
XILINX Interface Guide

Introduction

Purpose
The purpose of this Guide is to familiarize you with ACTIVE-CAD operation and introduce you to new
design methodologies, which are provided by tools based on patented incremental compilation method.

Features
ACTIVE-CAD is based on a patented incremental design technology which makes all design changes
instantly available in the simulator. Also, all operations in the simulator are visible in the schematic and HDL
editors. ACTIVE-CAD is a tightly integrated design environment with many time saving features:
• Designed for Windows, ACTIVE-CAD conforms to the industry standards, which simplifies its use.
• Design Manager automatically finds all EDA tools that can be used for handling the selected

technologies or FPGA parts, and creates a control chart for launching different applications.
• Design Manager automatically launches many EDA tools and operations, freeing you from learning these

applications and saving on manual operations.
• ACTIVE-CAD is an integrated Windows design environment that allows mixed design entry formats

(schematics, FSM, HDL), logic synthesis, simulation, and has direct interfaces to other EDA tools.
• At the core of AACTIVE-CAD is the real-time interactive SUSIE simulator that has been in the industry

for over ten years and has an established reputation for speed and quality.
• Patented selective simulation process allows simulation of selected signal paths and design sections at

speed which is not burdened with the overall design size.
• Incremental compiler allows for real-time design breadboarding. Design blocks can be instantly isolated

from other design sections and subject to local signal stimuli. Signal paths and feedbacks can be
manually controlled in real-time while the simulation is in progress.

• Patented virtual hardware™ technology allows for design emulation and hardware modeling on event-
by-event basis at exceptionally low cost.

• Designed for workgroups and network applications, ACTIVE-CAD is a new generation of EDA tools.

Benefits
Because ACTIVE-CAD is a tightly integrated design environment, you can do complex designs in a fraction
of time. You also do not need to learn various EDA tools because they are automatically controlled from the
Design Manager.
• ACTIVE-CAD allows quick start because you do not need to learn various EDA tools
• Because ACTIVE-CAD has been tightly integrated with other EDA tools, it produces quality designs

with a minimum effort.
• Since ACTIVE-CAD allows mixed-mode designs (HDL, FSM and schematic editors), you can learn the

new design technologies in an incremental manner.
• Because ACTIVE-CAD works with UNIX-based EDA tools installed on corporate networks, you can

transition from UNIX to Windows NT tools in an incremental and safe manner.
• ACTIVE-CAD is the lowest cost EDA solution. You can afford to put it every engineering desk for

higher corporate productivity.

Where to Get More Information
For more information, consult the following manuals:
• Schematic Editor User’s Guide
• Logic Simulator User’s Guide

• State Machine and HDL Editors
• Xilinx Applications
• VHDL Shorthand
• An Introduction to Simulation And Virtual Hardware

These manuals, with the exception of the last two, are available on the ACTIVE-CAD CD ROM.

Dynamic help in schematic editor and other applications will provide you with additional guidance on how
to use the key ACTIVE-CAD features.

Differences Between This and a Full Version of ACTIVE-CAD
The Xilinx version of ACTIVE-CAD has all the power of the full blown software. To minimize the product
cost, some features that are not needed for Xilinx applications have been removed. Below is the list of the
items not available in the low cost Xilinx solution:
• Symbols for TTL, ECL, CMOS, MPUs, etc.
• System level simulation
• Interfaces to p.c.b. layout software
• Interfaces to EDA tools which are not directly supported by Xilinx.

The Xilinx version of ACTIVE-CAD should allow you economical and reliable development of Xilinx
designs. None of the powerful ACTIVE-CAD features have been removed, except those mentioned above.

Installation

Requirements
RAM
• 12 Mbytes for Windows 3.11
• 8 Mbytes for Windows 95
• 460 Kbytes of conventional memory for Btrieve
• Windows swap space is 8 Mbytes for ACTIVE-CAD AND 16 Mbytes for Foundation
Software
• DOS 5.0 or later, e.g. 6.21 or 6.3
• MS Windows 3.1 or later
• Win32S 1.25.142.0 for Foundation; it is provided on the Xilinx CD ROM (must be installed before

ACTIVE-CAD!)
• Win32S 1.30 for ACTIVE-CAD (for FSM and HDL editors)
Read for reference pages A-2 and A-3 of the Xilinx Development System

Hardware
• 486 or Pentium class PC
• 30Mbyes to 120 Mbytes of HD space for ACTIVE-CAD
• 80-180 Mbytes of HD space for Foundation

Installing ACTIVE-CAD
• You need to install first XACTstep Ver. 6.0. You need to have installed WIN32S 1.25.142.0 before

installing the Foundation software. If the XACT software is not installed, you will get an error message
(set XACT=C:\XACT) when attempting to install ACTIVE-CAD.

• To install ACTIVE-CAD under Windows 3.11, select the Run option from the File menu. When the entry
window appears, enter the CD ROM path and install.exe (e.g. D:\install.exe)

• To install ACTIVE-CAD from a local CD ROM drive under Windows 95, select the My Computer
icon. It will show an icon for the local CD ROM. If the Autorun option is set to Enable then activating
icon will automatically start installing ACTIVE-CAD. If the Autorun option is disabled, double-click on
the CD ROM icon and it will automatically install all ACTIVE-CAD software (you may need to respond
to a few prompts).

• To install ACTIVE-CAD from a network CD ROM drive (under Windows 95), select the Run option
from the Start menu and enter the CD ROM path (e.g. P:\active\media\install.exe).

Installing XACT 6

XACT Variable setting
ACTIVE-CAD automatically invokes the XACT tool. However, it needs to know its location. That location
is written into AUTOEXEC.BAT file during installation of the XACT software. If you need to modify the
XACT software location on network, enter into the AUTOEXEC.BAT file the new directory. Use the format:

set XACT=n:\full_path\exact

For more information refer to Appendix C of the Getting Started & Installation Guide for XACTstep,
October, 1995.

How XACT programs are executed
All XACT programs are executed in the background. Clicking on any button in the Design Manager will
automatically invoke all EDA tools that are involved in completing the selected design path. For example,

activating SIM Timing button, will automatically invoke the XACT software. If the design has been entered
in ABEL, then the process will start with invoking the X-ABEL software, etc.

Windows 95 compatibility
ACTIVE-CAD is compatible with WINDOWS 3.11, WINDOWS 95 and WINDOWS NT. It also operates in
conjunction with XACT 5 and XACT 6 software. However, exiting XACT 6.0 causes in the present release
an application error that affects only the XACT 6 software and does not destroy the generated files so that
you may continue the design process.

Installing XACT 5
The XACT 5 software is DOS-based. Since ACTIVE-CAD invokes it in the background mode (batch
process), you generally will not be aware that it is a non-Windows product.

To run XACT 5 compilations, you need to create the design in the XACT 5 format. You can do it by invoking
the NEW PROJECT option in the Design Manager and selecting the XACT5 option from the menu.

Keylock

Sentinel driver installation
The Sentinel keylock driver (REV. 5.1.4) is automatically loaded when installing ACTIVE-CAD from the
CD ROM. For the keylock driver to work properly, you need to reboot the computer.

Multiple keylocks
If you have several keylocks on your computer, the keylock software will check in sequence:
1. ACTIVE-CAD keylock; if it present, then all options and libraries in this keylock will be enabled.
2. Xilinx keylock if it is present, it will enable the Xilinx version of ACTIVE-CAD. However, if ACTIVE-

CCAD keylock was also detected, then additional options and libraries will be allowed.
3. If neither ACTIVE-CAD nor Xilinx keylock were detected, then the minimum configuration of ACTIVE-

CAD for Xilinx applications will be enabled.

Keylock Utility
The keylock utility software lists the keylock number and all options and libraries allowed by the keylock. It
may also list expiration date of the software. The keylock can be upgraded with additional options and
libraries, and the expiration date of the software can be changed by entering the appropriate code provided
by ALDEC, Inc.

On-Line Documentation

Acrobat installation
The Acrobat software is automatically loaded during the ACTIVE-CAD installation.

Navigating documents
After the installation, you will find in the Start/Programs menu the Adobe Acrobat 2.0 option., which
provides a tutorial on navigating the documentation.

Searching for topics
To search for a desired topic, activate the Acrobat Reader 2.0 from the icon. Next, select the Find option
from the Tools menu. When a window opens, enter the topic name and click on the Find button. If you need
additional locations of the topic, select the Tools menu and select the Find Again option.

On-Line application Help
Each application has a Help menu, which is placed at the top of the screen and to the right of other menus.
The help is comprised of three options: Contents, Help on Help and About… Clicking on Contents button
displays the contents of the on-line help menu. At the top of the menu there are six buttons which speed help
operations:
Context displays context of the menu
Search displays a window for searching key words of interest
Back returns you to the previous screen
Print prints the current topic
>> button advances display to the next page of the manual
<< button returns display to the previous page of the manual

Help on Help option explains how to use the help features.
About option displays:
• Software logo and trademarks
• Software name and version
• System data (e.g. Windows 95, 14.9 Mbytes available physical memory, 66% free GDI resources)
• User data includes the user name, company and keylock number

Context -sensitive Help
Context sensitive help is available in Design Manager, State Machine Editor and HDL editor. Clicking on the
icon with arrow and question mark, located right below the Help menu, will generate a question mark cursor.
Placing the cursor on an item and clicking the mouse button will display local help menu or brief description
of the selected item.

Getting Help

Technical support numbers
• Tel. support (805-499-6867) is available to users having direct maintenance agreement with ALDEC.

Users who bought the ACTIVE-CAD software from and OEM such as Xilinx, should contact their OEM
technical representative. The support is provided from 8:00 A.M. PST till 5:00 P.M. PST.

• FAX (805-498-7945) support is operational 24 hours and it is provided to users having direct
maintenance agreement with ALDEC.

Bulletin board
• • BBS; tel. 805-498-4086 (USA)
• Self-adopting modem accepts data rates from 2,400 bauds to 28.8 kbauds.
• The data should be sent as 8 bit, NO STOP and ONE (1) PARITY bit

Internet sites
WWW www.aldec.com

E-mail support
support@aldec.com

Project Manager
The Project Manager is an essential tool for managing ACTIVE-CAD projects and applications. The Project Manager
is designed to:
- create and manage project files,
- verify project integrity (dates of modification, etc.),
- control project resources (schematics, netlist, test vectors, libraries, etc.).
- run ACTIVE-CAD applications,
- provide interface to other vendors' applications (e.g., to Xilinx XACT).

Starting Project Manager
To start the Project Manager double-click its icon located in the ACTIVE-CAD group. ACTIVE-CAD always works in
association with a single project. This means that the Project Manager forces you to specify the current project. By
default, it is the project you were working on during the last session with ACTIVE-CAD. If for some reasons such
project cannot be found, the Project Manager will prompt you to either open another project or to create a new one.

Structure of the project
Each ACTIVE-CAD project is stored in a separate subdirectory, called project directory. The project directory
contains all files, called project resources, that were created while working on the project. Project resources may
comprise, among others, schematics files, netlists, HDL files, test vectors, PLD jedec fuse maps, memory files,
simulator macros (command files), project libraries, etc. By default, all project directories are stored in the directory
\\ACTIVE\PROJECT. The name of a project directory name is the same as the name of the appropriate project
(Therefore, project name can consists of up to 8 characters).

For each project directory, ACTIVE -CAD creates a file called Project Description File. A PDF file contains
description of the contents and the current status of the appropriate project. PDF files have the same names as the
corresponding project directories, supplied with the extension .pdf. PDF files are kept in the same directory as project
directories.

The PDF file current.pdf has special meaning for ACTIVE-CAD. This file describes the current project, that is, that
one you are just working on. When you open an existing project (see the next section), ACTIVE-CAD copies its PDF
file into the current.pdf file. As long as you do not load another project, ACTIVE-CAD writes all information about
the current project into the current.pdf file, whereas the actual PDF file remains unchanged. The moment you open
another project, ACTIVE-CAD copies the current.pdf file into the PDF file belonging to the project being closed. The
Project Manager also updates the original PDF file on exit.

NOTE: You can view the PDF file by double-click on the PDF file name in the hierarchy browser.

Managing projects

Creating a new project
To create a new project select the New Project option from the File menu. In the dialog that appears specify
parameters of the new project. These parameters comprise, among others, project name, project type (for projects
using Xilinx FPGA & EPLD devices you should choose either XACT5 or XACT step6), and parameters specific for
the given project type. In case of Xilinx type project (i.e. XACT5 or XACT step6), you must specify Xilinx family, part
type, and speed. Clicking OK causes ACTIVE-CAD to create the new project directory and its PDF file. The PDF file
is then copied into the current.pdf in order to set up the created project as the current one.

NOTE: The Unified/Old Libraries switch that appears for XACT5 projects for families XC2000, XC2000L, XC3000,
XC3000A, XC3000L, XC3100, XC3100A, XC4000, XC4000A, XC4000H allows you to choose the version of library
for the project. Old libraries were used by the XACT4 system. Unified libraries came into use with the XACT5

system. ACTIVE-CAD provides both the old and the unified libraries.

XACT step6 projects
In case of XACT step6 projects, the Project Manager perform the following additional operations:
- creates in the project directory subdirectory XPROJECT,
- creates in the subdirectory XPROJECT file <project_name>.prj for XACT6 system,
- updates the file dsgnmgr.ini (located in the Windows directory) so as to enable XACT6 to find the
<project_name>.prj file.
These operations are executed when you run XACT6 from the Design Flow in the Project Manager.

Opening existing projects
To open an existing project select the Open Project option from the File menu. The dialog Open Project lists the
names of all projects found in projects directory. Using the directory box you may scan other locations on the disk
Select the name of the project you want to open and click OK.

NOTE: All document currently open are closed when you change a project.

Deleting a project
To delete a project you have to select the Delete Project option from the File menu. The dialog Delete Project lists the
names of all projects found in projects directory. Using the directory box you may scan other locations on the disk
Select the name of the project to be deleted and click OK. The Delete All check box allows you to choose deleting the
entire project directory with its PDF file (box checked) or deleting only the resources files, created by ACTIVE-CAD,
in the project directory (box unchecked).

NOTE: You cannot to delete the current project.

Copying a project
To copy a project you have to select the Copy Project option from the File menu. The dialog Copy Projects has two
main fields. In the Source field specify the PDF file of the project you want to copy. By default, this is the PDF file of
the current project. In the Destination field specify the name of the new project and the destination directory, where the
new project directory and the PDF file will be created.

Changing Xilinx family
If you want to change the family and part type for the current Xilinx project you should follow the procedure described
below:
1. Select the Project Type option from the Menu file. Change Family, Part and Speed settings, as desired, and click
the Change button.
2. Open and save each schematic sheet and each schematic macro. To do so, run the Schematic Editor and select the
Open option from the File menu. The Open Sheet window allows you to quickly open all projects top level sheets and
project schematic macros. Inspect the Project Manager messages for any warnings and errors.
3. Re-synthesize and update all FSM and HDL macros. Use hierarchy browser in the Project Manager to search the
project for the macros.
4. If the project contains memory macros, re-synthesize their XNF netlists using the Memory Generator.

NOTE1: If your projects contains components that are not available in the new system library, you have to modify the
project so as to preserve its functionality.

NOTE2: In case of a top level HDL project, the only thing to do is to re-synthesize the entire project

Gregor Siwinski

Hierarchy Browser
Hierarchy browser allows you to explore the project hierarchy. Hierarchy browser is located in the upper left part of
the Project Manager window. The project hierarchy is presented in the form of a tree with expandable and non-
expandable items. The PDF file is placed on the top (root) of the hierarchy. Each item in the hierarchy tree is
represented by a small icon and the name. A tree item can be one of the following:

- the PDF file,
- system or project library (non-expandable),
- schematic sheet (expandable),
- schematic macro (expandable),
- schematic primitive (non-expandable),
- HDL macro or top level HDL document (non-expandable),
- FSM macro (non-expandable),
- external text file.

The color of HDL macro icons and FSM macro icons brings additional information about the macro status.
- gray background denotes that macro status is O.K. (the source file, macro symbol, and XNF netlist exist and are
consistent with each other),
- yellow background denotes that the macro needs to be updated,
- yellow background and red edges denotes that the macro source file does not exist in the project directory.
The only resources attached to the root (available on the top level in the hierarchy) in a new Xilinx project are system
libraries and project library.

Expanding / collapsing hierarchy
Icons representing expandable branches are marked with the sign '+' (when collapsed) or '-' (when expanded). By
clicking these icons you can easily expand and collapse branches. You may also use the appropriate options from the
Document menu.

Starting applications from hierarchy browser
The hierarchy browser allows running applications associated with particular items of the hierarchy tree. To do so,
you must double-click the name of the item in the hierarchy tree. Application starts with the selected item (schematic or
source file) loaded. Here is the list of the associations.

Double-click on: Invoked application:

PDF file Windows Notepad

schematic sheet/macro Schematic Editor

HDL macro / file HDL Editor

FSM macro State Diagram Editor

library Library Manager (The Library Manager allows, among others, viewing
the library contents)

other file appropriate Windows application (the application is associated with the
file according to the file extension)

Push/Pop functionality
If you entered the Schematic Editor by double-clicking a schematic macro, you may use the SC Hierarchy/Hierarchy
Pop option to go to the upper level schematic, even if the upper level schematic is not loaded. In such case, the
Schematic Editor will load the schematic automatically.

I/O port changes
If you change pin specification of a macro used in the project, all schematics containing instance of this macro will not
be updated until they are loaded into the Schematic Editor. Before you proceed with the processing the project, you
should update these schematics (just open them) and the project netlist.

Non-project documents
Sometimes you may want to attach some non-project documents to the project. This usually occurs when you want, for
example, to attach a text file with the description of the project. To do so you have to use the Add option from the
Document menu. Dialog Select Document distinguishes 4 sorts of files:
- schematic files (*.sch),
- state diagram editor (FSM) files (*.asf),
- HDL files (*.vhd and *.abl),
- other files.
The files(s) is attached to the root of the hierarchy.

Design Flow
The Design Flow is located in the upper right part of the Project Manager window. The Design Flow includes a set of
buttons designed to provide a process flow control for selected target device. These flows are designed to provide
automated transfer of data between various tool used to compile your designs. They look different according to the type
of the current project and specific family.

Design Entry Tools
ACTIVE-CAD provides variety of applications which support various methods of description of a design. Here is the
short description of each tool.

Schematic Editor
The Schematic Editor enables drawing flat and hierarchical schematics. The editor allows insertion of non-schematics
macros created within other design entry tools:
- HDL macros, containing description given in Hardware Description Language (either VHDL or ABEL), created
within HDL editor,
- FSM macros, containing finite state machine diagrams, created within State Diagram Editor.

HDL Editor
The HDL Editor is a tool intended for projects utilizing HDL description. Particularly, it is designed to support two
languages: VHDL and ABEL. The editor has interface to synthesis tools which generate XNF netlist from HDL source
code. Synthesis of HDL code, performed by these tools, consists in conversion of the RTL structure described in terms
of the HDL language into XNF netlist built of Xilinx primitives.

State Diagram Editor
The State Diagram Editor supports description in the form of a finite state machine. Definition of a state machine is
given in the form of a graphic diagram. Editor generates description of the machine either in VHDL or ABEL source
code. This description is the base for synthesis program to generate the XNF netlist.

Memory Generator
The Memory Generator is a Xilinx application, the ACTIVE-CAD provides interface to it. The Memory Generator
generates XNF netlist from a MEM file.

File version checking
To check the project integrity the Project Manager compares modification dates of files generated by Xilinx
applications and the ACTIVE-CAD file <project_name>.prj. The files should be ordered chronologically as
described below. In all cases, the oldest should be the file .prj .

For XACT5 projects for families other than XC7200 and XC7300:

file type extension
Schematic Netlist ALB
XNF Netlist XNF
Xmake output LCA
LCA2XNF output XNR
Backannotation output BAX
Routed Netlist ALR (the latest)

For XACT5 projects for families XC7200 and XC7300:
file type extension
Schematic Netlist ALB
XNF Netlist XNF
Xemake6 output VM6
Tsim output XNT
Routed Netlist ALR (the latest)

For Xilinx XACT Step6 projects for any families
file type extension
Schematic Netlist ALB
XNF Netlist XNF
XACT6 output BAX
Routed Netlist ALR (the latest)

Project Libraries
Libraries in ACTIVE-CAD can be divided into two general types. System libraries are provided with the system and
their contents cannot be modified by the user. In addition, each project has its own project working library which is
automatically created when you start a new project. This library stores macros created by the user. It also includes
modified (by the user) versions of components from the system library (e.g. changed pins, part name or timing). The
project working library and system libraries attached to a given project are referred to as project libraries.

If you want to have a library attached to or removed from the project use the Libraries option from the File menu. In the
dialog Libraries you can easily manage all libraries available in the system.

When you create a new project of a stated type, ACTIVE-CAD automatically creates project working library and adds
system libraries which are necessary for the project. For example, when you create a project based on a Xilinx FPGA
device, appropriate system libraries with Xilinx primitives will be attached to the project.

NOTE1: You cannot remove the project working library.

NOTE2: You should not remove system libraries that have been attached to the project by ACTIVE-CAD. Even if you
do so, during the next session with the project, ACTIVE-CAD will attach them again. This rule does not apply the X-
BLOX system library, which can be removed from the project.

NOTE3: Do not attach multiple system libraries to the same project. Even if you do so, during the next session with the
project, ACTIVE-CAD will leave only the library specific for the project target device.

System Libraries
ACTIVE-CAD provides system libraries supporting Xilinx device families XC2000, XC2000L, XC3000, XC3000A,
XC3000L, XC3100, XC3100A, XC4000, XC4000A, XC4000H, XC4000E, XC5200, XC7200, and XC7300. These
libraries contain Xilinx macros and primitives. In addition, family independent X-BLOX system library is available. It
is described in the next section

X-BLOX library
The X-BLOX (Blocks of Logic Optimized for Xilinx) library contains macrocells that allow describing a project in
terms of high-level functions instead of gate-level primitives. As X-BLOX modules are customizable, each macrocell
can describe thousands of unique functions. You can customize these modules using attributes and suitably connecting
their control pins.
X-BLOX library is family independent and supports only Xilinx FPGA families. ACTIVE-CAD provides two versions
of the library: old and unified (see section Managing projects/Creating a new project, in this chapter). Detailed
information on X-BLOX you can find in the Xilinx manual ‘X-BLOX User Guide’.

Application Message Log
When you run ACTIVE-CAD, the Project Manager displays in the lower part of its window commands and messages
interchanged between applications running in the system. All information displayed in the Project Manager message
box may also be stored in a log file. The Preferences option from the Messages menu allows you to customize both
the contents and the way of presentation of the log.

