to a net:
OFFSET = {IN |OUT} offset_time [units] {BEFORE|AFTER} clk_name
[TIMEGRPgroup_name]

UCF syntax:
NET name OFFSET = {IN |OUT} offset_time [units] {BEFORE|AFTER}
clk_name [TIMEGRPgroup_name];

PCF syntax:
COMP “iob_name” OFFSET = {IN |OUT} offset_time [units]
{BEFORE|AFTER} COMP “clk_iob_name” [TIMEGRP “group_name”];

Group Type TIMEGRP Attribute Syntax

Using Timing Constraints

Development System Reference Guide—May 1998 4-67

TIMESPEC Attributes
The following table lists the syntax used for parameters that define
TS attributes, which reside in the TIMESPEC primitive or appear in
UCF or NCF files.

Spec Type TS Attribute Syntax

Basic
From-To

Schematic syntax in TIMESPEC primitive:
TSid=FROMsource_group TO dest_group delay
TSid=FROMsource_group delay
TSid=TO dest_group delay

UCF syntax:
TIMESPEC TSid=FROM:source_group TO dest_group delay;
TIMESPEC TSid=FROMsource_group delay;
TIMESPEC TSid=TO dest_group delay;

Ignore Schematic syntax in TIMESPEC primitive:
TSid=IGNORE

UCF syntax:
TIMESPEC TSid=IGNORE;

Through
point

Schematic syntax in TIMESPEC primitive:
TSid=FROMsource_group THRU thru_point[THRU
thru_point] TO dest_group delay
TSid=FROMsource_group THRU thru_point[THRU
thru_point] delay
TSid=THRU thru_point[THRU thru_point] TO dest_group delay

UCF syntax:
TIMESPEC TSid=FROMsource_group:THRU thru_point[THRU
thru_point] TO dest_group delay;
TIMESPEC TSid=FROMsource_group THRU thru_point[THRU
thru_point] delay;
TIMESPEC TSid=THRU thru_point[THRU thru_point] TO dest_group
delay;

Development System Reference Guide

4-68 Xilinx Development System

Linked
specification

Schematic syntax in TIMESPEC primitive:
TSid=FROMsource_group TO dest_group another_TSid
[* |/]number
TSid=FROMsource_group another_TSid
[* |/]number
TSid=TO dest_group another_TSid[* |/]number

UCF syntax:
TIMESPEC TSid=FROMsource_group TO dest_group another_TSid
[* |/]number;
TIMESPEC TSid=FROMsource_group another_TSid
[* |/]number;
TIMESPEC TSid=TO dest_group another_TSid[* |/]number;

Clock period Schematic syntax in TIMESPEC primitive:
TSid=PERIOD TNM_reference period {HIGH|LOW} [high_or_low_time]

UCF syntax:
TIMESPEC TSid=PERIOD TNM_reference period: {HIGH|LOW}
[high_or_low_time];

Derived
clocks

Schematic syntax in TIMESPEC primitive:
TSid=PERIOD TNM_reference another_PERIOD_identifier
[/ |*]number{HIGH|LOW} [high_or_low_time]

UCF syntax:
TIMESPEC TSid=PERIOD:TNM_reference another_PERIOD_identifier
[/ |*]number{HIGH|LOW} [high_or_low_time];

Spec Type TS Attribute Syntax

Using Timing Constraints

Development System Reference Guide—May 1998 4-69

The following table lists additional attributes or constraints that are
used in or affect TS attributes.

TS attribute
priority

normal_timespec_syntax PRIORITY integer

Group
OFFSETs

Schematic syntax in TIMESPEC primitive:
TSidentifier=TIMEGRP name OFFSET= {IN |OUT} offset_time [units]
{BEFORE|AFTER} clk_name [TIMEGRPgroup_name]

The UCF and PCF syntax do not require the TSidentifier.

UCF syntax:
[TIMEGRP name] OFFSET= {IN |OUT} offset_time [units]
{BEFORE|AFTER} clk_name [TIMEGRPgroup_name];

PCF syntax:
[TIMEGRP name] OFFSET= {IN |OUT} offset_time [units]
{BEFORE|AFTER} COMP clk_iob_name [TIMEGRPgroup_name];

Attribute Syntax
Where

Applied
How Used

Schematic syntax on net, pin, symbol, or macro:
TPTHRU=identifier

UCF syntax:
{NET | PIN | INSTANCE} name TPTHRU=identifier;

Net,
symbol,
pin,
macro

In through point TS
attribute

Schematic syntax on net, pin, symbol, or macro:
TPSYNC=identifier

UCF syntax:
{NET | PIN | INSTANCE} name TPSYNC=identifier;

Net,
symbol,
pin,
macro

As group in TS attribute

Spec Type TS Attribute Syntax

Development System Reference Guide

4-70 Xilinx Development System

Other Constraints
The following table lists additional timing constraints.

Schematic syntax on net or pin:
TIG
TIG= identifier

UCF syntax:
{NET | PIN } name TIG;
{NET | PIN } name TIG= identifier;

Net, pin Prevents timing analysis

TSidentifier=DROP_SPEC;(Constraints file only) N/A Prevents timing analysis
for TSidentifier

Attribute Syntax Where Applied How Used

Schematic syntax on net or pin:
PERIOD period {HIGH|LOW}
[high_or_low_time]

UCF syntax:
{NET | PIN } name PERIOD period
{HIGH|LOW} [high_or_low_time];

Nets, pins Specifies register
clock period

Attribute Syntax
Where

Applied
How Used

Using Timing Constraints

Development System Reference Guide—May 1998 4-71

Schematic syntax:
MAXSKEW=allowable_skew

UCF syntax:
NETname MAXSKEW=allowable_skew;

PCF Syntax:
{NET | TIMEGRP | ALLCLOCKNETS} name
MAXSKEW=allowable_skew;

Nets, timegroups,
ALLCLOCKNETS

Specifies skew

Attribute Syntax Where Applied How Used

Development System Reference Guide

4-72 Xilinx Development System

Schematic syntax:
MAXDELAY= path_value [PRIORITY integer]

UCF syntax:
NETnet_name MAXDELAY= path_value
[PRIORITY integer];

PCF syntax:
TSidentifier=MAXDELAYpath path_value
[PRIORITY integer];

{NET | TIMEGRP | ALLCLOCKNETS} name
MAXDELAY= path_value [PRIORITY integer];

PATH path_name MAXDELAY= path_value
[PRIORITY integer];

ALLPATHS MAXDELAY= path_value
[PRIORITY integer];

FROMgroup_item THRUgroup_item1...
group_itemn MAXDELAY= path_value
[PRIORITY integer];

FROMgroup_item THRUgroup_item1...
group_itemn TOgroup_item MAXDELAY=
path_value [PRIORITY integer];

THRUgroup_item1... group_itemn TO
group_item MAXDELAY= path_value
[PRIORITY integer];

Nets, Paths,
FROM:THRU,
FROM:THRU:TO,
THRU:TO

Specifies delay

Attribute Syntax Where Applied How Used