Log settings
In the dialog Message Preferences (menu Messages, option Preferences) you can specify the following parameters:
- how to present the log (in the Project Manager message box, in the log file, in both),
- log file name,
- capacity of the buffer (number of lines) for Project Manager message box,
- the sorts of messages to be reported (errors, warnings, comments, info of level 1..3)

Log files
Beside the main log file, XACT5 and XACT6 applications create their own report files. In case of XACT5 projects
these reports are stored immediately in the ACTIVE-CAD project directories. You may view these reports using the
Xact Design Info dialog, which is available after clicking the Info button in the Design Flow. To view a report you
must double-click the appropriate entry in the Reports section.

In case of XACT Step6 projects, the user interface of XACT6 includes appropriate options for viewing report files and
you should use them to read the reports.

Schematic Projects vs. Top Level HDL Projects
ACTIVE-CAD distinguishes two fundamental project types: Schematic and Top Level HDL. Schematic projects are
based on a classic schematic, built of components, both those coming from standard libraries and user-defined,
connected together with wires (nets). Structure of the project may be hierarchical and consist of many levels. This
means that each schematic may include lower level schematics in the form of schematic macros. For example, macros
belonging to Xilinx libraries often possess multi-level structure. Beside schematic macros, ACTIVE-CAD supports
two other macro types: HDL macros and FSM macros. HDL macros are based on the description expressed in terms of
a Hardware Description Language. The system supports two common languages VHDL and ABEL. The FSM macros
are intended for finite state machines. A state machine is encoded graphically by a state diagram.

The second class of ACTIVE-CAD projects actually comprises two subtypes: Top Level VHDL and Top Level ABEL.
These projects consist solely of HDL source files, which describe the functionality of the entire projects. In case of
VHDL, a project may contain more than one source file. This release of ACTIVE-CAD supports ABEL projects
containing only one source file. As Top Level HDL projects do not have ALDEC binary netlist, the functional
simulation is based on the synthesized XNF netlist.

Adding Top Level documents
Each project is described either by a top level schematic (which can comprise one or more sheets) or an HDL file (or
files). A document(s) of one of the kinds mentioned above must be attached to the uppermost level of the project
hierarchy, i.e., to the root. Otherwise the project is empty.

The type of the documents attached to the root of the hierarchy determines the type of the projects. If you run Schematic
Editor with an empty project, a blank sheet will be automatically attached to the hierarchy root. This way, you will set
the type of the project as schematic.

Similarly, If you run the HDL Editor and attach the source file to the project hierarchy, you will set the project type as
either Top Level VHDL or Top Level ABEL (according to the language of the document).

Functional Simulation of Top Level HDL Projects
This release of ACTIVE-CAD does not support simulation of source VHDL and ABEL code. Functional verification of
a Top Level HDL project is possible only be means of simulation based on the synthesized XNF netlist. If the netlist
contains parametrized X-BLOX macrocells, which do not have simulation models, the Project Manager invokes the X-
BLOX process which produces the XNF netlist consisting of primitives that can be simulated. In case of Top Level
ABEL projects based on XC7200 or XC7300 devices, the netlist may also include components for which simulation
models do not exist. In such case, Xilinx application, TSIM, is invoked in order to generate the XNF netlist consisting
of primitives that can be simulated.

Documents sequence
The order in which the documents appear in the hierarchy tree is important in a few situations. Firstly, sequence of
schematic sheets determines the order in which they will be printed in the Schematic Editor. Secondly, the order in
which the source files are attached to the hierarchy root of a Top Level VHDL project determines the order in which
these files will be analyzed by XVHDL compiler. This issue is discussed in detail in the section Top Level VHDL
projects, in the chapter Using VHDL.

NOTE: You can easily rearrange the items in the hierarchy tree using the drag-and-drop method.

Managing Project Documents

Adding a file
Top level documents may be added to the project in two ways. In the first method, project files are added by design
entry tools. The Schematic Editor adds a blank sheet automatically when the project is empty, i.e. does not include any
top level project files (schematic sheet or HDL file). Using the HDL Editor you can add the edited file to the hierarchy
root choosing the Add to Project from the HDE Project menu.
option
In the other method, you add existing project files using the Add option from the Project Manager's menu Document.
Remember, that the type of the documents attached to the hierarchy root determines the type of the project. Therefore,
you cannot add top level documents of assorted types.

Removing files
You can remove top level documents using the Remove option from the Document menu. Removed files are not
physically deleted but remain in the project directory. If you wish to attach them back, you should use the Add option
from the Document menu.

Adding non-project files
The Project Manager allows attaching also not-project files to the hierarchy root. All files with extension other than
.sch, .vhd, .abl and .asf. are treated as external, i.e., non-project files. The files can be easily viewed and edited by the
associated application (see section Hierarchy browser/starting applications from hierarchy browser, in this
chapter). To do so, double-click on the name of the file to be edited. As a result, the appropriate Windows applications
will start with the file loaded.

Drag and drop functionality
The Project Manager allows you to rearrange the order the files appear in the hierarchy tree. This can be achieved with

mouse using the drag-and-drop method.

Document Info
You can get information about any file from the hierarchy tree. To do so, use the Info option from the Document menu.
The info box shows the type of the document, library (in case of components), last modification date, and source file
(in case of schematic sheets, HDL macros, FSM macros). Each item in the tree belongs to the one of the following
categories:
- project description file,
- external document (all text files attached to the root),
- state editor diagram,
- HDE document,
- schematic editor sheet,
- library symbol (library primitives),
- library macro,
- library,

Project Type
Every project belongs to one of the following categories:
- schematic, the project whose top level document is a flat or hierarchical schematic (consisting of one or multiple
sheets),
- VHDL , (Top Level VHDL), the project whose top level document is a source VHDL file (or files),
- ABEL , (Top Level ABEL), the project whose top level document is a source ABEL file.
The project type designator, as given above (schematic, VHDL , ABEL), is displayed in the info box Project Info. To
see this box, select the Project Info option from the File menu. The box also gives information about the date of
creation, project directory, and the netlist file.

Upgrading Xilinx devices list
If necessary, you can add new devices to the Xilinx device list provided with the system. The list is kept in the file
xilinx.fam , located in the directory containing executable files (by default \\ACTIVE\EXE). The file includes several
sections. Each section begins with a header enclosed in square brackets. The first section, [Family] , defines all Xilinx
families available in the system. Subsequent sections describe particular families. The header of each section is a
family designator.

If you want to add a new device (or new speed to existing device) to a given family, you should find the appropriate
section and add a new entry (or update existing). Each entry looks like the following:

<device symbol> = speed1, speed2, ...

For example, the section for XC2000 family begin with the following lines:

[XC2000]
2018PC44=130, 100, 70, 50, 33
2018VQ64=130, 100, 70, 50, 33
......

Each entry can include white spaces – they are ignored when the file is read.

NOTE: You should not modify the xilinx.fam file while the ACTIVE-CAD is running.

Finding Objects in the design
The Project Manger provides a simple tool which enables finding symbols, nets, and pins on schematic sheets or
schematic macros. To invoke the Find in the Schematic Editor dialog choose the Find Object option from the

Document menu. This tool co-operates strictly with the hierarchy browser (in the Project Manger) and the Schematic
Editor. Results of searching are reported in the Project Manager's message box and in the Schematic Editor.

Finding schematic symbols
If you want to find a symbol currently selected on the hierarchy tree, set the Symbol option in the Find What field.
Then click the selected item on the hierarchy tree, to update the contents of the Symbol Reference Path edit box.
Clicking Find causes the Schematic Editor to load the appropriate sheet and select the specified symbol.

Example:
Open the CALC sample project. Invoke the window Find in the Schematic Editor. Set Find What: Symbol. In the
hierarchy browser expand the CALC.SCH sheet and then, the STACK0 schematic macro. Select the RAM16X4 macro.
Click the Find button. The Schematic Editor ill be invoked and loaded with the schematic macro STACK_4K. The
macro symbol with the reference name RAM16X4 will be selected.

If you directly type the symbol reference name (without the full path) in the Symbol Reference Path box, the symbol
will be searched for in all top level sheets. You cannot use this method to find a symbol in schematic macros.

Finding nets and pins
Find Object allows you to finding nets and pins on a specified schematic or schematic macro. To do so, first, specify
the path in the Symbol Reference Path edit box. You can achieve that in the same way as described in the previous
section. Then change the Find What setting to either Net or Pin. Type the net or pin name in the appropriate edit box
and click Find. If the net or pin exist in the specified location, the Schematic Editor will be loaded with the appropriate
sheet, and the item will be selected.

Example (continuing from the previous section):
Switch to the Project Manager, and set Find What: Net. Type in the Net Name box 'WE' . Click the Find button. The
Schematic Editor will load the schematic macro RAM16X4. The WE net will be selected.

If you do not specify the symbol reference path, the specified item (net or pin) will be searched for in the top level
sheets. You cannot use this method to find an item in schematic macros.

Starting Applications from Project Manager
ACTIVE-CAD application can be started from the Project Manger in a few ways.
All applications can be started be selecting the appropriate item from the Applications menu or by clicking the icon in
the toolbar (except the Memory Generator and the Keylock Utility, for which such icon are not provided).

In addition, the Schematic Editor, the HDL Editor and the State Diagram Editor can be started:
- by double-clicking the appropriate item in the hierarchy tree, associated with a given application (see section
Hierarchy Browser/Starting applications from hierarchy browser in this chapter),
- by clicking the appropriate buttons in the Design Flow.

The Simulator can be started also from the Design Flow. In case of Xilinx Projects there are always two buttons
available, which invoke the Simulator: SIM Funct and SIM Timing . It is recommended to use these buttons because
they automatically put the Simulator into the appropriate mode (functional or timing, respectively) and load the
appropriate netlist.

Archive project option
ACTIVE-CAD provides the option which enables user to store the projects in the form of a compressed (zipped)
archive file. The archive file includes all files kept in the project directory, PDF file, current PDF file, and some
additional files which describe the state of the system:

autoexec.bat,
config.sys,

susie.ini,
bti.ini ,
current.ver.

NOTE: You must have the PKZIP.EXE program installed on your computer to use this option. Configuration options
(click the Configuration item in the File menu to get the Configuration window) allow to set the path to PKZIP.EXE.

Customizing Project Manager
Configuration options are available in the Configuration dialog window (menu File, option Configuration). You can
specify the drive paths for files used by ACTIVE-CAD, and the editor used to view text documents. Clicking on the
View Ini File allows you to view the susie.ini file which determines the ACTIVE-CAD system settings.

Creating Xilinx Schematic

Naming Conventions
FPGA names for nets, buses, and symbols must follow these conventions:
Only A-Z, a-z, 0-9, “_,” and “-” are allowed in user-defined names. No other characters should be included
in names.
Names must contain at least one non-numeric character.
Names cannot be more than 1024 characters long.
Hierarchical symbol names cannot be longer than 8 characters. Otherwise the DOS netlist file cannot be
created with the same name as the symbol.
Symbol pins and macro pins must be no longer than 8 characters.

Reserved Names
The physical names associated with every resource on every part are reserved and cannot be used to name
signals and symbols. These include CLBs, IOBs, clock buffers, BUFTs, oscillators, package pin names,
CCLK, DP, GND, VCC, M0RT, PWRDN, and RST. Other examples are CLB names such as AA and AB, pin
names such as P1 and P2, pad names such as PAD1 and PAD2, and primitive names such as TDO, BSCAN,
M0, M1, M2, or STARTUP.

Net Naming Conventions
Hierarchical signal names are fully specified in the XNF file. Here are some examples:
Unlabeled signals are given internal names generated automatically by ACTIVE-CAD that consist of a dollar
sign, “N” for net or bus, and a unique number assigned by ACTIVE-CAD for each net. Any change to the
schematic changes at least some of the ACTIVE-CAD-assigned internal names.
ABC represents a labeled signal named ABC in the top-level drawing.
$1I11/ABC represents a labeled signal named ABC that is underneath an unlabeled component called $1I11,
where $1I11 is the symbol reference designator named with a dollar sign.
$1N118 represents net $1N118, which is on sheet 1 of the root-level drawing.
$1I5/$1N118 represents net $1N118, which is a net within the
top-level symbol $1I5. If the net is within a schematic represented by a symbol on the design’s top level, the
default signal name reflects this hierarchy.
As these examples clearly show, the more labels you put in your design, the easier you will find it to locate
signals for simulation. For more information on adding labels to nets, see the ’Naming nets’ section of this
guide.

Component names
To give components more meaningful names than those issued by ViewDraw, use the Add Label command to
name symbols, just as you would nets. The following are examples of symbol names.
MYSYM0 is a component located at the top level of the drawing.
TOP/MYSYM0 is a component located one level below TOP.
Components with or without user-assigned labels are assigned names as follows:
top-level_instance/instance
For example, $1I3/$1I5 represents a component located one level below symbol $1I3. For more information
on adding labels to components, see the ‘Changing symbol reference names’ section of this guide.

Naming buses
To ensure that bus signals are processed correctly, use the following naming conventions.
All buses and all nets going into buses must be labeled. For example, a bus labeled A[0:2] should have nets
labeled A0, A1, and A2.

ACTIVE-Cad netlist export expands bus notation. All bus and symbol pin names are expanded into individual
signal or pin names. For example, a bus labeled DATA[0:3] is converted into four nets labeled DATA0,
DATA1, DATA2, and DATA3.
You must be consistent in the order of bus indices for a single bus. For example, do not connect busa[0:3] to
busb[3:0] at another level of your schematic unless you are deliberately reversing the bus order.

Creating a new schematic

New schematic is always created during the project creation. To add a new schematic sheet press the
New Schematic button on the toolbar or selecting New Sheet from the File menu. The new schematic is
given the name equal to the project name with sequential numbers added at the end. If that name is not
suitable, the schematic can be saved under new name by invoking File | Save As command.

Selecting Libraries
To select libraries used by your project, invoke Project Libraries command from the File menu. Select the
required libraries in the Attached Libraries list and click on the Add >> button; selected libraries are
copied to the Project Libraries list. To remove a library from the Project Libraries list select it and click
on the << Remove button.

Xilinx Libraries
The Unified Libraries conform to standards set for the appearance, function, and naming conventions of the
library elements. This standardization allows you to easily convert from one Xilinx architecture to another.
The primitives and macros in the Unified Libraries should be used to create new designs. Creating new
designs from previous libraries is not recommended. It is also not recommended that you mix components
from the old libraries and the Unified Libraries in the same design. Refer to the XACT Libraries Guide for
detailed information on the Xilinx libraries.

Primitives and Macros
The Unified Libraries contain three types of components: primitives, soft macros, and relationally placed
macros (RPMs). Primitives are those symbols recognized directly by the implementation software such as
pads, gates, latches, flip-flops, buffers, and oscillators. Soft macros are schematics that contain primitives
and other soft macros. Soft macros have pre-defined functionality but have flexible mapping, placement, and
routing. RPMs, available for XC4000 devices, are soft macros that contain placement information and that
can contain carry logic elements.

X-BLOX
The X-BLOX library contains module generators that describe a system using high-level functions instead of
gate primitives. The X-BLOX synthesis tool processes these modules. The X-BLOX library can be used
only with XC3000A/L, XC3100A, XC4000 and XC5200 FPGA designs.
The X-BLOX library is supplied with ACTIVE-CAD, but the X-BLOX software required for processing
designs with X-BLOX symbols is not. The X-BLOX software is included in the standard and extended
solutions packages and is also sold separately.

Libraries Guide
ACTIVE-CAD libraries contain the basic information on each symbol; that information can be seen in the SC
Symbols window above the selected symbol name. To review the detailed description of the symbols, please
refer to the XILINX documentation provided in the Acrobat Reader format.
The Symbol filter button in the SC Symbols window allows selecting symbols by the attributes (tags that
specify the function of the symbol). Checking suitable attribute checkboxes in the Library filter window
selects for display only the symbols with specified attributes.

Navigating schematic window
If the schematic does not fit in the editor window, standard windows scrollbars appear at the right and/or
bottom edge of the window. To see the invisible part of the schematic, click on the arrow keys on the
scrollbars or drag the rectangles placed on the scrollbars between the arrow keys.
The Center command from the Display menu (or F9 keyboard key) can be used to navigate the schematic,
too. After selecting the command, moving the bull’s eye mouse pointer to the edge of the editor window
scrolls the schematic so that the part behind the edge becomes visible. Clicking the right mouse button
cancels the Center mode.

Placing Symbols

To place symbols on the schematic click on the Symbol Toolbox button, press the F3 key on the
keyboard or select Symbol option from the Mode menu. In the SC Symbols window select the desired
symbol from the list or type its name in the lowermost field. When the mouse pointer is moved out of the
window, a symbol outline is visible

Placing I/O pins

Using I/O terminals
The I/O terminal symbol can be placed on the top level schematic to represent I/O pin; it works the same way
as the PAD symbols. However, to maintain compatibility with XILINX libraries using PAD symbols is
recommended.

Using PAD symbols
The pad is a special symbol representing the pin of the XILINX chip. There are three types of pads:
• IPAD for input pins,
• OPAD for output pins,
• IOPAD for bi-directional pins.
There are also symbols representing groups of 4, 8 and 16 pins; their names begin with the pad type (as listed
above) and end with the number of pins in the symbol. For example, the IPAD8 symbol represents eight input
pins, the OPAD4 symbol represents four output pins.
Please remember that a buffer symbol must be placed between the pad and the rest of the circuit to ensure
proper placement and routing.

Placing I/O pins in hierarchical macros
I/O pins can be put inside the hierarchical macro by placing the PAD symbol on the macro schematic.

Drawing nets

To draw nets, click on the Draw wires button on the vertical toolbar, press F4 key on the keyboard or
select Draw Wires from the Mode menu. When in Draw Wires mode, move the mouse pointer to draw
temporary segments of the net; click the left mouse button to fix the next net segment; click the right mouse
button to suspend drawing mode.

Starting net from pins
To start drawing net from a pin, click on the pin while in Draw Wires mode. Schematic Editor anchors the
net at the pin end.

Starting net in empty space
To start drawing net in empty space, click on the desired start point while in Draw Wires mode. Schematic
Editor draws UNCONNECTED symbol (blue filled circle) and anchors the net at that point.

Ending nets in empty space
To end drawing a net in empty space, click the right mouse button to suspend drawing mode and press the

 End button on the horizontal toolbar. Schematic Editor draws UNCONNECTED symbol (blue filled
circle) at the end of the net.

Ending nets with net name

To end a net with net name, click the right mouse button to suspend Draw Wires mode and click on the
Add Net or Bus Name button on the vertical toolbar. Schematic Editor displays Net Name window; enter
desired name in the Net Name field and click on the OK button. Net name is displayed at the end of the net.

Built-in net autorouting
Schematic Editor is by default in the Autorouting mode; to finish drawing a net you need only to click on the
end point - remaining segments of the net are drawn automatically without crossing existing objects on the
schematic. To disable this feature, uncheck Autorouting box in the Wire & Bus Settings window displayed
by the View | Preferences | Wires and Buses command.

Connecting named nets
Only unnamed nets can be freely connected with each other - connecting two different named nets is not
allowed. To force connection between such nets change one of the net names to the same as the other.

Naming nets
New nets drawn in the Schematic Editor are given the automatic name of the $NetXXXXX_ format, where
XXXXX is a unique number. Nets with names beginning with $ (dollar sign) are treated as unnamed during
editing operations. However, named nets are required in certain circumstances.

Adding name to a net
The user can add names to the nets in two ways:

• After clicking on the Add Net or Bus Name button the name of the net can be entered in the Net
Name field of the Net Name window. Pressing the OK button places floating rectangle at the mouse
pointer; clicking on the net names the net and places the net name at the click point.

• Double clicking on the net (or clicking on the Properties button) also invokes the Net Name
window. After entering the name in the Net Name field and pressing the OK button the name is
displayed near the mid-point of the wire.

Changing net name

The name of the selected net can be changed by double clicking on the net or clicking on the Properties
button. The new name should be entered in the Net Name field of the Net Name window. After clicking on
the OK button the new name is updated on the schematic.

Placing net name without wire
Net name without a wire (also called a label) can be placed on the schematic. To place a label click on the

 Add Net or Bus Name button and enter the name in the Net Name field of the Net Name window. After
pressing the OK button, click on the place where the label is to be placed.

Labels can be used for setting probes or as a starting point of the nets.

Drawing buses

To draw buses, click on the Draw buses button on the vertical toolbar, press F5 key on the keyboard or
select Draw Buses from the Mode menu. When in Draw Buses mode, move the mouse pointer to draw
temporary segments of the bus; click the left mouse button to fix the next net segment; click the right mouse
button to suspend drawing mode. After pressing the right mouse button, drawing a bus can be finished by

pressing the End button on the horizontal toolbar or by adding bus terminal (button on the vertical
toolbar).

Naming buses
New bus drawn on the schematic has NO NAME attribute and default bus range (set in the Wire & Bus
Settings window in the View | Preferences | Wires and Buses command). To change bus name and range
double click on the bus and enter new name and range in the Edit Bus window; click on the OK button to
confirm changes. Bus tap shape and bus terminal type can also be set in the Edit Bus window.

Pin to pin connections
You cannot connect two bus pins by placing symbols so that pin tips are connected. Drawing a bus joining
two bus pins is required to establish electrical connection.

Placing bus taps
Connection between a bus and a single pin or net is established via bus taps. To place single bus tap enter the
Draw Wires mode, click on the bus in the point where the tap is to be placed and draw a wire connecting tap
with the pin or net. Remember to name the tap you have placed (see below).

Naming existing bus taps
Bus tap must be given the correct name - equal to the expanded name of the one of the bus members. To name
the bus double click on the tap (or the wire that is connected to it) and enter the name in the Net Name
window.

Automatic naming and drawing

To facilitate drawing bus taps, press the Draw bus taps button on the vertical toolbar or press F6 key on
the keyboard or select Draw Bus Taps from the Mode menu. When in Draw Bus Taps mode, click on the
bus name on the schematic - the name of the first bus member is displayed at the bottom of the Schematic
Editor window. After clicking on the pin a tap connecting that pin with the selected bus member is drawn
automatically and the next bus member name is displayed. The other bus member can be selected by pressing
up or down arrow keys on the keyboard. Pressing Esc key cancels Draw Bus Taps mode.

Moving bus taps
Bus taps can be dragged with the mouse to the new position. Because bus tap is a tiny object, zooming in is
suggested prior to moving a tap. It helps to avoid accidental selecting of the net or bus instead of the tap.

Power and Ground

Using power nets
Power nets are used for tying hanging pins to the fixed logic level. Note that tying control pins to the VCC or
GND may influence the behavior of some XILINX primitives during the global set/reset operation

Using Power symbols
To connect a pin to the power symbol:
• draw short wire starting from the pin,
• suspend drawing by pressing the right mouse button,

• click on the Power Symbol button on the vertical toolbar,
• select PWR Signal Type, PWR Shape and enter PWR Name in the PWR window; if you select Signal

Type first, the remaining parameters will be given their default values,
• click on the OK button.

Editing schematic

Deleting objects
Prior to making any changes on the schematic, enter the Select and Drag mode by clicking on the Select and
drag button, pressing the F2 key or selecting Select and Drag from the Mode menu. To delete an object,
select that object with the mouse and press the Del key on the keyboard.
NOTE:
Deleting a symbol removes all nets connected to that symbol. To retain those nets disconnect the symbol prior

to deleting (use Disconnect button on the horizontal toolbar).

Moving objects
Objects can be moved by dragging while in the Select and Drag mode. Nets connected to the moved symbol
are dragged with that symbol.
NOTE:
After moving a symbol wires can overlap - press Ctrl+W to redraw wires.

Adding Parameters to Symbols, Nets and Pins
External software may require for its proper function some additional information on the objects placed on
the schematic. Net, Pin and Symbol Parameters serve this function.

Symbol Parameters
Double clicking on the symbol displays Symbol Properties window.
• to add new parameter, enter its Name and Description in the appropriate fields and click on the Add

button,
• to edit the parameter name or description, select it on the list, edit it in the Name: or Description: field,

and press the Change button,
• to remove the parameter, select it on the list and click on the Delete button,
• to move the parameter to the new location, select it on the list and click on the Move button, move the

mouse pointer to the new location and click the left mouse button,
• to control the parameter display, double click on the parameter on the list: double dot to the left of the

parameter name means that both the name and description will be displayed, single dot means that only
the description will be displayed, no dot means no display.

Net Parameters
Double clicking on the net and pressing the Attributes button in the Net Name displays Net Attributes
window.
• to add new parameter, enter its Name and Description in the appropriate fields and click on the Add

button,

• to edit the parameter name or description, select it on the list, edit it in the Name: or Description: field,
and press the Change button,

• to remove the parameter, select it on the list and click on the Delete button,
• to move the parameter to the new location, select it on the list and click on the Move button, move the

mouse pointer to the new location and click the left mouse button,
• to control the parameter display, double click on the parameter on the list: double dot to the left of the

parameter name means that both the name and description will be displayed, single dot means that only
the description will be displayed, no dot means no display.

Pin Parameters
Double click on the symbol to display Symbol Properties window and click on the Pin Parameters button.
In the Pin Parameters window select the desired pin on the list.
• to add new parameter, enter its Name and Description in the appropriate fields and click on the Add

button,
• to edit the parameter name or description, select it on the list, edit it in the Name: or Description: field,

and press the Change button,
• to remove the parameter, select it on the list and click on the Delete button,
• to move the parameter to the new location, select it on the list and click on the Move button, move the

mouse pointer to the new location and click the left mouse button,
• to control the parameter display, double click on the parameter on the list: double dot to the left of the

parameter name means that both the name and description will be displayed, single dot means that only
the description will be displayed, no dot means no display.

Query

The SC Query/Find window invoked by the Query button displays useful information on the selected
object:
• object name,
• object parameters,
• other objects connected to the selected object.
Clicking on the object in the Query window highlights the pointed on the schematic; double clicking on the
object moves the selection to that object.

Verifying bus connections
Selecting a bus while in Query mode displays a list of all pins and nets connected to the bus. It enables
verification of the bus connections and is suggested after making complicated connections on the schematic.

Importing Viewlogic Schematics

Procedure for importing ViewLogic projects into ACTIVE-CAD

Important note

A Viewlogic (VL) project should be in the form of a directory containing all needed
files. Particularly, it should include the following subdirectories:
 SCH ;subdirectory with schematic description files
 SYM ;subdirectory with symbol description files
and other files, like .ABL, .PLD, .MEM, .CMD, etc.

Importing schematics and symbols

To import a VL project into ACTIVE-CAD, follow this procedure:
1. Create a new Xilinx project; select the appropriate FPDA/CPLD family and part type.
2. Run Schematic Editor and select the File/Import ViewLogic Schematic option.
3. From the sub-directory SCH, select the top level schematic file, which usually has the same name as the

project directory. As an option, you can select all schematic files in the subdirectory SCH. In such a
case, ACTIVE-CAD will automatically find the top level schematic. After making the selection(s), click
on the OK button.

4. When import is finished, the top level schematic(s) will be added to the project. All hierarchical
schematic macros (if present) will be added to the project library.

During the import of VL projects, names of some nets, buses, instances and
macros must be changed. All the changes for a given schematic file are listed
in the corresponding VAM file located in the project directory. VAM files are
needed for ACTIVE-CAD and user must not remove them.

 Since ACTIVE-CAD has a limitation on the length of the signal and macro names, it creates an
VLIMPORT.LOG log file that keeps track of the new names relate to their corresponding VL names. This file
is located in the project directory and contains detailed import report. Since the file is in ASCII, it is easy to
read by the user.

Additional information about importing non-schematic macros

If a VL project contains ABEL or MEM macros (files), it is necessary
to update them in ACTIVE-CAD project library by updating their XNF netlists.
All .ABL and .MEM source files are automatically copied from the VL project
directory into the ACTIVE-CAD project directory

ABEL Macros

To update an ABEL macro follow these steps:
1. Start Schematic Editor with schematic sheet containing the ABEL macro, and double-click on the ABEL
macro in the schematic to invoke the Symbol Properties window.
2. Add in the Symbol Properties dialog window the new parameter:
 $FILE=macro_name.abl
 To enter this parameter, enter in the parameter field $FILE, and type in the description field
macro_name.abl (which stands for the actual file name with .abl extension). Make sure that the
macro_name.abl file exist in the project directory. The name of the macro must be the same as the ABL file.
To complete the parameter entry, activate the Add button.
3. Select Hierarchy/Hierarchy Push option and double-click on the macro symbol. The HDL Editor will
display the macro_name.abl file.
4. Activating the Project/Update Macro option in HDL Editor will automatically update the XNF netlist
 and the macro in the library.
5. Exit the HDL Editor.

MEM files based macros

To update a macro created from a MEM file follow these steps:
• In the Project Manager, choose the Applications/Memory Generator option.

• Click on the Select button in the Memory Generator dialog window.
• Select the appropriate .MEM file (the file name must be the same as the macro name) and click the OK

button.
• Clicking on the Generate button will automatically update the macro and its XNF netlist.

PLD files based macros

Do nothing with macros described by PLD files. All .PLD files are automatically copied from the VL project
directory to the ACTIVE-CAD project directory. Note that unrouted PLD based macros cannot be simulated
in ACTIVE-CAD Simulator. Only the macros based on post-routed and back-annotated XNF netlist of the
entire project can be simulated.

Simulation

The ViewLogic’s .CMD file can be used directly with the ACTIVE-CAD simulator. If you want to refer to
the original .CMD files, check the VLIMPRT.LOG file for changes to the signal and instance names. If wish,
you can make manually the necessary changes in the .CMD files. The most common changes to be made are:
• All backslashes ("\") in names of hierarchical signals must be replaced with slashes ("/").
• Names of component instances are case-sensitive; ACTIVE-CAD simulator requires them to be

capitalized.

Example:
The following Viewlogic’s vector declaration:
 vector sw sw1\sw[6:0]_p
can be changed manually to:
 vector sw SW1/sw[6:0]_p. ; this format is acceptable to ACTIVE-CAD simulator

Conversion limitations
 NOTE: Below is the important information about translating designs from Viewdraw.

��Regardless of option, ignore the built-in (see next section) symbols. IN,OUT,BI and symbols from the
‘builtin’ library: VCC,GND and VDD are not imported. IN,OUT and BI symbols are replaced with
terminals INPUT, OUTPUT and BIDIR respectively. Nets labeled VCC,GND and VDD are treated as
special nets of the POWER type.

��If line “Y 0” is found in symbol description , property ‘$SymbolType=Annotate’ will be automatically
generated

��Property $ARRAY is not supported
��if properties FILE=file and DEF=XABEL or DEF=VHDL are found in schematic or symbol description

then if corresponding file ‘..\file.abl’ or ‘..\file.vhd’ exists, the property $FILE=file.abl or
$FILE=file.vhd will be automatically generated (for DEF=ABEL , file ..\file.abl will be additionally
copied to the project directory)

��All files ..*.mem, ..*.pld, *.txt will be copied to project directory
��if reference name is missing, it will be generated as follows:

'$' + page number + 'I' + instance identifier
Example:
for instance ‘I 516 primary:TBLOCKB 1 1370 0 0 1 ' on schematic ADXCMP2.2 (2nd page), the
resulting name will be :” $2I516”

��All schematic coordinates are transformed to nonnegative coordinates
��Multi sheet macros (can include up to 9 sheets) are placed by the single sheet
��All signal names of type NAME[n] are converted into NAMEn
��Bus labels and net labels are truncated to 24 characters

��All inverted labels are changed by adding ‘_’ at the beginning
Example:
inverted label P1 will become _P1

��If labels with missing nets occur in complex buses, these nets are added in right upper corner of the
schematic as single wires

��Port names are truncated to 14 characters. If this truncation results in duplicating names, resulting names
are indexed from 0
Example:
PORT0, PORT1,...
All changes in port names are reported in file <name>.vam in project directory (<name> is symbol
name)

��For macro design, if symbol ports are changed, the corresponding signal labels are also changed
(changes made are based on .vam file contents)

��For macro design, if there are ports with missing signals, signals with corresponding names are
automatically generated. Terminals are assigned to macro nets; their names correspond to symbol port
names.

��Reference names are truncated to 15 characters.All changes in port names are reported in file
<name>.vam in project directory (<name> is schematic name)

��Value of property REFDES is truncated to 2 characters
��Two dimensional buses of type AB[i:j]CD[k:l]EF are allowed for which k=0 or l=0.

Bus of that type will be transformed into single dimensional bus as follows:
ABCDEF[(abs(i-j)+1)* (max(k,l)+1)+ j*(max(k,l)+1)-1:j*(max(k,l)+1)]

Customizing importing procedure
The importing procedure is based on a set of options which can be adjusted to obtain optimal results. All of
them are defined in section [SC_ALV_options] of “susie.ini” file, which can be found in WINDOWS
directory. The options with their default values and descriptions are listed below.

auto_library_search= YES
determines if undefined libraries should be browsed

recursive= YES
determines if hierarchical schematic import is enabled

multiply_schematics= YES
determines if multi-sheet schematics will be packed into single sheet

ignore_builtin= NO
determines if schematics that include symbols from the ‘builtin’ library will be ignored

remove_busbox= YES
determines if boxes on bus ports will be removed

autopinname= YES
determines if symbol pin names should be automatically generated

autopin= YES
determines if pin graphics should be automatically generated

xblox_bus= YES
determines if xblox symbols will be treated as buses with range[0:0]

invisible_refname= NO

determines if instance reference names, which are hidden in VL, should remain hidden (names will be
modified by adding ‘$’ at the beginning)

ignore_internal_prop= YES
determines if internal properties (with ‘@’ at the beginning) should be ignored

Note:
Internal properties which should be treated individually (accepted or ignored) are listed in
[SC_ALV_options] section as additional options

Example:
@DIVIDE1_BY=YES
@PROP1=YES
@PROP2=NO

Hierarchy operations

Schematic hierarchy rules

Defining hierarchy pins
Standard schematic terminals placed on the macro schematic are the electrically connected with pins of the
macro symbol visible on higher hierarchy levels.
Creating schematic macro in the bottom-up style (starting from the macro schematic) the user must draw a
terminal for every future pin of the macro symbol. During saving the macro into the library, suitable macro
symbol will be created automatically.
If the symbol is created first (top-down design) every pin must be defined in the Symbol Editor. When
hierarchy push into that symbol is performed, corresponding terminals will be created on the empty macro
schematic.

Using $FILE parameters
Usually macro schematics are stored in the project library. The user may choose the other way of storing
macro schematics: assigning $FILE parameter to the macro symbol and entering schematic file name as the
value of that parameter. For example,

$FILE=BUFF7.SCH
parameter assigned to a macro symbol means that the macro schematic is stored in the BUFF7.SCH file. In
that case only the macro symbol is stored in the library.

Saving macro in the library
Saving a macro in the library may be forced by selecting File | Save command. However, macro is saved
automatically when hierarchy pop is performed and any changes have been made to the macro schematic.

Creating new symbols
New symbol can be created automatically by the New Symbol Wizard or manually in the Symbol Editor.

New Symbol wizard
New Symbol wizard can be invoked from the Hierarchy menu in the Schematic Editor. A series of windows
displayed by the Wizard prompts the user for information such as symbol name, description, ports, contents.
After filling that information, Wizard creates and stores the symbol in the library

Symbol Editor
Symbol Editor can be invoked from the Options menu in the Schematic Editor. It allows creating the
graphical shape of the symbol and entering its pins and parameters. Please refer to the documentation or on-
line help system for information on creating symbols in the Symbol Editor

Converting empty symbol to a macro
When hierarchy push is performed on the empty symbol, Symbol Wizard is invoked automatically and
prompts the user for entering information required for macro creation. When the macro contents type
(schematic, HDL code) is selected, wizard starts the appropriate application to enable creating the macro.
Manual assignment of the $FILE parameter to the macro symbol is another way of converting the symbol into
a macro. Entering schematic file name as the $FILE parameter value turns the symbol into schematic macro,
entering HDL source code file name - converts it into HDL macro.

Converting a schematic into a macro
To convert a schematic into a macro select Create Macro Symbol From Current Sheet option from the
Hierarchy menu in the schematic editor. Current schematic sheet will be stored in the project library and
macro symbol will be created automatically.

Hierarchical Push/Pop
Hierarchy Push and Pop operations are enabled when hierarchy cursor is active. To activate hierarchy cursor
press Hierarchy Push/Pop button on the vertical toolbar of the schematic editor. Double clicking on the
macro symbol with the hierarchy cursor performs Push operation (opens the macro contents); double clicking
on the empty space of the macro schematic performs Pop operation (closes the macro and moves to the higher
hierarchy level).

Using hierarchy browser
Hierarchical structure of the project can be reviewed in the hierarchy browser in the Project Manager. Please
refer to the Project Manager section of this manual for details.

Deleting, renaming macros in the library
Deleting and renaming of the macros in the library can be performed in the Library
Manager application (invoked from the Project Manager). To delete or rename a macro:
• double click on the macro library on the list in the main Library Manager window;
• select the macro on the list of library objects;
• select appropriate command from the object menu.

Using the same macros in multiple projects
You can use the same macro symbol in different projects.

You can choose if you want changes to be updated in both projects, or you can make a copy of the macro to
use in each project. You can also create a separate user library that will store the macros for use in multiple
designs.

Using the same copy of a macro in another project
To use the same copy of the macro in another project assign the library where macro is stored as a project
library of that project.

Using separate copy of a macro in another project
To use separate copy of the macro in another project, copy the macro the project library of that project.

Using user macro library

Editing hierarchy macros
To edit the hierarchical macro you can use one of the following methods:

Push into the hierarchical symbol starting from the top level schematic.
Select File/Open option in the schematic menu and select the macro name from the Macros list.
In the Project Manager hierarchy window double click on the macro schematic name.

Once you open the macro you can make changes. To save these changes use the Save option. Please note that
the schematic macro is saved both to the project directory as a schematic file and to the project library.

Each time you save the macro a new netlist is generated for that schematic and it is saved into the project
library.

Save macro also verifies if the I/O terminals on the schematic match the symbol pins. If they do not match
then a warning message is displayed whether you want to update the symbol. Adding or removal of the pins
is done automatically based on the current schematic I/O terminals. The pins that did not change will not be
moved.

After you save the schematic macro with different pins, the symbols are updated on all open schematic, so
that you can see if the changes in pin location result in net connection changes. The pins that are no longer
present will be disconnected from the pins and you will have to correct these connections manually.

Changing pins in hierarchical macros

Adding/removing pins on the schematic
Push into the schematic macro in the schematic editor.
Add remove any i/o terminals as desired.
Save the schematic macro.
The message about different symbol pins will be reported. Select Yes to change the symbol.
The new symbol will be updated on the schematic, so that removed pins will be deleted from a symbol and
new pins will be added in the available outline space. If there is no room to new pins, the outline will be
stretched up. Any disconnected wires resulting from removed pins will be terminated with a hanging wire
bubble symbol.
If necessary, select the Symbol Editor to further rearrange the new pins. Every time you save the symbol in
the Symbol Editor, the schematic is updated so you can see the change.

NOTE: You cannot add/remove pins using symbol editor because it cannot update the schematic i/o
terminals. If you change pins in the symbol editor, it will force you to save the symbol under different name.

Using $FILE links on the schematic macros

If you have used the Symbol Wizard to create your macro symbol, it already has a $FILE link to a schematic
file.

If the macro does not have $FILE attribute you need to perform the following steps:

Push into the macro in the schematic editor
Select Save As option from the file menu and type in the macro schematic name. This will save the copy of
the macro into project directory as *.SCH file.
Close the schematic and double click on the macro symbol on the higher level schematic.

In the Edit Symbol Window add the parameter $FILE=name.SCH, where the name is the schematic file name.

This operation will allow you to save the schematic file into the project directory, so that the pin consistency
between symbol and schematic is not enforced at all times.

Once you have the symbol with $FILE parameter you can continue with the further steps to change the symbol
pins:

Select the symbol in the symbol editor and add/remove any pins of the macro symbols.
Save the macro. When the message about the different pins is reported select to save it anyhow and type in
the same symbol name again. This will prompt you if you want to overwrite the old symbol. Select Yes to
save it.
Close the symbol editor and push to the new symbol in the schematic editor. The new empty symbol should
still have a link to the macro schematic, so the macro should open to allow you match the i/o terminal to the
new symbol pins.
When you attempt to save this macro schematic, the consistency between the schematic and symbol will be
verified. The schematic will then be save both in the schematic file and into the project library.

NOTE: Before you overwrite the symbol with non-matching pins, be sure that the schematic saved into the
project directory is correct. If you do not have the schematic saved in the project directory and you overwrite
the schematic macro with an empty symbol, you may delete your own macro schematic.

HDL Editor
The HDL Editor is an essential tool for projects utilizing HDL description. Particularly, it is
designed to support two languages: VHDL and ABEL. The HDL Editor may be used both as a
standalone application for writing HDL code and as one of the design entry tools for creating
ACTIVE-CAD projects. It provides very useful instrument, Language Assistant, which, thanks to the
use of prepared templates, enables the user to create HDL code quickly and conveniently without the
necessity for wide knowledge of the language. Syntax correctness of the code created within the
HDL Editor can be easily verified thanks to the useful Check Syntax option. The editor has interface
to synthesis tools which generate XNF netlist from HDL source code. Synthesis of HDL code,
performed by these tools, consists in conversion of the RTL structure described in terms of the HDL
language into XNF netlist built of Xilinx primitives.

Usage of HDL Editor
Generally, HDL Editor is a tool used to create source files either with VHDL or ABEL
code. Top level HDL projects are described entirely by HDL files. All the files are
attached immediately to the root of the project hierarchy in the Project Manager. In
schematic type projects, HDL files describe functionality of HDL macros. An HDL macro
is a combination of symbol that can be placed on a sheet in the Schematic Capture, source
code, which describes the functionality of the macro, and synthesized XNF netlist. As such,
a macro can be placed on each level of the project hierarchy except the top level, which is
reserved for schematic sheets.

The type of the project implies the way the HDL Editor is used. In case of top level HDL
projects, the editor is invoked only from the Project Manager. Files created within it are
attached to the project hierarchy usually by the Add to Project command from the Project
menu (in the HDL Editor). Two other items in this menu: Create Macro and Update
Macro are inactive and grayed. Important issues concerned with synthesizing top level
VHDL and top level ABEL projects are discussed in the appropriate sections devoted to
top level HDL projects, in the chapters Using VHDL and Using ABEL.

In case of schematic type projects, the HDL Editor may be invoked both from the Project
Manager and from Schematic Capture. It is used to create new and edit existing HDL
macros. The editor may also be called from the State Editor. In this case it works as a
browser of the code generated from a given state machine diagram.

Creating HDL macro
The need to create an HDL macro arises when you want to describe a part of the project by
means of HDL language. A HDL macro usually is to be fitted into schematic belonging to
an upper level of the project hierarchy. The process of creating an HDL macro comprises
writing the source code, synthesizing XNF netlist, and preparing the suitable symbol that
will represent the macro on schematic sheet.

There can be two approaches to the process of creating an HDL macro. The first
methodology, which can be put as bottom-up, assumes that the source code describing the
functionality of the macro will be created first. In this method, you call the HDL Editor
from the Project Manager. The HDL Wizard (File menu, New item) and the Language
Assistant (Tools menu, Language Assistant item) will help you to write the code quickly
and conveniently. To create the macro you may also use existing source files. If you run
HDL Wizard (see appropriate sections in the chapters Using VHDL and Using ABEL), it
will create the frame the source code will be based on. In case of a VHDL file, this frame
comprises declarations of entity and architecture, in case of an ABEL file it consists of pin
declarations. In the process, you can use Check Syntax option to ensure that the code is
free of bugs. The last thing to do is to execute the Create Macro command from the
Project menu. This will invoke the synthesis process, produce suitable symbol for the
macro, and insert the symbol into the project working library. You can also do the
synthesis on your own using the Synthesize command from the Synthesis menu. In such

case, if you thereafter execute the Create Macro command, synthesis will not be repeated.

In the second, top-down method, you first create the symbol for the HDL macro. This
method involves usage of the Schematic Capture. From the Hierarchy menu in SC you must
select the New Symbol Wizard option. The Wizard will prompt you to specify the
language (VHDL or ABEL) and pins of the new symbol. As a result, a new macro symbol
will be created and inserted into the project working library. The Wizard generates source
HDL file containing the appropriate frame, as described above. The next step is to write
the rest of the source code, which describes functionality of the macro, and synthesize the
XNF netlist. To accomplish that, you must follow the procedure given in the next section,
which describes updating existing macros.

SUMMARY:
To create a new HDL macro, you may choose on of the two methods

The first, bottom-up method comprises the following steps:
1. Run the HDL Editor from the Project Manager.
2. Edit the contents of the source file. Use the HDL Wizard and the Language Assistant to
speed up and simplify your work. At any moment, you can check the syntax correctness of
the file using the Synthesis | Check Syntax option.
3. Select the Project | Create Macro option to create the XNF netlist and the macro
symbol.
4. Quit the HDL Editor.

The second, top-down, method assumes you are running the Schematic Capture. Follow
this procedure:
1. In Schematic Capture, select the New Symbol Wizard option from the Hierarchy menu.
2. Proceed with the Wizard - you will be prompted to specify the Language for the macro
and its pins.
3. To complete the process of building of the macro follow the instructions for updating
HDL macros, given in the next section.

Updating HDL macros
Updating of an existing HDL macro that is stored in the project library is possible only if
the macro is placed on a schematic sheet. Source files describing HDL macros are stored
immediately in the project directory and the specification what symbol is associated with a
given source file cannot be accessed until the macro symbol is placed on a schematic sheet.

In order to update the macro you have to "get inside" it. This can be achieved either from
within the Schematic Capture or the Project Manager. In the first method, you have to open
the sheet containing the macro to be updated. Having selected the Hierarchy Push option
from the Hierarchy menu in Schematic Editor you have to double-click on the macro
symbol. This will invoke the HDL Editor and enable editing the source file (Note that you
can also modify source files omitting this procedure, however, the changes will not take
any effect, i.e. the symbol and the XNF netlist will remain unchanged, until you update
macro). To update the corresponding XNF netlist and the symbol (in case the pin
specification has changed) you have to execute the Update Macro command from the
Project menu.

In the second method you need not run the Schematic Capture. Note that the Project
Manager enables searching the project hierarchy in the hierarchy browser. All you have to
do is to find the macro you wish to update in the hierarchy tree, and double-click on its
name which causes the HDL Editor to start with the appropriate file. Further proceeding is
the same as described above.

SUMMARY:

An existing HDL macro may be modified and updated only if there is at least one instance
of the macro in any schematic sheet attached to the project.

If you are in the Schematic Capture, do the following to modify an HDL macro:
1. Open the sheet containing the instance of the macro.
2. Select the Hierarchy Push option from the Hierarchy menu. Letter 'H' will appear next
to the mouse cursor.
3. Double-click on the macro. As a result, the HDL Editor will start.
4. In the HDL Editor, modify the source file describing the macro. The Language Assistant
may be helpful.
5. Execute the Update Macro command from the Project menu.
6. Quit the HDL Editor.

If you want to modify the macro without using Schematic Capture do the following:
1. In the Project Manager, find the macro in the project hierarchy tree (using the hierarchy
browser).
2. Double-click on the macro name in the tree to run the HDL Editor with the appropriate
source file
3. In the HDL Editor, modify the source file describing the macro. The Language Assistant
may be helpful.
4. Execute the Update Macro command from the Project menu.
5. Quit the HDL Editor.

NOTE: If you change the pin specification in the macro being updated, the macro symbol
will change. This usually corrupts the schematic sheet the macro is placed on.

Editing a file
The HDL Editor's window splits into two parts. The upper part is the working area
intended for editing files. In the lower part, messages sent by synthesis and syntax analysis
tools are displayed. The spliter that divides the window may be moved up and down so
that the user can change the size of the both areas.

What differentiate the HDL Editor from a normal text editor is its keyword highlighting
feature. The editor analyzes the edited text and displays in various colors words belonging
to particular syntax categories (e.g. keywords, identifiers, constants, comments). This
significantly improves readability of the source code. The HDL language for the current
document (either ABEL or VHDL) is set in the configuration dialog window which is
invoked from the Synthesis menu (Configuration item).

The HDL Editor has all typical editing functions of a non-formatting text editor which are
available both from the Edit menu and immediately from the keyboard. It uses standard key
combinations which are common for most Windows applications, e.g. Notepad. Text
edited within HDL Editor can be exported to and imported from the Windows Clipboard.
Bookmarks enables user to quickly move throughout long files. User may customize the
HDL Editor using the options available in the Preferences dialog invoked by the Tools |
Preferences command. Options available in the View menu control the visibility of main
components of the HDL Editor window.

Syntax check
The Check Syntax command performs the syntax analysis of the text being edited. It is
available in the Synthesis menu (Check Syntax item). The operation involves either the
internal built-in checker (only for VHDL) or external applications (XABEL for ABEL and
XVHDL for VHDL). The built-in checker supports most of the VHDL 1074-1993 standard
(full support planned). The tool for syntax check is chosen in the Configuration dialog
(Synthesis | Configuration). The messages generated in the process are displayed in the
lower part of the HDL Editor window. In addition, the general message, which informs
about the success or failure of the analysis, appears in the separate message box.

Finding errors
If syntax check fails, HDL Editor marks places of occurrence of syntax errors through
underlining. In addition, a red mark (arrow), showing the place of occurrence of the current
error, is displayed on the margin. The text of the message corresponding to the current
error is reversed. Using Next Error and Previous Error options from the Search menu
you can easily find all errors that have been encountered during the last check.

Selecting language, synthesis tool and synthesis
options

Each source file describing a macro, edited within the HDL Editor have assigned set of
parameters which specify the language, the synthesis tool (application used to generate
XNF netlist from the source code) and synthesis options.

In case of top level HDL projects, these parameters are common for all HDL project files.
This issue is discussed in the sections devoted to top level HDL projects, in the chapters
Using ABEL and Using VHDL.

The language and the synthesis tool is set in the dialog Configuration invoked from the
Synthesis menu. The dialog window comprises three fields:
- Language, which indicates whether the file contains VHDL code, ABEL code, or other
text,
- Check Syntax, which indicates whether the syntax check is performed by the external
synthesis tool specified in the Tool field, or by the internal built-in checker (available only
for VHDL),
- Tool, which specifies the synthesis tool.

Synthesis options define the method of synthesis, possible optimizations and some other
detailed parameters. The parameters are set in the dialog invoked by the Options command
from the Synthesis menu. Parameters displayed in the dialog may vary according to the
selected language, the synthesis tool, and Xilinx device family (which is specified for the
entire project in the Project Manager). Here is short description of these parameters.

VHDL General Options

Compile:
Chip - enables insertion of IBUF and OBUF pads; used for HDL type projects.
Macro - disables insertion of IBUF and OBUF pads; used for schematic type projects.
Optimize - options for the logic optimizer Improvex:
Area - optimization for utilization (number of used CLBs), trading off performance
(speed).
Speed - optimization for performance (number of CLBs in the critical path), trading off
utilization (number of CLBs).
Standard - intermediate solution between Area and Speed options.
Effort level - specifies optimization effort level:
High
Medium (conserve memory)
Low (simulation only)
X-BLOX - enables inference of xblox macrocells.
Improvex - enables the logic optimizer Improvex which optimizes the synthesized XNF
netlist

VHDL Advanced Options

Entity / Architecture - specifies the root (top) of the design to be elaborated.

VHDL Library Aliases

Library Alias - specifies an alias for a VHDL library, overriding the default mapping of
VHDL library name to file name.

In XVHDL compiler a library is simply an external VHDL file located in the subdirectory
VHDL_LIB that is located in the same directory that XVHDL.EXE. Besides standard
VHDL libraries (STD, IEEE) and libraries provided with the system (e.g. VLBIT,
SYNOPSYS), the subdirectory can also contain user-defined library files. By default,
library files are associated with references in the VHDL code (in the clauses LIBRARY
and USE) by name (e.g. file 'LIBX.VHD' describes library accessed by identifier LIBX').
Library Alias option allows user to override the default association by explicitly
specifying which source files are complied into given library. Thanks to this option, user
need not modify the contents of the original library files.

Example:
Assuming that the library IEEE has to be supplemented with the package
STD_LOGIC_ARITH whose source code is included in the file SYNOPSYS.VHD, user
can use the Library Alias option to associate the library IEEE with the files:

IEEE.VHD
SYNOPSYS.VHD

XVHDL analyzes these files in the order they appear in the dialog window (in the field
VHDL Files). It may be important when one of the files contain references to another (e.g.
in this case package SYNOPSYS uses package IEEE, so the file IEEE.VHD must be
analyzed first).

NOTE: Library Aliases are not supported by the internal VHDL checker.

ABEL General Options for Xilinx FPGA devices

Compile:
Chip - enables insertion of IBUF and OBUF pads; used for HDL type projects.
Macro - disables insertion of IBUF and OBUF pads; used for schematic type projects.
Optimize - options for the logic optimizer Improvex:
Area - optimization for utilization (number of used CLBs), trading off performance
(speed).
Speed - optimization for performance (number of CLBs in the critical path), trading off
utilization (number of CLBs).
Standard - intermediate solution between Area and Speed options.
Improvex - enables the logic optimizer Improvex which optimizes the synthesized netlist

ABEL General Options for Xilinx EPLD devices

Compile:
Chip - enables insertion of IBUF and OBUF pads; used for HDL type projects.
Macro - disables insertion of IBUF and OBUF pads; used for schematic type projects.
Optimize - reduction options:
Auto Polarity - reduces the logic so that each signal will have the minimum number of
terms possible. The optimization will produce both ON-set and OFF-set equations so that
the minimum number of product terms will be used in programmable polarity parts.
Fixed Polarity - reduces so that each signal will have the minimum number of product
terms, maintaining the polarity of the signals as specified in the source file. This should
only be used when you want to force output signals to a specified polarity (typically
through the use of the 'pos' and 'neg' signal attributes).
No Reduction - merges all the compiled equations into a single ABEL-PLA file. No logic

reduction is performed. This option must be used if you want redundant logic to be
preserved for any of the design outputs.

ABEL Advanced Options for Xilinx FPGA devices

Encoding - options for state-encoding method:
Standard - automatic selection of the best encoding scheme.
Binary - for small state machines, or state machines with few (less than four) input
variables, binary encoded state machines may be more efficient.
One Hot - the One-Hot method uses one flip-flop per state machine state.
Unspecified state - these options specify how to synthesize incompletely specified state
machines. Incompletely specified state machines are those which do not have a state
assignment for every possible input combination.
Initial - incompletely specified state machine defaults to the initial state whenever the next
state for the current input combination is not specified.
Current - incompletely specified state machine defaults to the current state.
Don't Care - no default for incompletely specified state machines.

Synthesizing macro
When editing of the source code is finished, you can generate XNF netlist built of Xilinx
primitives. It is achieved through the use of synthesis tools. According to the size of the
source file, synthesis may take up to a few minutes. During synthesis, the Project Manager
window appears on the top so that the user can watch the messages generated by the
synthesis tool, which are displayed in the message window (beneath the spliter). In
addition, all these messages are saved in the log file, which can be viewed after the
synthesis.

Viewing synthesis LOG
Synthesis log file is generated during each synthesis process and is located in the current
project directory. It can be viewed by the View Report command from the Synthesis
menu. This command invokes an auxiliary application, Report Browser, with the current
log file loaded. If there is no log file in the current project directory, suitable message box
will appear.

Language Assistant
Language Assistant is a simple yet very efficient tool which dramatically simplifies the
process of writing HDL description. This is a sort of data base containing ready-made
language templates for typical syntax constructs. These templates comprise the following
sets:
- VHDL syntax templates,
- VHDL synthesis templates,
- ABEL syntax templates,
- ABEL synthesis templates.
In addition, user can create and save for later use his own templates.

Language Assistant is invoked from the Tools menu. All templates are collected together in
the form of a hierarchical tree. Expandable branches may contain both template items and
further branches. In order to insert the desired template into the edited HDL file, you have
to either double-click on it or select it and click on the Use button. Language Assistant
allows to view the contents of the selected template. Use the button Show/Hide Preview to
turn on and off this feature.

Editing existing templates
You can edit a template (and/or its name) if its parent branch has the attribute
Read Only inactive. (To toggle the attribute, select the branch and click the right
mouse button. From the menu that will appear select the Read Only item). Click
on the Show Preview button to open the preview area and place the cursor there.
Then edit the template as desired.

If you want to change the template name, select it and click on the Edit button. The
name will be inserted into the editing box, where you can modify it.

Deleting templates
You can delete a template if its parent branch has the attribute Read Only inactive.
(To toggle the attribute, select the branch and click the right mouse button. From
the menu that will appear select the Read Only item). Select the template and
click on the Delete button.

Creating user templates
You can add your own templates to expand functionality of the Language
Assistant. To attach a new item to the tree follow these steps:
1. Select the branch to which you want to add the new item.
2. Click the New button.
3. Enter the item name in the editing box that will appear.
4. If the new item is to be a template, click on the preview area (you may have to
click on the Show Preview button) and edit its contents. If the item is to be an
expandable branch skip this step.

NOTE1: As long as a given tree item has no text assigned, you can add new items
to it, thus creating the new branch.

NOTE2: Operations executed through clicking on the buttons Use, Delete, New,
Edit can be achieved through selecting appropriate items from the right mouse
button pop-up menu.

NOTE3: Changes made to existing templates, and new templates are saved when
you quit HDL Editor. The editor asks for confirmation so you can abandon all
changes if you wish.

Using X-BLOX

What are X-BLOX symbols?
The X-BLOX (Blocks of Logic Optimized for Xilinx) is a library of modules that you can use to describe a
system by means of high-level functions instead of gate-level primitives. Because X-BLOX modules are
customizable, each module can describe thousands of unique functions. You can customize these modules
using attributes and by connecting appropriate control pins of the modules.
X-BLOX supports only Xilinx FPGA families. Detailed information about X-BLOX you can find in the
Xilinx ‘ X-BLOX User Guide’ manual.
Main X-BLOX features there are:
• block diagram design entry
• generic data path sizes and encoding
• optimized implementations
You can use X-BLOX in two ways:
• place X-BLOX macros on the schematic
• synthesize VHDL projects/macros with option X-BLOX enabled which causes synthesis with X-BLOX

macros
If you want to use X-BLOX you must have the library XBLOXU (X-BLOX Unified library) attached to your
project. When you create a new project with Project Manager this library is attached by default if X-BLOX
supports selected Xilinx family.

Placing X-BLOX symbols
Attaching a X-BLOX library
When you create a project X-BLOX library named XBLOXU is automatically attached by Project Manager
(if selected Xilinx family is supported by X-BLOX).

Bringing up a symbol
You place the X-BLOX symbol like any other symbol from the library. Follow the procedure:
• open the SC Symbol selection window pressing the button ‘Symbol toolbox’ (or selecting the option

‘Symbols’ from the menu ‘Edit’),
• select the symbol from the list, place in the desired position and click the mouse button.

Specifying the module attributes
Invoke the ‘Symbol properties’ window (double click on the symbol). The section ‘Parameters’ describe all
symbol parameters. For all X-BLOX symbols the basic parameters are already defined without their values.
If you want to add or change the value of already defined parameter follow the procedure:
• select the parameter you wan to change with the mouse and click on it; selected parameter appears in the

field ‘Name’ and it’s value (if any) in the field ‘Description’,
• enter desired value in the field ‘Description’ and press button ‘Change’; new value of the parameter

appears in the parameter’s window.
If you want to add a new parameter (which is not listed in the window) follow the procedure:
• enter the name of the parameter in the field ‘Name’; you can do it in two ways: by selecting the

parameter from the pull-down list (suggested) or by typing the name in the field ‘Name’,
• enter the value of the parameter in the filed ‘Description’ and press the button ‘Add’.

For each parameter you can define its visibility on the sheet which is marked by number of dots on the left
side of the parameter’s name:
• none - nothing is displayed,
• one - only parameter’s value is displayed,
• two - both the parameter’s name and value are displayed.
NOTES:

1) You can change visibility of the parameter with double click on its line in the parameters window.
2) You can change visibility of all parameters with buttons ‘Display All’ and ‘Clear Display’.
3) You can move displayed parameters to any position with the button ‘Move’.

When you set all parameters and their visibility to desired values press the button ‘OK’.

Connecting to X-BLOX symbols

Single pins
Single pins of the X-BLOX symbols are the same as single pins of all other symbols. This pins can be
connected to any other single pins and standard buses (by bus taps). You connect them with nets (button
‘Draw wires’ or option ‘Draw wires’ from ‘Mode’ menu).

Bus pins
X-BLOX bus pins are not the same as bus pins of other symbols and cannot be connected to standard buses
(see section ‘X-BLOX buses’ for more information). You draw X-BLOX buses on the schematic in the same
way like standard buses (button ‘Draw buses’ or option ‘Draw buses’ from ‘Mode’ menu).

IMPORTANT: The X-BLOX buses must have names without range. When you are naming a X-BLOX bus
you have to set both indexes to zero. In this case the name of the bus is displayed without the range.

Note that bus pins of X-BLOX symbols have different width and color then bus pins of standard symbols. It
should help you to avoid connecting X-BLOX bus pins to standard bus pins.

X-BLOX buses
All X-BLOX buses are generic in size. This differentiate them from standard buses. So, X-BLOX buses
cannot be connected with standard buses which have stated size. What’s more, the X-BLOX bus is not just a
collection of wires - a bus defines the kind of data that travels through the bus.
When you run X-BLOX, it synthesizes the buses expanding them to the proper sizes as it generates the
simulation models and performs chip-level implementation. Generic-sized busses allow the schematic to be
resized quickly because the bus size needs to be specified only once on each data path.

Specifying X-BLOX buses
To label an X-BLOX bus use a name without specifying the bus range (set both indexes to zero). Contrast the
following specifications for X-BLOX and non X-BLOX buses:

X-BLOX bus: ADDR
standard bus: ADDR[15:0]

You have to assign two attributes of the X-BLOX bus to establish a data type:
• BOUNDS which defines the bus width (two integers separated with colon),
• ENCODING which defines the data encoding scheme (BIT, UBIN, ONE_HOT or TWO_COMP).
You specify the bounds and encoding of X-BLOX bus anywhere on the data path. See Xilinx ‘X-BLOX User
Guide’ for more details.

Connecting to X-BLOX buses
You can connect directly only two X-BLOX buses with the same size (BOUNDS) and data type
(ENCODING). If you need to connect X-BLOX bus to anything else you have to use special interface
elements (they do not add any logic to your design). The detailed information about X-BLOX bus
manipulations you can find in Xilinx ‘X-BLOX User Guide’. The following section tells you what element
you have to use to connect X-BLOX bus with:

• other X-BLOX bus with the same size and different indexes (BOUNDS) and/or data type (ENCODING):
CAST,

• other X-BLOX bus with different size: SLICE,
• net: ELEMENT,
• standard (non X-BLOX) bus: BUS_IFxx (where ‘xx’ is the standard bus size),
• power / ground (force constant value on the bus): FORCE.

Using X-BLOX in hierarchy macros
You create X-BLOX macro in the same way like other schematic macros. The only difference is that
X-BLOX bus pins have names without ranges (range [0:0] is displayed on the symbol).
You have to specify bus parameters at last once per data path whether or not data the data path crosses
hierarchical boundaries.
If you do not specify the data type in the underlying schematic, this schematic become generic and can be
resized by the bus type definitions specified in the main schematic.

Functional simulation
X-BLOX symbols are generic in size and their function is selected with parameters and/or control pins.
X-BLOX buses are generic in size and the size can be defined once per data path. This reasons causes that
there is impossible to simulate X-BLOX elements before they are implemented. Implementation of the X-
BLOX symbols performs Xilinx program Xblox.
This causes that functional simulation of the project containing at least one X-BLOX symbol requires running
Xblox program before. So, if you want to perform functional simulation you must have Xblox package
installed. The Xblox program is automatically run by the Project Manager when required (i.e. when you
change macro containing X-BLOX).

Using VHDL

Requirements
If you want to use the VHDL feature in your designs you have to install Xilinx VHDL software package. The package
comprises compiler-synthesizer XVHDL and logic optimizer ImproveX. It also provides a set of useful libraries,
among others:
STD, with the basic package standard
IEEE, with package std_logic_1164 for multi value logic system,
LPM. with package macros supporting LPM modules,
XBLOX with package macros supporting XBLOX modules,
METAMOR, with package attributes which defines synthesis-specific attributes,
SYNOPSYS, with packages supporting arithmetic operators and functions for the multi value logic system.

Using HDL Design Wizard for VHDL
The HDL Design Wizard is available within the HDL Editor. It is run whenever you select the New option from the
File menu. It can be also invoked immediately from the logo window that appears when you start the HDL Editor. The
Wizard is intended to help you to start creating a source file. This is accomplished through the use of a number of
dialogs which prompts you to define the information needed to create the basic elements of the source file. The first
choice you have to make applies to the language of the document: either ABEL or VHDL.

In case of VHDL, the basic elements of the code, as mentioned above, comprise the following:
1. Library clause with reference to the IEEE library, and use clause with reference to the STD_LOGIC_1164
package.

These two elements are inserted into the file only if you declare ports (see next entries) of type std_logic or
std_logic_vector.

2. Entity declaration.
The Wizard asks you to specify the entity name.

3. Ports declarations.
The Wizard asks you to specify the name, type and direction of each port. Ports may be of one of the following
types:
- scalar types: bit, boolean, character, integer, std_logic,
- composite types: bit_vector, std_logic_vector.

4. Architecture declaration.

The Wizard creates the file with the name same as the entity name, containing the elements listed above. The user
should then supply the file with the appropriate architecture description.

NOTE: Similar tool, New Symbol Wizard, available in the Schematic Capture, allows you to create simultaneously
macro symbol and the corresponding source file with all the elements mentioned above.

Quick modifying of port clause
The HDL Editor provides useful feature allowing you to quickly modify the port clause, which describes the interface
(i.e. pins) of a macro (or the entire project). The port clause consists of a number of port declarations. When you select
the Symbol option from the Edit menu, you will invoke the window showing the port clause in the form of pins
attached to a 'black box'. The window also includes the list of all ports declared in the file. The list can be easily
modified. Using the mouse you can add, delete and modify ports. Use the left mouse button to modify the parameters of
existing ports (direction, type, bus range). With the right mouse button you activate pop-up menu which allows you do
add, delete and rename ports. Clicking OK closes the window and causes the modifications to take effect (the port
clause will change).

Managing VHDL libraries
In XVHDL compiler a library is simply an external VHDL source file or files. These files are stored in the
subdirectory VHDL_LIB located in the VHDL data files directory (by default \\ACTIVE\VHDL). Besides standard
VHDL libraries (STD, IEEE) and libraries provided with the system (e.g. VLBIT, SYNOPSYS), the subdirectory can
also include user-defined library files. Library WORK is a dynamic object that exists only when compiler is running.

By default, library files are associated with references in the VHDL code (in the clauses LIBRARY and USE) by name
(e.g. file 'LIBX.VHD' describes library accessed by identifier LIBX'). This might be inconvenient in the situation when
you want to add, for example, some new packages to a standard library (standard, i.e., provided with the software)
without modifying the original library files. In such cases, you may found useful the Library Alias option. This option
allows user to override the default association by explicitly specifying which source library files are complied into
given library. Thanks to this option, user need not modify the contents of the original library files. This options in
available in the HDL Editor's Configuration dialog, invoked form the Synthesis menu.

Example:
Assuming that the library IEEE has to be supplemented with the package STD_LOGIC_ARITH whose source code is
included in the file SYNOPSYS.VHD, user can use the Library Alias option to associate the library IEEE with the
files:

IEEE.VHD
SYNOPSYS.VHD

XVHDL analyzes these files in the order they appear in the dialog window (in the field VHDL Files). It may be
important when one of the files contain references to another (e.g. in this case package SYNOPSYS uses package
IEEE, so the file IEEE.VHD must be analyzed first).

Managing VHDL libraries for built-in syntax checker
Libraries for the built-in VHDL syntax checker must be compiled before use. ACTIVE-CAD does not provide interface
for compilation of these libraries. The compilation can be performed from the command line. To do so, switch to DOS
prompt, and enter the following command:

comp95.exe -d <VHDL directory with full path> -l <library name> <file to be compiled>

VHDL directory is that containing subdirectories VLIB and DAT (by default \\ACTIVE\VHDL). The file that is to be
compiled should be specified with extension (.vhd).

As a result, the appropriate compiled file with extension .vlb will be put into the VLIB directory.

NOTE: When you want to add a VHDL library to the ACTIVE-CAD, you should make it visible both for internal built-
in VHDL checker and for XVHDL compiler. To do so, you must follow the procedures described in the above and the
previous section.

Top level VHDL projects
In a top level VHDL project, source files describe not some isolated fragments of the project (macros) but the entire
project (Schematic Capture is not used at all). All the files must be attached to the root of the hierarchy. Note that the
Project Manager does not allow to attach to the hierarchy root files of assorted types (e.g. a schematic sheet and an
HDL file). Therefore, when you have opened a new project you should not run the Schematic Capture for this would
cause a blank sheet to be attached to the hierarchy root. For the same reason, if you have a SCHEMATIC type project
and you want to have the type changed to VHDL or ABEL, first you must detach all sheets from the hierarchy root, and
than you can attach HDL files.

Source files can be attached to the hierarchy root in two ways. When you edit a file in the HDL Editor, you can attach
the file using the Add to Project option from the Project menu. You can do the same from within the Project Manager,
using its Add option from the Document menu. Top level VHDL projects may include more than one source file (e.g.
one file describes top level entity, other files – entities of lower level). In such cases, the order the files are attached to

the hierarchy root is the order these files are analyzed during syntax analysis and synthesis. As the XVHDL compiler
does not keep the static library WORK, this order is very important.

VHDL source files should be synthesized with the synthesis parameter Chip set on (see the section Selecting synthesis
options). The synthesis options are set for the entire project, what means they are common for all the VHDL files
attached to the project. Therefore, when you change some settings in the HDL Editor, these changes will apply not only
to the currently loaded file but to all the VHDL project files. If the project contains multiple VHDL source files you
may run the synthesis from within the HDL Editor with any of the project files loaded. However, it is important to
indicate in the synthesis options the top level entity and architecture.

NOTE: If you attempt to invoke functional simulation or Place & Route processing without having done synthesis,
ACTIVE-CAD will run synthesis on its own (without involving the HDL Editor). After that, you can view the synthesis
log using the appropriate option in the HDL Editor.

VHDL synthesis options
Synthesis options define the method of synthesis, possible optimizations and some other detailed parameters. You will
find more detailed description of these options and the usage and in the section Synthesis Options in the chapter HDL
Editor. Here is short description of these parameters.

General Options

Compile:
Chip - enables insertion of IBUF and OBUF pads; used for VHDL type projects.
Macro - disables insertion of IBUF and OBUF pads; used for schematic type projects.

Optimize - options for the logic optimizer Improvex:
Area - optimization for utilization (number of used CLBs), trading off performance (speed).
Speed - optimization for performance (number of CLBs in the critical path), trading off utilization (number of
CLBs).
Standard - intermediate solution between Area and Speed options.

Effort level - specifies optimization effort level:
High
Medium (conserve memory)
Low (simulation only)

X-BLOX - enables inference of xblox macrocells.
Improvex - enables the logic optimizer Improvex which optimizes the synthesized XNF netlist

Advanced Options

Entity / Architecture - specifies the root (top) of the design to be elaborated.

Library Aliases

Library Alias - specifies an alias for a VHDL library, overriding the default mapping of VHDL library name to file
name.

NOTE: Library Aliases are not supported by the internal VHDL checker.

Available VHDL Templates

The HDL Editor provides Language Assistant, simple yet very efficient tool, which simplifies the process of writing
HDL files. This is a sort of data base containing ready-made language templates for typical syntax constructs. The user
can write and add his own templates. You will find detailed description on the usage of Language Assistant in the
section Language Assistant in the chapter HDL Editor.

VHDL templates provided with the software comprise two kinds of constructs:
- syntax templates, which comprise typical language objects,
- synthesis templates, which comprise synthesizable constructs describing basic elements (e.g. gates, flip-flops,
multiplexers, counters, etc.)

Using On-Line VHDL Guide
HDL Editor gives you access to the on-line help provided with the XVHDL compiler. To get the help choose the Help
Topics option from the Help menu in the HDL Editor and click on the Metamor Reference button.

Using ABEL

Requirements
If you want to use ABEL-HDL feature in your designs you have to install Xilinx ABEL software package.
Active-CAD uses the following programs for ABEL synthesis:

FPGA synthesis: abl2xnf.exe
ELPD synthesis: ahdl2x.exe, blifoptx.exe, pla2eqnx.exe, readpld.exe

NOTE: programs mentioned above runs other XABEL programs, so you must have all Xilinx ABEL package
installed.

Using Xilinx-ABEL in FPGA and EPLD designs

Identifiers case sensitivity
Identifiers in ABEL-HDL are case sensitive but in the XNF netlist are not. So, identifiers consist of the same
letters which differs only in case should not be used. Otherwise an error will appear during synthesis.

Module names
Although the Xilinx ABEL software allows you give the modules in the ABEL-HDL file any names that you
choose, Xilinx recommends that each ABEL-HDL file contain only one module, which should have the same
name as that of the ABEL-HDL file.

Signal declarations for ABEL macros
Pin and node declarations declare all signals used in the design. Declaring signals you should complied with
the following rules:
• PIN declarations define external connections to the ABEL-HDL macro; this signals will become I/O

pins of the created symbol.
• NODE declarations define internal signals which are not connected with any external signal; signals

declared as nodes are not guaranteed to be retained in the output XNF netlist unless you explicitly save
them by using Xilinx property save (see ‘Including Xilinx FPGA properties’ section); this signals will
not appear on the created symbol.

• Declare BUS pins with the ABEL-HDL range operator ‘..’; example:
Declaration
 D7 .. D0 pin ;

will create symbol with one bus pin named D[7:0],
declaration
 D7,D6,D5,D4,D3,D2,D1,D0 pin ;

will create symbol with eight separate pins named D7,D6,D5 etc.

Including Xilinx FPGA Properties
The property declaration allows you to specify additional design information associated with the Xilinx
processing modules. The syntax of the property statement for Xilinx FPGA devices is the following:

XILINX PROPERTY ‘string’ ;

The Xilinx property statements:

• XILINX PROPERTY ‘initialstate state_name’ ;
XILINX PROPERTY ‘initialstate state_register_name state_name’ ;
This property defines the initial power-up state of the state register and is used for symbolic state
machines only. It instructs the compiler to arrange logic so that the state machine always goes to the
specified state during power-up or global reset. If this statement or the async_reset statement is not
used, the initial state is chosen by the compiler. The second syntax is required if there are multiple state
machines.

• XILINX PROPERTY ‘map output_pin input1 input2 input3 ...’ ;
The property map ensures that the sumnetwork between the output pin and the specified inputs is mapped
into one CLB. If Improvex cannot fit the entire map into one CLB it issues an error and stops processing.

• XILINX PROPERTY ‘save signal_name’ ;
Normally only pin names are preserved in the final XNF netlist that XABEL produces, intermediate node
and signals may disappear. The property save ensures that the specified signal name is saved in the final
XNF netlist.

• XILINX PROPERTY ‘dlc2s max_value’ ;
XILINX PROPERTY ‘dlc2p max_value’ ;
XILINX PROPERTY ‘dlp2s max_value’ ;
XILINX PROPERTY ‘dlp2p max_value’ ;
This properties set maximum number of logic levels on:
 dlc2s - all paths from flip-flop to flip-flop,
 dlc2p - all paths from flip-flop to output pin,
 dlp2s - all paths from input pin to flip-flop,
 dlp2p - pure combinatorial logic paths in the module.

Including Xilinx EPLD Properties
Some device-specific features of the Xilinx EPLD architectures, like the XOR operator, are supported
directly in the ABEL-HDL syntax.
Some other features of the XEPLD architecture, such as input pad registers, are supported using PLUSASM
property statement. Other features, like the built-in arithmetic circuitry, can be specified through include files
written in PLUSASM language.
Any PLUSASM declaration statement or equation can be specified in an ABEL-HDL file with a property
statement. The syntax for this statement is the following:

PLUSASM PROPERTY ‘statement’;
or

XEPLD PROPERTY ‘statement’;

These two statements are equivalent. The statement can be any PLUSASM declaration.
Files written in the PLUSASM language can be included with the statement INCLUDE_EQN. The syntax for
this statement is the following:

INCLUDE_EQN ‘filename.pld’

The ABEL-HDL property statement for this construction is the following:

PLUSASM PROPERTY ‘INCLUDE_EQN “filename.pld” ‘;

Note that single quotation marks required within the PLUSASM declaration string are replaced by double
quotation marks in ABEL-HDL property statement.

Using HDL Design Wizard for ABEL
The HDL Design Wizard is available within the HDL Editor. It is run whenever you select the option New
from the menu File. It can be also invoked immediately from the logo window that appears when you start the

HDL Editor. The Wizard is intended to help you to start creating a source file. This is accomplished through
the use of a number of dialogs which prompts you to define the information needed to create the basic
elements of the source file. The first choice you have to make applies to the language of the document (either
ABEL or VHDL).

In case of ABEL, the basic elements of the code, as mentioned above, comprise the following:
1. File name

The Wizard asks you to specify the name of the file where ABEL code will be saved.
2. Pin declarations.

The Wizard asks you to specify the name, direction and type (for output pins only) of each pin.
Output pins can be combinatorial or registered.

The Wizard creates the file with the specified name and basic ABEL-HDL source file sections:
• Header with module declaration and title; both - module name and title - are the same as the file name,
• Declarations section, where all pins are declared; types of outputs are specified with istype statement,
• Keyword equations which starts design description section,
• End statement.
The user should then supply the file with the appropriate design description and (optionally) additional
declarations (i.e. set, constant, macro declarations).

Available ABEL Templates

The HDL Editor provides Language Assistant, simple yet very efficient tool, which simplifies the process of
writing HDL files. This is a sort of data base containing ready-made language templates for typical syntax
constructs. The user can write and add his own templates. You will find detailed description on the usage of
Language Assistant in the section Language Assistant in the chapter HDL Editor.

ABEL templates provided with the software comprise two kinds of constructs:
- syntax templates, which comprise typical language objects,
- synthesis templates, which comprise synthesis-specific constructs.

ABEL designs at the top level

Creating top level ABEL design
In a top level ABEL project, ABEL files describe not some isolated fragments of the project (macros) but the
whole project (Schematic Capture is not used at all). ABEL-HDL file describing the project must be attached
to the root of the hierarchy. In order to edit and attach a new source file you have to run the HDL Editor, edit
the file, and attach it to the project using the option Attach to Project from the menu Project.

Do the following to create a new ABEL file for a top level ABEL project:
• Run the HDL Editor from the Project Manager.
• Edit the contents of the source file. Use the HDL Wizard and the Language Assistant to speed up and

simplify your work. At any moment, you can check the syntax correctness of the file using the option
Synthesis/Check Syntax.

• Select the option Project/Add to Project to add the file to the root of the project hierarchy.

The procedure for synthesizing top level HDL projects is similar to that for macros. A top level ABEL
project contains single source file. Synthesis of top level ABEL projects is invoked from within HDL editor.
To run the editor with the file you must double-click on the name of the file in the hierarchy tree in the Project
Manager (in the hierarchy browser). This is an obligatory condition that the synthesis parameter Chip must be
set on (see the section ABEL synthesis options). Otherwise, Place & Rout process will fail.

Do the following to synthesize a top level ABEL project:
• Run the HDL Editor from the Project Manager double-clicking of the ABEL source file name you want

to synthesize in the hierarchy browser.
• In the synthesis options dialog (menu Synthesis, item Options) set the option Chip on.
• Execute the command Synthesize from the menu Synthesis.

Using multiple files
Top level project in the ABEL-HDL can contain only one design file. Project manager does not allow to add
more than one ABEL file to the design.
It is possible to create a multi-file design. Such design still contains a single top level file, other files can be
included in the designing using one of two methods:

1. With ABEL-HDL @INCLUDE directive which includes any other file to ABEL source file. Syntax of
this directive is the following:

 @INCLUDE ‘filename’
e.g.:
 @INCLUDE ‘C:\\ACTIVE\\PROJECTS\\ABELSRC\\MACROS.ABL’

2. Only for Xilinx EPLD designs
With ABEL-HDL property statement and PLUSASM INCLUDE_EQN statement which allows to
include PLUSASM file to the design (for more information see ‘Including Xilinx EPLD Properties’
section).

NOTES:
• Files linked with the methods described above are compiled into a single XNF file. The device fitter

does not recognize that they were once separate files.
• When you want to synthesize multi-file project you have to load to the HDL Editor the top level file and

then run synthesis.
• Included files are not displayed in the hierarchy browser in the Project manager.

Declaring signals
In the ABEL-HDL source file signals are declared as PINS or NODES. In a one-file design or the top-level
file of a multi-file design, signals that connect to actual device pins should be declared as pins, and all other
internal signals should be declared as nodes.
In “included” files, signals that are used in the top-level file, either as device pins or to connect to other files,
or in any other included file, should be declared as pins and signals that are used only inside the same
included file should be declared as nodes.

FPGA design

Device declaration
Do not specify the name of a Xilinx FPGA device with the device statement. Device is specified in the
Project Manager.

Assigning device pins
Pin numbers cannot be given in the ABEL source file (like for Xilinx EPLD devices) - they must be specified
in a separate file with the name same as the project name and the extension 'CST'. This file may be created in
two ways:

1) Write all declarations using any non-formatting (ASCII) text editor. You have to provide the following
entry for each pin:

 place instance <signal_name>_#PAD_pad : <pin_number> ;

where # is: I - for input pins,
 O - for output pins,
 IO - for bidirectional pins.
e.g.:
 place instance RESET_IPAD_pad : P56 ;
 place instance Q12_OPAD_pad : P72;

2) Invoke Place & Route process without the 'CST' file - in such case, XACT will add the pin numbers on
his own and adds the suitable information about that in the report file (the file with the name same as
project name and the extension 'RPT'). The report file will be supplemented with the section 'CST File
Format' which contains ready-made pin assignments in the format described above. This fragment can be
easily cut with any text editor and saved as 'CST' file. Then the pin numbers should be suitably modified
as desired. With so prepared 'CST' file the process Place & Rout must be run once again.

EPLD design

Device declaration
The following ABEL-HDL device statement should be specified in the header of the source ABL file used as
a top-level design o as a single file design. This statement tells XABEL that this file represents complete
stand-alone design. It has the following syntax:

modulename DEVICE ;

In an included file the device statement should not appear.
Do not specify the name of a Xilinx EPLD device in the device statement. Device is specified in the Project
Manager.

Assigning device pins
To assign signals to pins in a top level ABEL design for Xilinx EPLD simply specify the pin numbers in the
pin declarations in the ABEL-HDL source file.

ABEL synthesis options

FPGA synthesis
General options:
Compile:

Chip - enables insertion of I/O buffers and pads; used for HDL type projects.
Macro - disables insertion of I/O buffers and pads; used for schematic type projects.

Improvex - enables the logic optimizer Improvex which optimizes the synthesized XNF netlist

Optimize - options for the logic optimizer Improvex:
Area - optimization for utilization (number of used CLBs), trading off performance (speed).
Speed - optimization for performance (number of CLBs in the critical path), trading off utilization
(number of CLBs).
Standard - intermediate solution between Area and Speed options.

Advanced options:

Encoding - options for state-encoding method:
Standard - automatic selection of the best encoding scheme.
Binary - for small state machines, or state machines with few (less than four) input variables, binary
encoded state machines may be more efficient.
One Hot - the One-Hot method uses one flip-flop per state machine state.

Unspecified state - these options specify how to synthesize incompletely specified state machines.
Incompletely specified state machines are those which do not have a state assignment for every possible input
combination.

Initial - incompletely specified state machine defaults to the initial state whenever the next state for
the current input combination is not specified.
Current - incompletely specified state machine defaults to the current state.
Don't Care - no default for incompletely specified state machines.

EPLD synthesis
Compile:

Chip - enables insertion of I/O buffers and pads; used for HDL type projects.
Macro - disables insertion of I/O buffers and pads; used for schematic type projects.

Optimize - reduction options:
Auto Polarity - reduces the logic so that each signal will have the minimum number of terms
possible. The optimization will produce both ON-set and OFF-set equations so that the minimum
number of product terms will be used.
Fixed Polarity - reduces so that each signal will have the minimum number of product terms,
maintaining the polarity of the signals as specified in the source file. This should only be used when
you want to force output signals to a specified polarity (typically through the use of the 'pos' and
'neg' signal attributes).
No Reduction - merges all the compiled equations into a single ABEL-PLA file. No logic
reduction is performed. This option must be used if you want redundant logic to be preserved for
any of the design outputs.

Using Memory Generator
Requirements

Xilinx memory generator (MemGen) is a convenient tool for creating RAMs and ROMs for
Xilinx FPGA families which supports memories. MemGen creates XNF file, log file and
few other files used to create a schematic symbol, which can be used as a part of the
design.
You need two things to create memory macro:
• Xilinx tool (MEMGEN.EXE) installed in the XACT directory,
• Text file (.MEM) containing memory description; Active-CAD helps you to create this
file (see Creating memory macro section).
For detailed information about MemGen program and its capabilities refer to Xilinx XACT
Reference Guide, Volume 1.

Memory definition file
Memory definition file is a simple text file (with .MEM extension) which defines memory
and its contents for MemGen tool. This file consists of series of commands that specify:
• memory type,
• memory dimensions (number of words and word's length),
• symbol format and symbol pins style,
• memory contents (only for ROMs and RAMs with initial values).

Following commands may be used in the memory definition file:

TYPE [RAM|ROM]
TYPE command is used to specify the type of memory to be created. There are two types
supported: RAM (read-write memory) and ROM (read-only memory).

DEPTH number_of_words
DEPH command is used to define the depth the memory (in words). The value of
number_of_words parameter must be positive decimal integer between 2 and 256,
inclusive.

WIDTH word's_width
WIDTH command is used to define the width of memory word (number of bits within
word) . The value of word's_width parameter must be a positive decimal integer between
1 and 32, inclusive.

SYMBOL [VIEWLOGIC|ORCAD|NONE] [BUS|PINS]
SYMBOL command is used to specify symbol format and pin style. It has 2 parameters.
First specifies to which schematic editor the symbol is dedicated. The second one
specifies whether data and address lines should be created as individual pins (PINS) or as
bus signals (BUS).
NOTES:
• for Active-CAD specify ORCAD symbol format,
• symbol is always created with individual pins, no matter what value, BUS or PINS, you
specify as the symbol style. If you want to create memory symbol with bus pins you have to
change symbol created by MemGen using Symbol Editor.

DEFAULT data_value
DEFAULT command is used to define default value of all memory cells not specified with
the data command. If no default value is specified all undefined locations are zeroes.
NOTES:
• DEFAULT command is allowed only for ROM and RAM memories with initial
values,

• data_value parameter can be specified in binary, octal, decimal or hexadecimal format
described below (see. DATA command description),

DATA value0, value1, ... , valueN
DATA command is used to specify the contents of ROM or RAM memory with initial
values. This command, if used, must be the last one used within the memory definition file.
DATA command may be specified in multiple lines but the DATA keyword should appear
only once. Individual data values must be separated by commas or blank characters
(spaces, carriage returns or tabs). You can specify data in the following formats:
• binary: 2#value#
• octal: 8#value#
• decimal: 10#value#
• hexadecimal: 16#value# or value (the default numeric base is 16)
The value0 is location zero, the value1 is location one, and so forth. Underscores can be
used to separate data fields in long numbers which makes them easier to read (i.e.
2#0100_1100_0010_1101#).

; comment
All text to the right of a semicolon until the end of the line is the comment and is ignored
by MemGen.

Creating memory macro
To create a memory macro you have to prepare memory definition file (.MEM) containing
description of the memory. There are two ways of creating this file:
• use Active-CAD dialog . You simply fill specified fields and the memory definition file
is automatically created. If you create RAM you need not add anything to this file. If you
create ROM or RAM with initial values, you have to specify memory contents (DATA
command),
• create whole memory definition file using any non-formatting (ASCII) text editor.

To create a new memory macro with Active-CAD follow the procedure:
1. Select the Memory Generator option from the Applications menu in Project
Manager.
2. Enter the memory definition file name in the Block field. Created memory macro
will have the same name as the file name.
3. Mark the memory type (RAM or ROM) and specify the memory width and depth
in the appropriate fields.
4. If you create ROM or RAM with initial values press the Edit button to invoke
Notepad. Add information about the memory contents (see Memory definition file section),
save the file and close Notepad.
5. Press the button Generate to run MemGen and create the memory macro. After
successful creation macro is added to the project library.
6. If an error appears view the log file (file with the same name as the .MEM file
and the LOG extension) to see the error description.

To create a macro with the previously created memory definition file follow the
procedure:
1 Select the Memory Generator option from the Applications menu in Project
Manager.
2. Enter the memory definition file name in the field Block or press the button Select
to browse the file.
3. Press the Generate button to run MemGen and create the memory macro. After
successful creation macro is added to the project library.
4. If an error appears view the log file (file with the same name as the .MEM file
and the LOG extension) to see the error description.

NOTE:
Created memory symbol will have individual pins. If you want a symbol with bus pins use
Symbol Editor to modify the existing symbol.

Placing memory macro on the schematic
Memory macro is added to the project directory and you place it on the schematic like any
other symbol. Use 'Symbol toolbox' button or Symbol option from the Mode menu to invoke
symbol selection window. Then select the desired memory macro and place it on the sheet.
See Schematic editor section for more details.

Changing memory macro contents
To change the memory macro follow the procedure:
1. Select the Memory Generator option from the Tools menu of the Project
Manager.
2. Press the Edit button and select the memory definition file with the same name as
the memory macro you want to modify. Notepad editor will be invoked with this file. Make
desired changes in the memory definition file, save it and close Notepad.
3. Press the Generate button to run MemGen and update the memory macro.
4. If an error appears view the log file (file with the same name as the .MEM file
and the LOG extension) to see the error description.

NOTE:
Created memory symbol will have individual pins. If you want a symbol with bus pins use
Symbol Editor to modify the existing symbol.

Functional Simulation

Functional simulation methodology
Functional simulation is used for verification of design behavior. Since this simulation does not include any
timing delays, the device outputs are more clearly related to inputs and it is easier to understand the device or
circuit behavior.

Starting functional simulation
The functional simulation assumes either
• a zero propagation delay (FM mode),
• current simulation resolution (UN mode),
• the short simulation Step length (GL mode).
The simulator is set by default to the functional simulation with zero propagation delays (FM mode). To set
other functional modes, click on the center button in the Simulation toolbox which has a 3x3 button
arrangement. Each click on that button will select the next simulation mode (TM -timing mode, UN-unit delay
functional mode, GL -glitch functional simulation mode).

The simulation resolution, which is used by the UN mode, is set by selecting the Simulation Precision option
from the Options menu.

The short simulation step, which is used by the GL mode, is set by selecting the Simulation Step option from
the Utilities menu.

Functional simulation with X-BLOX symbols
If your design includes some X-BLOX symbols, you will be able to simulate such design by clicking on the
SIM button in the simulator or Design Manager, which invokes the simulator. ACTIVE-CAD will
automatically:
1. Find on network all Xilinx design related tools, such as XNFPREP and X-BLOX, and create pointers for

direct access by the Design Manager.
2. Generate an XNF netlist file from your schematic design (it will invoke the Create Netlist and then

Export Netlist option from the Options menu)
3. Run through the XNFPREP utility to flatten the netlist
4. Invoke the X-BLOX compiler to generate a gate level netlist from the X-BLOX netlist.
5. Load the newly generated gate level netlist into the simulator and set it to the functional (FN) simulation

mode (with 0 propagation delays).

If the XNFPREP and X-BLOX (DS380) software is not available on the network, you will have to manually
perform the above listed operations, using ACTIVE-CAD and Xilinx programs.

Functional simulation with VHDL files
If your design includes some blocks described by VHDL code, you will be able to simulate such blocks by
clicking on the SIM button in the simulator or Design Manager, which invokes the simulator. ACTIVE-CAD
will automatically:
1. Find on the network all VHDL design related software, such as VHDL analyzer and logic synthesis tools,

and create pointers for direct access by the Design Manager.
2. Generate an XNF netlist from your VHDL design files.
3. Load the newly generated gate level XNF netlist into the simulator and set it to the functional (FN)

simulation mode with 0 propagation delays.

If your project is comprised entirely of VHDL files and schematic does not exist, you should invoke the
simulator directly from the Design Manager.

To manually convert a VHDL file into a gate level netlist, select the Update Macro option in the Project
menu of the HDL Editor. ACTIVE-CAD will select the appropriate logic synthesis tool and create the netlist.
ACTIVE-CAD will automatically use these files for simulation, instead of the VHDL source files.

Functional simulation with ABEL files
If some schematic blocks are described in ABEL hardware description language, you will be able to simulate
them by clicking on the SIM button in the schematic editor or in Design Manager, which invokes the
simulator. ACTIVE-CAD will automatically:
1. Find the ABEL compiler on the network and generate a pointer for direct access by the Design Manager.
2. Generate an XNF netlist file from your ABEL design by invoking the X-ABEL software
3. Load the newly generated gate level netlist into the simulator and switch it to the functional (FN)

simulation mode with 0 propagation delays.

If your project is comprised entirely of ABEL files and schematic does not exist, you should invoke the
simulator directly from the Design Manager.

To manually convert ABEL files into gate level netlists, select the Update Macro option in the Project menu
of the HDL Editor. ACTIVE-CAD will automatically select theses files for simulation instead of the ABEL
source files.

Functional simulation of EPLD designs
If your EPLD 7000 design has been entered in ABLEL design language, it should be processed as a typical
ABEL file.
• Create a project for the ABEL design file. Invoke the HDL editor if you need to review the design in

ACTIVE-CAD. Do not start the schematic editor.
• Click on the SIM Funct(ional) button in the Design Manager. ACTIVE-CAD will automatically find on

network the X-ABEL converter and convert the HDL design file into a flat netlist.
• The flat netlist will be loaded into the simulator for functional simulation.
• Load the desired test vector file using the Load Test Vectors or Load ASCII Test Vectors option in

the File menu. You can also simulate the netlist with the ready-made test vectors that are available on-
line in ACTIVE-CAD.

You can import the EPLD netlist into schematic editor as a schematic and simulate it interactively as a typical
schematic with an on-line background simulator.

Selecting probes in the schematic
You can select any schematic test point for viewing or direct control with external signals. To select the test
points, enter the PROBES assigning mode (by clicking on the Simulation toolbox button in the top horizontal
toolbar), and click on the desired test points. The selected items will be marked with a gray square and will
be automatically listed in the simulator once it is invoked.

Selecting probes in the simulator
Because of direct correlation to the design, it is much easier to place probes on schematic test points than
select them from signal and chip listings in the simulator. However, if a need arises to select probes from the
simulator, follow this procedure:
1. Select the Add Signals option from the Signals menu. In response, Component Selection for Waveform

Viewer will appear.

2. Signals Selection field lists all signals, including I/O terminals, that can be directly selected to the
simulation.

3. Chip Selection field lists all devices which pins can be dynamically selected for simulation. Double-
clicking on a device will display its pins in the Pins For: field. You can select any pin by double-
clicking on it, or use the group selection options, which are available from a field activated by
positioning the cursor in the Pins For field and clicking the right mouse button.

4. To speed component search in hierarchical designs, use the Scan Hierarchy field. If this field is
invisible on the screen, click on the Hierarchy button in the Component Selection for Waveform
Viewer window.

All selected test points are displayed in the simulator’s Signals field and on appropriate hierarchical
schematic sheets.

Assigning stimulators
 To apply an external signal to the schematic design, you need either to choose one of the ready-made general
purpose signals that come with the simulator or create yourself an appropriate test vector.

Ready-made general purpose stimulator signals
The ACTIVE-CAD simulator comes with a set of general purpose signal waveforms, also called the
stimulators. Clicking on the Add Stimulators option in the Stimulator menu displays Stimulator Selection
window which is similar to a keyboard button arrangement. All of the buttons in that display represent signals
which can be assigned to schematic test points by dragging them over the selected signal name in the
simulator window and releasing the left mouse button. They can also be assigned by selecting the signal name
first (turns blue) and then clicking on the appropriate signal button in the Stimulator Selection window.
1. The A-Z keyboard keys can be assigned to any number of signal lines and can be manually toggled

between 0 and 1 logical levels while the simulation is in progress.
2. The round LED lamps represent outputs of a 16 stage binary counter. The input clock frequency of that

counter is set from the Clock Settings option in the Options menu, and the counter can operate from the
kiloHertz to the GigaHertz clock frequencies. The Bc lamps represent the true counter outputs and the
NBc lamps represent the Inverse counter outputs.

Formula-based stimulator signals
The square LED lamps in the Stimulator Selection window represent custom signals generated from a
formula entered by the user. The formula entry is activated by clicking on the Formula button. In response, the
Set Stimulator window appears. Double-clicking on a formula name in the Select Stimulator field (F0-
F15), selects it for editing in the Formula window.
1. Enter the logical state, e.g. H for high, x for unknown, etc.
2. Enter the length of the logical state in nanoseconds, e.g. 20.14
3. Apply parenthesis. The number after the closing parenthesis indicates how many times the formula in the

parenthesis should be repeated. Unlimited nesting of formulas is allowed. For example,
((H20.14L37.86)2Z22)993 will create a waveform high for 20.14 ns, low for 37.86 ns. This waveform
will be repeated twice. After the second set of H=20.14 and L=37.86, there will be tri-state for 22 ns.
This waveform will be repeated 993 times. After the 993rd repetition, the waveform will stay at its last
logical state (Z=tri-state).

Clock signals are repetitive signals which do not terminate in any state. If you select the Clocks option in the
Set Stimulator window, a new window for assigning formula-based signals to clocks C1-C4 will appear.
For example, if the formula ((H20.14L37.86)2Z22)993 is assigned to one of the C1-C4 clocks, the signal
will not stay in the last state (Z) after the 993rd cycle but will instead start a new set of 993 cycles. Since the
clock signal automatically repeats the basic signal infinite number of times, there is no need to place “993”
after the 2nd parenthesis. Assigning to clock signal the formula ((H20.14L37.86)2Z22) will produce the same
results.

The C1-C4 clock buttons that have formulas assigned to them will be displayed in red. Clock buttons without
assigned signal formulas will be gray. Clock buttons allow to assign to signal names periodically repetitive
custom clock signals

The Control buttons in the Stimulation Selection window allow quick and efficient operations on stimulator
signals:
• Delete deletes the stimulator assigned to the currently selected signal line
• EN button enables the stimulator signal that has been disabled before
• DS button temporarily disconnects the stimulator from the circuit. If you do not plan to use that signal

again, use the Delete button instead of the DS button.
• CC (Chip Controlled) button activates the stimulator only if the chip output is in the tri-state. Otherwise,

the chip output will have full control of the node.
• OV (Stimulator Override) forces all selected signals to be unconditionally controlled by the stimulators

signals. This state is assigned by default to all test vectors, so that they automatically control the
associated nodes.

• CS (Confirmation Marker) confirms status of the associated test vector. Selecting a signal name and
clicking on the CS button will force the currently displayed signal waveform as the driving signal. This
operation allows any hand drawn waveform diagrams to be forced at schematic test points as test
vectors.

Hand-drawn test vectors
You can manually edit any signal waveform on the screen and force it as a design stimuli signal. To edit a
signal waveform, select the Edit option in the Waveform menu. In response, the Test Vector State
Selection window will appear. Each time you click the cursor on the screen, a blue vertical cursor will
appear at the selected location. If you click on the logical state button in the Test Vector State Selection
window, a new segment of the waveform will be drawn between the last signal transition on the selected line
and the blue cursor location. Any of the 15 logical states can be selected for the waveform by clicking on the
appropriate button.

Overriding device pins
There are three basic rules in applying test vectors to devices pins.
• Each time you assign a test vector to an output pin, it will automatically control the signals in the entire

node
• Assigning a test vector to an input pin will control only that input pin. All other device pins in the node

will be driven from the signal source in the node.
• If you assign a signal to a pin connected to tri-state bus, it will control the entire node. It is recommended

that all output pins connected to a tri-state node be set to chip override (CC button in the Stimulator
Selection window), so that their outputs be overridden only it he they are in the tri-state condition.

Emulating design modifications
Since ACTIVE-CAD allows feeding signals at any test point in the design and forcing the desired circuit
behavior, you can override bad design sections with the desired signal waveforms. This allows you to create
signal waveforms that emulate design sections before they are actually entered on the schematic.

In a large design, you can quickly separate a circuit from other design sections by overriding its inputs with
known test vectors. After the circuit has been verified locally, you can remove the overriding test vectors and
let the actual design blocks control the circuit under test.

If a faulty design section has a feedback, it may be difficult to isolate the problem without opening the
feedback loop. Assigning a keyboard key to an pin in the feedback loop, and toggling its status to either
logical high or low, will allow operating the circuit in an open loop.

Since the device pin override works without any compilations, you can instantly check design sections by
emulating its external conditions. Because the override works independent of the hierarchical levels,
ACTIVE-CAD is a universal deign breadboard that allows quick design troubleshooting.

Saving signals (test vectors)
ACTIVE—CAD simulator allows for saving test vectors as either binary or ASCII files. Since the binary
format is much more efficient than the ASCII, all internal simulator test vector files are saved in the binary
format. The ASCII format is used primarily for interfaces with other EDA tools, such as test equipment.
1. To save the current signal waveforms as a binary file, select the Save Test Vectors option from the File

menu. The waveforms will be saved with their sources, such as clock C1, B2 (3rd bit of the binary
counter), etc. Since these are repetitive signals, you will be able to continue simulation beyond the saved
and loaded waveforms.

2. To save current signal waveforms as an ASCII file, select the Save ASCII Test Vectors option from the
File menu. The waveforms will not be saved with their sources, such as B2, C1, etc., and upon re-
simulation these files will end at the last previously simulated cycle. All input signals in the ASCII files
will be assigned the CS symbol, indicating that they are forced signals (into the schematic design).
Since the CS markers are in gray, they may be overridden by active device outputs in the same node. To
force an unconditional override, select the signal name and click on the OV button in the Stimulator
Selection window.

To load a binary file select the Load Test Vectors option from the File menu. To load an ASCII file, select
the Load ASCII Test Vectors option from the File menu.

Running simulation steps
The Simulation toolbox has Step and Long Step buttons. These buttons determine the simulation time and
can be set independently from each other by selecting the Simulation Step option from the Utilities menu.
 The schematic editor has SC Probes toolbox which includes the STEP button and -> (event) button. The
STEP simulation interval is set in the Simulation step field of the General Settings window, which is
invoked by clicking on the View/Preferences/General menu. This setup is independent from the Step setup
in the simulator. The -> button allows for a single event simulation, which is very important when monitoring
detailed circuit behavior.
To review past simulation steps, select in the simulator the reference signal(s), which transitions you want to
use as a reference. Next, click on the <- (back step) button in the SC Probes toolbox. Each activation of this
button will move the blue cursor to the previous event on the selected signal line(s). The <- button allows a
close examination of the relationships between various signal transitions in the design.

Cross-probing with the schematic
When you start the simulator for the first time, schematic editor creates a reference netlist. From that point on,
all design changes are incrementally added to the netlist. Because of this cross-coupling between the
schematic editor and simulator, all design changes are instantly visible in the simulator and all signal changes
in the simulator are instantly displayed on the schematic.

Selecting a test probe in the schematic, automatically adds it to the simulator display. Similarly, adding a
probe in the simulator instantly displays it on the appropriate schematic sheet.

To find a location of a signal or device pin on the schematic sheet, select the item in the simulator’s Signals
field and press the right mouse button. Select in the new menu the Find in SC option. The simulator instantly
displays the appropriate schematic page with a pink blob over the selected pin. If you have selected an I/O
terminal, then the entire node will be marked red.

Incremental design changes
If you ever want to make sure that all schematic changes are in the simulator, click on the Add Signals option
in the Signal menu. This displays the Component Selection for Waveform Viewer window. The Chip
Selection field will list all project components. If the design is hierarchical, select the appropriate hierarchy
from the Scan Hierarchy field. The hierarchy display should list all components at the selected hierarchical
level.

To check the simulator netlist for connectivity, click on the Add Signals option in the Signal menu. This
displays the Component Selection for Waveform Viewer window. Place the cursor in the Signals
Selection field, and select the signal to be traced. Click the right mouse button and when a set of options is
displayed, choose the View Connections option. The simulator will display all pin and I/O terminal
connections in the selected node. Double-clicking on any pin in the node will display the associated device
with all its pins. Double-clicking on any of the device pins will display a new node with all wires connected
to that pin. This procedure allows you to trace connections in the design. Some users prefer tracing netlists
from tracing schematic pages because the display is less cluttered.

If you have done some extensive schematic editing, then ACTIVE-CAD may have inefficient memory usage,
and you need to invoke the Update Simulation option from the Options menu.

Deleting of buses requires invoking of the Update Simulation option from the Options menu. This optimizes
simulation of buses.

Updating functional simulation
The functional simulation is automatically updated when you change the schematic design. No other manual
operations are needed. The only exception is deleting buses. In such a case, invoking of the Update
Simulation option from the Options menu is recommended.

Design Reset In Functional Simulation
Because the CLB reset lines are physically connected only during the layout process, the pre-layout designs
have unconnected CLB (flip-flop) reset pins. To compensate for this lack of common reset line in pre-layout
designs, all models have been upgraded to include a reset line that is activated by the Power on button in the
Simulation toolbox. To change the power on process, select the Power On Settings in the Options menu.

Simulating tri-state signals
Tri-state signals are used in bus connections. These signals are displayed as yellow squares with a letter Z
inside. The strongest signal in the node overrides the weaker ones, such as resistive high, resistive low, high
impedance unknown, etc. A table of signal overriding priorities is built into the simulator to emulate the real
circuit behavior and you do not need to be concerned with the issue.

If you apply a test vector to a tri-state pin, it will control the entire node independent of other active drivers
in the node. It is recommended that you select Chip Override (CC button in the Stimulator Selection
window) for the signal applied to a tri-state output pin.

Those interested in detailed simulator operation, should refer to the Signal States section of An Introduction
To Simulation And Virtual Hardware, which is available in a book format from ALDEC.

Simulating bi-directional signals
Since the strongest signal overrides the weakest ones in the node, schematic does not allow you to view the
actual outputs produced by the devices. However, the simulator allows viewing the individual device outputs
before they are overridden by strong signals in the node.

To view a device output before it is overridden by other strong signal in the node, select the device pin for
viewing its connectivity and logical states:
• Click on the Add Signals option in the Signal menu. This displays the Component Selection for

Waveform Viewer window.
• Double-click on the selected device in the Chip Selection field, which displays all device pins in the

Pins For field.
• Choose the desired pin and click the right mouse button. Select from the new menu the View

Connections option. The simulator will list the pin connections in the Connections window.
• Click the mouse cursor on the States button. A set of new columns will appear: Node, Conv, Model and

Stim. Model lists the actual model output before it is overridden by another strong signal in the node.
• Node indicates the resulting node signal, Conv denotes the way model will view the input signal and

Stim displays the directly applied external stimulator signal. The Connections table with States display
gives you an excellent insight into what is happening in a bi-directional node.

Interface to XACT Step
This chapter discusses issues connected with processing XACT5 and XACT step6 projects.

Loading project into XACT6 system
Before you load a project into XACT6, you have to export its ALDEC netlist into the XNF format. You can do this in
the Schematic Editor using the Export netlist option from the Options menu. XACT6 is invoked from the design flow
by clicking the XACT button. If the XNF netlist is older than ALDEC schematic netlist, the Project Manager suggests to
update it. In case the XNF netlist does not exist at all, the Project Manager asks whether to create the netlist (if so, you
should answer 'Yes').

Before the Project Manager invokes XACT6 system, it creates in the current project directory subdirectory
XPROJECT, and inserts the XACT project description file, <project_name>.prj, into it. XACT6 keeps in the
XPROJECT directory its working files.

The first thing you have to do in the XACT6 Design Manager is to execute the Translate command from the Design
menu. This command opens the Translate Options dialog box. Make sure that the option Read Part From Design is
checked. The Design Manager automatically translates the project netlist and creates a new version icon in the Project
View. When translation is finished, suitable message box will appear on the screen. You may view the translation log
file if you want.

NOTE: If you have modified your project and you want to have it processed in XACT6 in order to update the post-
process (routed) netlist, you must re-translate the new version of the XNF netlist, thus creating a new version of the
project in XACT6 Design Manager (see the next section).

Revision control
XACT6 Design Manager allows to create multiple versions of the same design. Each version has its own merged
netlist XFF. The XFF netlist is generated from the XNF netlist in the translation process. Note, that ACTIVE-CAD
allows you to keep only single-version projects. This means that if you modify the project contents and export a new
XNF netlist, the old XNF netlist will be lost (overwritten). Summarizing, though a project processed in XACT6 may
have multiple version (each with its own XFF netlist), ACTIVE-CAD keeps only the latest (i.e., created during the
latest Export Netlist operation) version of the XNF netlist.

After you create a design version by translating your ACTIVE-CAD project, you can try different implementation
strategies on that design. This allows you to vary how your design is implemented in order to achieve your design
objectives. For example, you can maximize speed and density for specific functions in your design by controlling the
implementation process. Each of these implementation strategies is called an implementation revision. Each
implementation revision contains the output files and reports that are created based on a specific set of implementation
strategies. You can delete implementation revisions that are no longer useful.

When you create a project, a revision icon is placed in the Project View with the status indicated as translated. As you
process the implementation, its status (i.e. routed or placed) is indicated next to its icon in the Project View.
You use the New Revision command in the Design menu to create a new revision. This creates a revision that contains
just the translated netlist and the status is "translated."

SUMMARY:
To Create a New Implementation Revision in the Design Manager Project View, do one of the following:
· Choose New Revision from the Design Manager's Design menu.
· Click the right mouse button in the Project View and select New Revision from the pop-up menu.
The Design Manager creates a new revision and displays its icon in the Project View.

Routing design with XACT 6
When a project is translated you can proceed to routing process. In the Project View select the implementation revision
you want to process and choose the Implementation command from the Design menu. As a result, the Design
Implementation Option window will open. Set the options according to the desired implementation strategy and click
the Run button. This will invoke the Flow Engine window and start the operation. In the Flow Engine window you can
watch the status of particular phases of the operation and messages sent in the process. End of the processing of the
project is signaled by a message box. Clicking OK closes the Flow Engine window.

NOTE: Before processing, make sure that the Produce Timing Simulation Data option box in the Design
Implementation Option window is checked.

Finding DRC errors on the schematic
If you encounter DRC errors during processing a project in XACT6, you can use a simple procedure, described below,
to find the symbols reported in the DRC report file:
1. In the Report Browser window, double-click the DRC Report icon in order to view its contents in a text editor.
2. Find the fragment of an error description containing symbol reference path. Select the path and copy it to the
Windows Clipboard (e.g., by pressing Ctrl+C)
3. Switch to the ACTIVE-CAD Project Manager and select the Find Object option from the Document menu. Place
the cursor in the Symbol Reference Path edit box and paste the contents of the Clipboard (e.g., by pressing Ctrl+V).
Click the Find button. The Schematic Editor will start with the appropriate schematic loaded. The specified symbol
will be selected on the schematic.

Using Hardware Debugger and PROM File Formatter
The Hardware Debugger is Xilinx configuration and verification tool. Use it to download PROM and BIT files to
FPGAs to program the devices. You may also use it to read back signal values for debugging purposes. Specifically,
you can read internal states of registers, flip-flops, RAMs, and I/Os, and verify the configuration data for a device.
The program can be used with three different cables: parallel, serial, and XChecker cables.

Each cable allows you to download data from your computer directly to one or several FPGA devices. If you are using
an XChecker cable, you can also do readback and verification with one device at a time. You can then display the
readback data in waveforms based on readback snapshots.

Use the Hardware Debugger to do the following tasks:
- download a BIT file to an FPGA,
- download a PROM file to a daisy chain,
- verify configuration data using an XChecker cable,
- read back the internal logic states of a configured device using the XChecker cable.

The PROM File Formatter provides a graphical user interface that allows you to format BIT files into a PROM file
compatible with Xilinx and third-party PROM programmers. It is also used to concatenate multiple bitstreams into a
single PROM file for daisy chain applications. Most of all, the PROM File Formatter enables you to take advantage of
the Xilinx FPGA reconfiguration capability, as you can store several applications in the same PROM file.

PROM files are also compatible with the Hardware Debugger. You can therefore use the Hardware Debugger to
download a PROM file to a single FPGA or to a daisy chain of FPGA devices.

Both the Hardware Debugger and the PROM File Formatter can be invoked either from the XACT6 Design Manager
(appropriate icons or items in the Tools menu) or immediately from the ACTIVE-CAD Project Manager (the
Prog/Debug button in the Design Flow).

Using DOS-based XACT Tools in XACT5 projects
This section provides information that may be useful when the user must, for some reasons, run XACT applications
from the command line. The term 'FPGAs', as it is used below, denotes devices belonging to one of the Xilinx families
other than XC7200 or XC7300; the term 'EPLDs' denotes devices belonging to XC7200 or XC7300 family.

Functional simulation

In general, functional simulation is based on ALDEC binary netlist (file project.alb) generated directly from the
schematic. However, for some project this method cannot be used:
- top level HDL projects have no schematic files, and functional simulation must be performed on the synthesized XNF
netlist (If the synthesized XNF netlist includes X-BLOX macros, it must be converted first so that it can be simulated -
see below),
- schematic projects using X-BLOX macros – schematic netlist must be exported to the XNF format, and then the XNF
netlist must be converted so that it can be simulated - see below.

If the project XNF netlist includes X-BLOX macros, the following programs must be run before functional simulation
(the following are complete command lines in order of execution):
xnfmerge.exe <project>
xnfprep.exe <project> outfile=<project>.xtg
xblox.exe <project>
As the result, the <project>.xg netlist file is generated, which can be simulated. This netlist is loaded into the
Simulator.

Functional simulation of projects for EPLDs, which include ABEL macros must also be performed on the external
netlist. Before simulation the following applications must be run:
xnfprep.exe -f -d <xact_path>\data\xnf7000 <project>.xnf
fsim.exe <project>.xff <project>.xf
The fsim program generate netlist <project>.xf which can be loaded into the Simulator

Place & Route processing

The essential file for P&R processing is the XNF netlist obtained either by exporting ALDEC schematic netlist or by
synthesizing top level HDL source files.

P&R for FPGAs is performed by the xmake program:
xmake.exe -x <project>

P&R for EPLDs is performed by the xemake6 program:
xemake6.exe -x <project>

Timing simulation

Before timing simulation of projects for FPGAs, the following programs must be run:
lca2xnf.exe -g <project> <project>.xnr
xnfba.exe <project> <project>.xnr -o<project>.bax -r<project>.bxr
The backannotated netlist <project>.bax can be loaded into the Simulator.

Before timing simulation of projects for EPLDs, the following program must be run:
tsim.exe <project> <project>.xnt
The backannotated netlist <project>.xnt can be loaded into the Simulator.

Timing Simulation

Timing simulation methodology
To perform timing simulation, ACTIVE-CAD updates the functional simulation netlist with the PDF timing
parameter file. This file is generated by the propagation delay calculation software, which is a part of the
placement and layout software tools.

If you have loaded a pre-layout netlist into simulator and selected the TIM (timing mode), then ACTIVE-
CAD will assign 1 nanosecond to all cells except gate primitives.

Creating timing simulation netlist
ACTIVE-CAD automatically generates timing simulation netlist when you click on the SIM Timing button in
the Design Manager. This operation requires that the appropriate XILINX design tools reside on the network.

Starting timing simulation
You can automatically invoke timing simulation only if the Xilinx design tools (X-ACT) are present on the
network. To start timing simulation, click on the SIM Timing button in the Design Manager.

If the Xilinx design tools are not present on the network, you need to compile off line the XNF functional
design netlist under the X-ACT software. Next, you need to import the newly generated post-layout netlist
into simulator by selecting the Load Netlist option in the simulator’s File menu.

Loading test vectors
Generally, you should use for timing simulation the same test vector files that you have used for functional
simulation. To load a test vector file, select either Load Test Vectors option or Load ASCII Test Vectors
option from the File menu.

Using global reset
The FPGA devices have a reset line connected to all active flip-flops during the layout process. Unlike the
pre-layout simulation which has been reset by the Power on button, the post-layout simulation requires
selecting to the Signals field of the physical (on-chip) reset line such as GSR or GS. This reset line needs to
be manually toggled before the timing simulation process may commence.

Reviewing timing delays
The timing delays are displayed in a tabular form, listing the minimum, average and maximum CLB and IOB
cell propagation delays (some values may be missing for some of the devices). To display the post-layout
timing delays, click on the Edit Timing Specification option in the Patching menu. The delays for input pins
represent the line delays and are designated DEL pin parameters.

You can edit the listed propagation delays to check what effect they have on the design behavior. After
emulating some changes, you may have a general idea on how to change the design parameters so that a new
compilation will produce the desired propagation delay values. For example, you may group some design
sections or assign a higher routing priority to some signal lines.

Scaling device timing
The Xilinx devices come in several speed grades. If your design is failing for one speed grade device, it may
be operating correctly with another, higher speed device. However, recompiling the same design for
different devices takes a long time. ACTIVE-CAD offers a quick and much simpler solution that may point
directly to the correct device. Follow this simple procedure for finding the appropriate higher speed device:

• Find the largest timing violation (LTV) in the design, e.g. 3.4 nsec.
• Calculate the fastest clock period (FCP) in the design. For example if the max. clock is 40 MHz, then its

fastest clock period will be 25 nsec.
• Add the largest timing violation (LTV) to FCP (3.4 nsec + 25 nsec = 28.4 nsec), and call the result DCP

(desired clock period).
• Calculate the propagation delay scaling factor (DSF) as the ratio of PFC (current clock period) to the

DCP (desired clock period). For example, DSF = FCP/DCP = 25/28.3 = .88
• Select Edit Timing Specification from the Patching menu.
• Double-click on Root in the Chip Selection field.
• When the Set Time For Block window appears, select the Level Mode which affects all items in the

entire design, and enter the DFS factor into the % of max field (e. g. .88). Click the OK button to
complete the operation of rescaling of all propagation delays in the entire design.

• Continue simulation. If any new timing violations appear, repeat the process of DSF calculation, till the
design shows no additional timing violations.

 If the design has passed all test vectors after its propagation delays have been rescaled with the DSF

factor, then the design should work flawlessly with the original propagation delays when used with
appropriate higher speed device. The clock speed of the new device is calculated by dividing the
current rating of the device by the DSF factor. For example, if the current device has been graded at 50
MHZ, then 50MHz/.88=62.5 MHz.

 Compile your design for the closest device that exceeds the 62.5 MHz clock speed and verify its

operation by simulating the previous test vectors.

Timing violations
ACTIVE-CAD automatically detects and displays such timing violations as setup and hold violations,
minimum clock width, and similar. Clicking on the Error Reporting option in the Options menu displays the
Error Reporting Options window, which is used for selecting error types that will be stored and displayed.

Selecting the Error Viewer option from the Utilities menu displays the Error Report Viewer window
which allows selecting the time period for gathering design errors.

Tracing simulation errors
ACTIVE-CAD timing violations messages are detailed enough so that they can point you directly to the
source of errors. For better understanding of the timing delays that have caused violations, select the Edit
Timing Specification option in the Patching menu.

Sometimes the simulation errors are related to unwanted logical states, e.g. you are getting unknown state (X)
instead of logical 1. To find the cause of such design errors, select the device pin that shows the wrong signal
state and trace its connectivity and logical states. The process of tracing signals is listed below:
• Click on the Add Signals option in the Signal menu. This displays the Component Selection for

Waveform Viewer window.
• Double-click on the selected device in the Chip Selection field, which displays all device pins in the

Pins For field.

• Choose the desired pin and click the right mouse button. Select from the new menu the View
Connections option. The simulator will list the pin connections in the Connections window.

• Click on the States button. A new table with Node, Conv, Model and Stim columns will appear. The
Model column lists the actual model output before it is overridden by another strong signal in the node.
Analyze this signal. If it is incorrect, trace it further. If it is correct, look for a problem in the current
signal node

Learn how to effectively trace signals. It is one of the basic skills required in design analysis.

Resolving bus conflicts
ACTIVE-CAD explicitly reports all bus conflicts. To view a device output before it is overridden by other
strong signals in the node, select the device pin for connectivity and states viewing:
• Click on the Add Signals option in the Signal menu. This displays the Component Selection for

Waveform Viewer window.
• Double-click on the selected device in the Chip Selection field, which displays all device pins in the

Pins For field.
• Choose the desired pin and click the right mouse button. Select from the new menu the View

Connections option. The simulator will list the pin connections in the Connections window.
• Click on the States button. A new set of columns will appear: Node, Conv, Model and Stim. The

Model column lists the actual model outputs before it is overridden by another (strong) signal in the
node. Analyze this signal. If it is incorrect, trace it further. If it is correct, look for a problem in the
current signal node.

The Connections table with States display gives you an excellent insight into what is happening in a bi-
directional node.

Simulating external netlist
ACTIVE-CAD automatically loads post-layout netlists into the simulator. However, if the design netlist was
created in a different EDA tool or if the Xilinx tools were not available on-line, you may have to manually
import an external netlist.
To manually import an external netlist, click on the Load Netlist option in the File menu. ACTIVE-CAD
displays the Load Netlist window, which allows selecting the input netlist format and its network/drive
location.

EPLD Design Issues
This chapter explains how to create your schematic design so it can be fitted to an EPLD device. It describes
XC7000 primitives and macros and the EPLD-specific attributes. It explains how to take advantage of the
EPLD features, how to adhere to the EPLD design rules, and how to assign logical High and Low values to
unconnected inputs and symbols. This chapter also explains how to control logic optimization and other
fitting options.

Schematic Library Components
To complete an EPLD design, you must use only the components included in the X7000U library. The
X7000U library contains components common to EPLD and FPGA designs. A few components are specific
to EPLD. This section describes how to use the common and EPLD-specific components.
There are three basic types of components:
• Buffers or pads, which define input and output ports that represent physical pins on the device
• Standard components, which represent fixed logic functions such as gates, adders, and counters
• PLD components, which are defined with a PLUSASM equation file
Many of the components in the X7000U library have special features that take advantage of EPLD
architecture. The following sections describe some of those features.

Buffers and Pads

Input and Output Buffer Connections
To represent an ordinary device input pin, use an IPAD connected to one IBUF buffer; the IBUF can then
connect to any number of on-chip logic symbol inputs. The IBUF can drive clocks and 3-state output enables,
except OBUFEX1, but there are also special-purpose buffer symbols in the library, BUFG and BUFFOE, that
you can use instead for these functions.

Input Buffers
To take advantage of the input-pad registers and latches available in EPLD devices, use one of the IFD,
IFDX1, or ILD symbols instead of the IBUF; do not connect an IBUF to the D input of an IFD/ILD symbol.
Refer to the XACT Libraries Guide for specific application rules for the symbols.
To represent an ordinary device output pin, use an OBUF buffer that is driven by one (and only one) on-chip
logic source. Connect the output of the OBUF to an OPAD symbol. You could also use one of the 3-state
output buffers (OBUFE or OBUFT) instead of OBUF. Drive the output enable control input (E or T) using
any on-chip logic source or input signal (from IBUF). The EPLD fitter looks for opportunities to
automatically assign the enable signal to one of the EPLD's fast output enable (FOE) global enable lines.
If you want to take advantage of an FOE global line explicitly, use a BUFFOE input buffer instead of IBUF,
and connect it to an OBUFEX1 output buffer instead of OBUFE.

Assigning an FOE Line
You should always label all the nets connecting PAD symbols and input/output buffer symbols. These names
are used by the software to refer to your device pins in the reports and during simulation.
To represent a bi-directional I/O pin, use an IOPAD symbol connected to both the input of an IBUF or
IFD/ILD and the output of an OBUFE, OBUFT, or OBUFEX1.

Output and 3-State Buffers
If a signal going into a common output buffer (OBUF) is generated by any component containing a 3-state
buffer (like BUFE or a PLD), the 3-state control signal is used to enable and disable the device output pin
driver. This behavior is unique to EPLDs and is not reproduced in FPGAs.

Output Enable Behavior in EPLDs

If you use a PLD symbol in your schematic and connect one of its outputs to an output buffer like OBUF, you
can control the EPLD device output pin using a 3-state control equation in the PLD.

Controlling Output Using a PLD Equation

If you want to use a PLD output with a TRST equation to control
 a bi-directional I/O pin of the EPLD, connect the OBUF output to an IOPAD and IBUF or IFD/ILD. If the
same PLD symbol that generates the output is also to receive the I/O pin input, you must use a separate pin of
the PLD symbol to receive the signal from the IBUF. Do not tie the signal received from an IBUF to the net
driving the OBUF of the same IOPAD; these input and output nets must remain separate.

Rules for connecting PLD symbols also apply to any custom symbols defined by equation files or macro
schematics.

If your design calls for 3-state multiplexing of multiple output sources, it is best to output each signal source
on its own set of 3-state output pins and tie the signals together off-chip. You cannot connect more than one
signal source to the same OBUF or OPAD.

On-Chip 3-State Multiplexing

EPLD components emulate 3-state signals internally by gating the macrocell feedback to the universal
interconnect matrix (UIM). (Macrocell feedback signals are never physically in a high-impedance state.) You
can tie together the outputs of multiple 3-state buffer symbols like BUFE or BUFT or 3-state PLD outputs to
multiplex these signals on-chip. You cannot connect such tied signals to an output buffer; you must pass a tied
signal through a logic symbol like BUF before driving an output port.

Input Buffers, Clocks, and Global Control Nets

You can connect the clock pin of any FD component or registered component to an ordinary logic signal, an
IBUF, or a BUFG (FastCLK) unless otherwise specified in the XACT Libraries Guide.

The input of a BUFG symbol must connect directly to a PAD symbol representing a FastCLK pin; there can
be no other components between the PAD and the BUFG.

IFD and ILD components must have a BUFG clock input.

After assigning any BUFGs to FastCLK pins, the XEPLD software tries to assign IBUF signals that drive only
clock inputs onto the remaining FastCLK pins.

The XEPLD software also attempts to optimize FD components into IFDs on the input pads. No other
registers are ever optimized into the input pad.

If your design requires a global clock enable, you must use IFDX1 components. The CE input to these
components can only be driven by a BUFCE, and the clock must be from a BUFG.

Use of the IFDX1 Symbol

You can prevent input register optimization using the REG_OPT=OFF attribute. You can prevent clock
optimization using the CLOCK_OPT=OFF attribute. These attributes are described in detail in the
“Attributes” section later in this chapter.

Sample Designs and Tutorials
This table describes example projects that can be used to demonstrate
ACTIVE-CAD Xilinx interface features. The table comprises of the following
entries:

Family - indicates which Xilinx product families are supported by the project

Author - indicates where the project was created,
 VL denotes projects imported from ViewLogic format

Family - describes design entry tools that were used to create the project:
 S - Schematic Editor
 H - HDL Editor (HDE)

HDL - indicates that the project contains macros based on HDL description:
A - ABEL macros
V - VHDL macros

Verified - indicates whether the project was verified on the Xilinx Demoboard
 XC40xx-PC84

 Project Author Family Tools HDL Verified
ABELTEMP ALDEC 4k S,H A
ATIMER ALDEC 4k S,H A X
BUS_CTRL ALDEC 4k H V
CALC VL 4k S
CALC3KA VL 3k S
CALC5K VL 5k S,H A
CALC7K VL 7k S
DACDEMO VL 4k S
FIB ALDEC 4k S X
FIBABEL ALDEC 4k H A X
FIBABL7K ALDEC 7k H A
FIBXBLOX ALDEC 4k S X
FIBVHDL ALDEC 4k H V X
FLASH ALDEC 4k S,H V X
FIFO VL 4ke S
MULTI ALDEC 7k S
UARTTOP VL 7k S
VHDLTEMP ALDEC 4k S,H V
VTIMER ALDEC 4k H V X
XDACDEMO VL 4k S,H A

FLASH Introductory Tutorial
Introductory XILINX Tutorial is based on the FLASH design provided with the ACTIVE-CAD. While
reading the tutorial the user recreates FLASH design from scratch. Following topics are covered:
• creating a new project
• verify project libraries
• starting the schematic editor
• placing symbols
• drawing wires

• adding pin locations
• schematic changes
• importing a ViewLogic macro schematic
• repeating net names
• creating a new symbol
• creating a VHDL macro
• editing the VHDL code
• finding VHDL errors
• running synthesis
• creating a schematic macro
• connecting VCC and GND
• placing bus taps
• saving the macro schematic
• finishing the top level schematic
• creating test vectors
• running simulation
• viewing results on the
• adding timespec symbol
• running XACT
The tutorial is available in Acrobat Reader format.

XCALC Advanced Tutorial
XCALC Advanced Tutorial available in Acrobat Reader format covers following topics:
• copying CALC project to XCALC
• opening XCALC project
• importing ViewLogic macro
• editing the imported macro
• saving macro as the schematic sheet
• assigning alu_blox.sch to the alu symbol
• replacing schematic macro with Abel file
• functional simulation
• op-codes for XCALC calculator

XCALC design is a simple calculator performing basic arithmetic and logic operations on 4-bit numbers.
DESING TYPE:

XILINX (chip XC4003APC84-4)
CONTROLS:

Set of switches SW7/SW6..SW7/SW0 for opcode/data setting,
Switch EXC_P for operation execution.

OUTPUTS:
7-segment LED display for ALU register monitoring,
4 LEDs for top stack cell monitoring.

OPERATION:
Arithmetic and logic operations are performed on 4-bit ALU register;
if two operands are required the second one is taken either from
SW3..SW0 switches or from the top cell of the stack.
Operations are coded on SW6..SW4 switches (stack-dependent
operations use SW3..SW1, too).
EXC_P low for at least two CLK pulses executes operation.

TIMINGS:
FUNCT - prerouted design simulation results; only selection of

operations tested.

ROUTED - routed design timing simulation results; full set of
operations tested.

NOTE: Switch on comments viewing in the simulator to see symbolic
 operation codes on the timing!!!

FIB Timing Simulation Tutorial
Timing Simulation Tutorial (available in Acrobat Reader format) is based on the FIB sample design
provided with ACTIVE-CAD. The design generates the Fibonacci number sequence, where each new number
is a sum of two previous numbers. Following topics are covered:
• selecting signals for simulation
• assigning stimuli
• running simulation
• measuring delays on the waveform
• defining buses
• waveform deletion
• observing and tracing timing violations
• reviewing timing delays
• editing timing specification

Comparison of Schematic, ABEL and VHDL Design
Methodology

Comparison of the synthesis results
for different methods of the design description

Sample project of Fibonacci generator contains logic and arithmetic operations which makes it a good
subject for testing and comparison.

Generally better results are for synthesis with X-BLOX macros.

ABEL synthesis is the worst. The main reason is that ABEL synthesizes arithmetic function as simple
combinatorial blocks and cannot use CLB fast carry logic (in the project FIBABEL a directive '@CARRY 1'
is used to optimize design for area; it causes that adder is synthesized as a ripple carry adder; without this
directive the adder is synthesized as a three-level combinatorial circuit which produces hundreds of products
for 8-bit adder in this design !).
Synthesis from VHDL gives good results, especially when X-BLOX is used. The results for sample project
are almost like for the synthesis from schematic (without X-BLOX).

VHDL gives the possibility of improvement in the design by mixed behavioral and structural description (->
VHDLm project shows the best implementation of the display decoder is the memory; replacing equations
for this decoder with a PROM element saves 6 CLB's).

Synthesis results (all optimized for AREA):

 ABEL - Project FIBABEL

 Schematic & ABEL macro; schematic contains only input/output
 buffers (it is necessary because there is no possibility to add
 pin locations in ABEL design file);

 Optimize: Area, Improvex +

 VHDL - Three versions of the project FIBVHDL

 All projects are top-level VHDL

 VHDL - without X-Blox,
 VHDLx - with X-Blox,
 VHDLm - with X-Blox and memories as a display decoders

 Optimize: Area, Improvex +

 SCH - Project FIB

 Schematic, standard macros only

 XBLOX - Project FIBXBLOX

 Schematic, X-Blox macros optimized for area

 ABEL VHDL VHDLx VHDLm SCH XBLOX
 Occupied CLBs 52 41 38 32 37 25
 Bonded I/O Pins 25 25 25 25 25 25
 F and G Function Generators (*) 62 40 36 33 42 26
 H Function Generators 16 7 8 4 2 2
 CLB Flip Flops 16 16 16 16 16 16
 CLB Fast Carry Logic 5 5 5 5

 (*) If RAM/ROM elements are present in the design, this count includes the function generators used for
them. A 16x1 memory uses 1 function generator; a 32x1 uses two.

FIBXBLOX
FIBXBLOX is an X-BLOX based project of the Fibonacci generator
Project verified on the XC4000 Demoboard.

DESIGN TYPE:
XILINX (chip XC4003PC84-5)

CONTROLS (Inputs):
CLK - clock input; every falling edge causes the generation of a number,
RESET - asynchronous reset; forcing LOW starts the process from the initial

 values (0 and 1),
ENABLE - clock enable; forcing LOW freezes the generator (the numbers are not

 generated).
OUTPUTS:

FIBINV [7..0] - generated number (binary); it is INVERTED so as to correctly
 drive LED displays,

DISPA [6..0] - 7-segment display of more significant four bits,
DISPB [6..0] - 7-segment display of less significant four bits.

DESCRIPTION:
The Fibonacci generator is a simple pseudo-random number generator.
Each number is a sum of the two previous ones: Fn = Fn-1 + Fn-2.
For example, if two first numbers are 0 and 1, the generated sequence is:

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
Note that if two first numbers are zeroes, the generator will not start.

TIMINGS:
FIB_FUN - prerouted design simulation results;
FIB_TIM - routed design timing simulation results;

FIBVHDL
FIBVHDL is a top level VHDL project of the Fibonacci generator
Project verified on the XC4000 Demoboard.

DESIGN TYPE:
XILINX (chip XC4003PC84-5)

CONTROLS (Inputs):
CLK - clock input; every falling edge causes the generation of a number,
RESET - asynchronous reset; forcing LOW starts the process from the initial

 values (0 and 1),
ENABLE - clock enable; forcing LOW freezes the generator (the numbers are not

 generated).
OUTPUTS:

FIBINV [7..0] - generated number (binary); it is INVERTED so as to correctly
 drive LED displays,

DISPA [6..0] - 7-segment display of more significant four bits,
DISPB [6..0] - 7-segment display of less significant four bits.

DESCRIPTION:
The Fibonacci generator is a simple pseudo-random number generator.
Each number is a sum of the two previous ones: Fn = Fn-1 + Fn-2.
For example, if two first numbers are 0 and 1, the generated sequence is:

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
Note that if two first numbers are zeroes, the generator will not start.

TIMINGS:
FIB_FUN - prerouted design simulation results;
FIB_TIM - routed design timing simulation results;

FIBABEL
FIBABEL is a top level ABEL project of the Fibonacci generator.
Project verified on the XC4000 Demoboard.

DESIGN TYPE:
XILINX (chip XC4003PC84-5)

CONTROLS (Inputs):
CLK - clock input; every falling edge causes the generation of a
 number,
RESET - asynchronous reset; forcing LOW starts the process from the
 initial values (0 and 1),
ENABLE - clock enable; forcing LOW freezes the generator (the numbers
 are not generated).

OUTPUTS:
FIBINV [7..0] - generated number (binary); it is INVERTED so as to
 correctly drive LED displays,
DISPA [6..0] - 7-segment display of more significant four bits,
DISPB [6..0] - 7-segment display of less significant four bits.

DESCRIPTION:
The Fibonacci generator is a simple pseudo-random number generator.
Each number is a sum of the two previous ones: Fn = Fn-1 + Fn-2.
For example, if two first numbers are 0 and 1, the generated sequence
is:

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
Note that if two first numbers are zeroes, the generator will not
start.

TIMINGS:

FIB_FUN - prerouted design simulation results;
FIB_TIM - routed design timing simulation results;

DECLARATIONS OF PIN NUMBERS IN ABEL TOP LEVEL PROJECTS WITH FPGA DEVICES

Pin numbers cannot be given in the ABEL source file (like for XC7000 family
devices) - they must be specified in a separate file with the name same as the
project name and the extension 'CST'. This file may be created in two ways:

1) Write all declarations using any non-formatting (ASCII) text editor. You
have to provide the following entry for each pin:

 place instance <signal_name>_IPAD_pad : <pin_number> ;

e.g.:
 place instance RESET_IPAD_pad : P56 ;

2) Invoke Place & Route process without the 'CST' file - in such case, XACT
will add the pin numbers on his own and adds the suitable information about
that in the report file (the file with the name same as project name and the
extension 'RPT'). The report file will be supplemented with the section 'CST'
File Format' which contains ready-made pin assignments in the format described
above. This fragment can be easily cut with any text editor and saved as 'CST'
file. Then the pin numbers should be suitably modified as desired. With so
prepared 'CST' file the process Place & Rout must be run once again.

WARNING: The synthesis of an ABEL file (in HDL Editor) must be done with the
option chip set, which causes automatic insertion of I/O buffers and pads.

DACDEMO
DACDEMO is a sample design presented by Xilinx on the DAC conference. Its function is to display
scrolling message on the LED matrix display. The message data is fetched from the ROM, processed and
placed on the output in the form suitable for driving the display.

FIFO
FIFO is a 16x32 First In-First Out stack with simultaneous read/write operations.
DESING TYPE:

XILINX (chip XC4020EHQ240-3)
CONTROLS:

DIP[31:0] - data input,
PUSHP - write-to-stack control
POPP - read-from-stack control
CLKP - clock

OUTPUTS:
DOP[31:0] - data output
FULLP - stack-full signal
EMPTY - stack-empty signal
LASTP - last-free-cell signal

OPERATION:
This 16-cell 32-bit wide First-In-First-Out stack is designed with
XC4000E-specific dual port RAMs. When PUSHP is active, data from DIP
pins is put on the stack on the CLKP transition from low to high.

When POPP is high, the first available data from stack is sent to the
DOP pins on the rising CLKP edge. EMPTY goes high when no data is
available on the stack during read operation. LASTP high signals that
there is only one cell available for writing, FULLP high means that
FIFO cannot store more data.

TIMINGS:
FIFO_FUN - functional simulation results
FIFO_TIM - routed design timing simulation results
FIFO_SIM - timing simulation with simultaneous read/write
SIGNAL - empty timing (with selected signal names)

BUS_CTRL
BUS_CTRL project is an example of VHDL design with multiple VHDL files
at the top level. This type of project is called VHDL Top Level project.

VHDL files, currently included in the project, are shown in the Project
Manager Hierarchy Browser. Each file can be edited in HDL Editor by double
clicking on the name. Synthesis options are common for the entire design
and can be set while editing any one of these project files.

The synthesis tool is always invoked to compile all VHDL files
with selected options. In case of the Schematic Top Level project type,
synthesis option for VHDL macros are set separately for each macro.
Please note that VHDL macros on the schematic designs can only be associated
with a single VHDL file.

Creating a VHDL Top Level project comprises the following steps:

1. Create the new project
2. Add desired VHDL files to the project
3. Set synthesis options
4. Synthesize the design into an XNF netlist
5. Simulate design before Place and Route
6. Run Place and Route
7. Perform Timing Simulation based on the backannotated XNF netlist

The synthesis process is started from HDL by executing
Synthesis -> Synthesize command. Synthesis process can also be invoked
from Project Manager by pressing SIM Funct, SIM Timing, Place & Route or
Static Timing buttons Synthesis process is updated automatically in
the following cases:

- XNF netlist does not exist
- one of the VHDL project files has changed after the last synthesis run

MULTI
MULTI design is a circuit multiplying two hex digits read from the MPD_IN and MPR_IN inputs. The
product is present on the RESULT output.
DESIGN TYPE:

XILINX (chip XC73108-10BG225)
CONTROLS (Inputs):

CLK - clock input; internally transformed to two-phase clock
RESET - asynchronous reset controlling two-phase clock generator
MPD_IN[0:3], MPR_IN[0:3] - data inputs

OUTPUTS:
RESULT[0:7] - product output
PHASE1_CLK, PHASE2_CLK - two-phase clock outputs

OPERATION:
Input data is read on the rising edge of the PHASE1_CLK and fed

 through the multiplying matrix. The result is stored in the output
 register on the rising PHASE2_CLK edge.
TEST VECTORS:

MULTI_FN.TVE - functional simulation results
MULTI_TM.TVE - timing simulation results

UART
UARTTOP is a project of a simple asynchronous serial receiver

DESIGN TYPE:
XILINX (chip XC7354-68, any speed)

DESCRIPTION:
A complete description of the UARTTOP design is provided in Session 6 of the
XEPLD Tutorial chapter of the Xilinx ViewLogic Interface User Guide.

Appendix

Attributes, Constraints, and Carry Logic
This chapter lists and describes all the attributes and constraints that you can use with your schematic entry
software or enter in a constraints file. In particular, it describes the relative location (RLOC) constraint. It
also describes PPR placement constraints, relationally placed macros (RPMs), and carry logic.
Attributes are instructions placed on symbols or nets in an FPGA or EPLD schematic to indicate their
placement, implementation, naming, directionality, and so forth. This information is used by the design
implementation software during placement and routing of a design. Constraints, which are a type, or subset,
of attributes, are used only to indicate where an element should be placed.
All the attributes listed in this chapter are available in the schematic entry tools directly supported by Xilinx
unless otherwise noted, but some may not be available in textual entry methods such as VHDL.
Attributes applicable only to a certain schematic entry tool are described in the documentation for that tool.
For third-party interfaces, consult the interface user guides for information on which attributes are available
and how they are used.

Attributes
There are three types of attributes discussed in this section:
• Component attributes, which affect only the component instances on which they are placed.
• Global attributes, which affect the entire design. These attributes apply to EPLD devices only.
• Net attributes, which affect individual component outputs or inputs and are represented by attributes

applied to nets.
In some software programs, particularly Mentor Graphic’s, attributes are called properties, but their
functionality is the same as that of attributes. In this document, they are referred to as attributes.
There are two types of Mentor Graphics properties: in one, a property is equal to a value, for example,
LOC=AA; in the other, the property name and the value are the same, for example, DECODE. In the first type,
“attribute” refers to the property; in the second, “attribute” refers to the property and the value.
The attributes in this section are listed in alphabetical order.

BASE

Architectures

The BASE attribute applies to the XC2000 and XC3000 families only.

Description

The BASE attribute defines the base configuration of a CLB or an IOB. For an IOB primitive, it should
always be set to IO. For a CLB primitive, it can be one of three modes in which the CLB function generator
operates.
In XC2000 devices, these three modes are the following:
• F mode allows any function of up to four variables to be implemented, where one of the inputs can be the

Q output of the flip-flop in the CLB.
• FG mode allows two three-input functions to be implemented, where the input can be chosen from the

four inputs to the CLB and the Q output of the flip-flop in the CLB.
• FGM mode is similar to FG mode except that the inputs must be chosen from four inputs to the CLB or the

Q feedback. The B input to the CLB acts as the control for a multiplexer between the two four-input
functions.

• The three modes are very similar in XC3000 devices:
• F mode allows the CLB to implement any one function of up to five variables.
• FG mode gives the CLB any two functions of up to four variables. Of the two sets of four variables, one

input (A) must be common, two (B and C) can be either independent inputs or feedback from the Qx and

Qy outputs of the flip-flops within the CLB, and the fourth can be either of the two other inputs to the CLB
(D and E).

• FGM mode is similar to FG, but the fourth input must be the D input. The E input is then used to control a
multiplexer between the two four-input functions, allowing some six- and seven-input functions to be
implemented.

Syntax

The syntax of the BASE attribute is the following:
BASE=mode

where mode can be F, FG, or FGM for a CLB, or IO for an IOB.

BLKNM

Architectures

 The BLKNM attribute applies to all FPGA families.

Description

The BLKNM attribute assigns LCA block names to qualifying primitives and logic elements. If the same
BLKNM attribute is assigned to more than one instance, the software attempts to map them into the same LCA
block. Conversely, two symbols with different BLKNM names are not mapped into the same block. Placing
similar BLKNMs on instances that do not fit within one LCA block creates an error.
Specifying identical BLKNM attributes on FMAP and/or HMAP symbols tells the software to group the
associated function generators into a single CLB. Using BLKNM, you can partition a complete CLB without
constraining the CLB to a physical location on the device.
For an XC4000 CLB, the maximum number of elements that can be assigned the same block name is two flip-
flops, two FMAPs, and one HMAP. For an XC3000 CLB, the maximum number of elements that can be
assigned the same block name is two flip-flops or one CLBMAP. For an XC2000 CLB, the maximum number
is one flip-flop or one CLBMAP.
BLKNM attributes, like LOC constraints, are specified from the schematic. Hierarchical paths are not
prefixed to BLKNM attributes, so BLKNM attributes for different CLBs must be unique throughout the entire
design. See the section on the HBLKNM attribute for information on attaching hierarchy to block names.
Use the BLKNM attribute to attach a name to the following symbols:
• XC4000 flip-flop primitives (FDCE, FDPE)
• XC3000 flip-flop primitives (FDCE)
• XC2000 flip-flop and latch primitives (FDCP, LDCP)
• I/O buffers, flip-flops, and latches (IBUF, OBUF, OBUFT, ILD, IFD, OFD, OFDT)
• PAD primitives (PAD, IPAD, OPAD, BPAD, UPAD, PADU)
• I/O block primitives (IOB symbols)
• Configurable logic blocks (CLB symbols)
• 3-state buffers (BUFT symbols)
• Mapping control symbols (CLBMAP, FMAP, HMAP)

Syntax

The syntax of the BLKNM attribute is the following:
BLKNM=blockname

where blockname is a valid LCA block name for that type of symbol. For a list of prohibited block names,
see the “Naming Conventions” section of each user interface manual.
For information on assigning hierarchical block names, see the HBLKNM attribute description in this
chapter.

Example

Suppose that you want to map together two flip-flops within one CLB. You give both the BLKNM=FFGRP1
attribute. You then translate, place, and route the design. When you examine it in EditLCA, you see that both
flip-flops reside within a CLB named FFGRP1.

CAP

Architectures

The CAP attribute applies to the XC4000H family only.

Description

You can specify an XC4000H output driver as operating in either resistive (RES) or capacitive, “softedge”
(CAP) mode. In resistive mode, the output is faster and draws more power. Use this mode when the output is
attached to purely resistive loads, or when ground bounce is not expected to be a problem with the output.
The CAP attribute allows you to specify capacitive mode. Use capacitive mode when connecting an output to
a capacitive mode, or when ground bounce is predicted to be a problem with the output. In capacitive mode,
the pull-down transistor is slowly turned off as the output is pulled to ground, minimizing the likelihood of
ground bounce.
See the section on the RES attribute for more information.
Use the CAP attribute on the following symbols:
• IOB output symbols OBUF, OBUFT
• IOB pads OPAD, IOPAD, UPAD
• Special function access symbols TDI, TMS, TCK

Syntax

The CAP attribute has the following syntax:
CAP

CLOCK_OPT

Architectures

The CLOCK_OPT attribute applies to the XC7200 and XC7300 families only.

Description

The CLOCK_OPT global attribute controls FastCLK optimization for the entire design. FastCLK
optimization changes a product-term clock to a FastCLK global signal, which reduces the number of
universal interconnect matrix (UIM) inputs and product terms required by each function block.

Syntax

Use the following syntax with the CLOCK_OPT attribute:
CLOCK_OPT={on|off}

The On setting enables FastCLK optimization; the Off setting inhibits it. On is the default.

CMOS

Architectures

The CMOS attribute applies to the XC4000H family only.

Description

The CMOS attribute configures output drivers on the XC4000H to drive to CMOS-compatible levels.
Similarly, it configures IOBs to have CMOS-compatible input thresholds.
 To configure output drive levels, attach the CMOS attribute to any of the following output symbols: OBUF,
OBUFT, OUTFF/OFD, OUTFFT/OFDT.
To configure input threshold levels, attach the CMOS attribute to any of the following input symbols: IBUF,
INFF/IFD, INLAT/ILD, INREG.
See the section on the TTL attribute for more information.

Syntax

The syntax of the CMOS attribute is the following:
CMOS

CONFIG

Architectures

The CONFIG attribute applies to XC2000 and XC3000 families only.

Description

The CONFIG attribute specifies logic element inputs and the storage element function for a CLB or IOB
symbol.
CONFIG attributes can only be attached to IOB and CLB symbols.

Syntax

Use the following syntax for the CONFIG attribute:
CONFIG=tag:[value]:[value]

where tag and value are derived from the following tables.

XC2000 CLB Configuration Options

Tag BASE F BASE FG BASE FGM*
X F, Q F, G, Q M, Q
Y F, Q F, G, Q M, Q
Q FF, LATCH FF, LATCH FF, LATCH
SET A, F A, F A, M
RES D, F D, G D, M
CLK K, C, F, NOT K, C, G, NOT K, C, M, NOT
F A, B, C, D, Q A, B, C, D, Q A, B, C, D, Q
G None A, B, C, D, Q A, B, C, D, Q

*For BASE FGM, M=F if B=1, and M=G if B=0.

XC2000 IOB Configuration Options

Tag BASE IO
I PAD, Q
BUF ON, TRI

XC3000 CLB Configuration Options

Tag BASE F BASE FG BASE FGM*
X F, QX F, QX M, QX
Y F, QY G, QY M, QY

DX DI, F DI, F, G DI, M
DY DI, F DI, F, G DI, M
CLK K, NOT K, NOT K, NOT
RSTDIR RD RD RD
ENCLK EC EC EC
F A,B,C,D,E,QX, QY A,B,C,D,E,QX, QY A,B,C,D,QX, QY
G None A,B,C,D,E,QX, QY A,B,C,D,QX, QY

*For BASE FGM, M=F if E=0, and M=G if E=1.

XC3000 IOB Configuration Options

Tag BASE IO
IN˘ I, IQ, IKNOT, FF, LATCH, PULLUP
OUT O, OQ, NOT, OKNOT, FAST
TRI T, NOT

Example

Following is an example of a valid XC2000 CLB CONFIG attribute value:

X:Q Y:G CLK:K:NOT Q:FF SET:A RES:D

Here is an example of a valid XC3000 CLB CONFIG attribute value:

X:QX Y:QY DX:F DY:G CLK:K ENCLK:EC

DECODE

Architectures

The DECODE attribute applies to the XC4000 family only.

Description

The DECODE attribute defines where a wired-AND (WAND) instance is placed, either within a BUFT or an
edge decoder. If the DECODE attribute is placed on a single-input WAND1 gate, the gate is implemented as
an input to a wide-edge decoder in an XC4000 design.

Syntax

The syntax of the DECODE attribute is the following:
DECODE

DECODE attributes can only be attached to a WAND1 symbol.

DOUBLE

Architectures

The DOUBLE attribute applies to the XC3000 family only.

Description

The DOUBLE attribute specifies double pull-up resistors on the horizontal longline. On XC3000 parts, there
are internal nets that can be set as 3-state with two programmable pull-up resistors available per line. If the
DOUBLE attribute is placed on a PULLUP symbol, both pull-ups are used, enabling a fast, high-power line.
If the DOUBLE attribute is not placed on a pull-up, only one pull-up is used, resulting in a slower, lower-
power line.
When the DOUBLE attribute is present, the speed of the distributed logic is increased, as is the power
consumption of the part. When only half of the longline is used, there is only one pull-up at each end of the
longline.
While the DOUBLE attribute can be used for the XC4000 family, it is not recommended. PPR activates both
pull-up resistors if the entire longline (not a half-longline) is used.

Syntax

The syntax of the DOUBLE attribute is the following:
DOUBLE

The DOUBLE attribute can only be attached to a BUFT symbol.

EQUATE_F and EQUATE_G

Architectures

The EQUATE_F and EQUATE_G attributes apply to the XC2000 and XC3000 families only.

Description

The EQUATE_F and EQUATE_G attributes set the logic equations describing the F and G function
generators of a CLB, respectively.

Syntax

The syntax of the EQUATE_F and EQUATE_G attributes is the following:
EQUATE_F or EQUATE_G

The following table lists the Boolean operators used in the logic equations.

Valid XC2000 and XC3000 Boolean Operators

Symbol Boolean Equivalent
~ NOT
* AND
@ XOR
+ OR
() Group expression

Example

Here are two examples illustrating the use of the EQUATE_F attribute:
EQUATE_F=F=((~A*B)+D))@Q
F=A@B+(C*~D)

FAST

Architectures

The FAST attribute applies to XC3000, XC3000A/L, XC4000, and XC4000A families only.

Description

The FAST slew-rate attribute is attached to an output buffer, output flip-flop, or pad to increase the speed of
an IOB output. It produces a faster output but may increase noise and power consumption.
The FAST attribute can be attached to the following symbols:
• IOB symbols OBUF, OBUFT, OFD, OFDI, OFDT, OFDTI, OPAD, IOPAD, UPAD
• Special function access symbols TDI, TMS, TCK

Syntax

The syntax of the FAST attribute is the following:
FAST

FILE

Architectures

The FILE attribute applies to all FPGA families.

Description

The FILE attribute is placed on symbols that do not have underlying schematics. It references the XNF file
containing the Xilinx netlist for the logic represented by the symbol. When XNFMerge encounters such a
symbol, it looks in the design directory for the XNF file and replaces the description of the symbol in the
XNF file with the functionality found in the XNF file.

Syntax

Use the following syntax for the FILE attribute:
FILE=filename

where filename is the name of an XNF file without the .xnf extension.

Example

Suppose that a symbol is created, called new_and2, whose function mimics that of a 2-input AND gate. A
Xilinx ABEL file describes the function of the new_and2 symbol and is translated to an XNF file called
new_and2.xnf. A FILE attribute is placed on the symbol, and the attribute is given a value of new_and2. The
top-level design containing the new_and2 symbol is translated to an XNF file, and the following lines are
found within it:

SYM, I$2, NEW_AND2, FILE=NEW_AND2
PIN, I1, I, NET_IN1

PIN, I2, I, NET_IN2
PIN, O1, O, NET_OUT1
END

The new_and2.xnf file contains the following lines:
SYM, I$1, AND2
PIN, 1, I, I1

PIN, 2, I, I2
PIN, O, O, O1
END

The top-level file is then processed by XNFMerge, which reads new_and2.xnf and replaces the description
of the symbol with the description of the functionality, resulting in the following lines in the top-level design:

SYM, I$2/I$1, AND2
PIN, 1, I, NET_IN1

PIN, 2, I, NET_IN2
PIN, O, O, NET_OUT1
END

The functionality of the symbol is added to the top-level design, while the connectivity found in the top-level
design is maintained.

FOE_OPT

Architectures

The FOE_OPT attribute applies to the XC7200 and XC7300 families only.

Description

The FOE_OPT global attribute controls the optimization of the fast output enable (FOE) for the entire design.
FOE optimization generally applies only to BUFE, OBUFE, or 3-state PLD outputs driving an OBUF. FOE
optimization changes a product-term 3-state signal to an FOE global control signal. Like FastCLK
assignment, it reduces the number of UIM inputs and product terms required by each function block.

Syntax

Use the following syntax with the FOE_OPT attribute:
FOE_OPT={on|off}

Off inhibits FOE optimization of the entire design, and On, which is the default, activates it.

HBLKNM

Architectures

The HBLKNM attribute applies to all FPGA families.

Description

The HBLKNM attribute assigns hierarchical LCA block names to logic elements and controls grouping in a
flattened hierarchical design. When elements on different levels of a hierarchical design carry the same block
name and the design is flattened, XNFMerge prefixes a hierarchical path name to the HBLKNM value.
Like BLKNM, the HBLKNM attribute forces function generators and flip-flops into the same CLB. Symbols
with the same HBLKNM attribute map into the same CLB, if possible. However, using HBLKNM instead of
BLKNM has the advantage of adding hierarchy path names during translation, and therefore the same
HBLKNM attribute and value can be used on elements within different instances of the same macro.
Use the HBLKNM attribute to attach a name to the following symbols:
• XC4000 flip-flop primitives (FDCE, FDOP)
• XC3000 flip-flop primitives (FDCE)
• XC2000 flip-flop and latch primitives (FDCP, LDCP)
• I/O buffers, flip-flops, and latches (IBUF, OBUF, OBUFT, ILD, IFD, OFD, OFDT)
• PAD primitives (PAD, IPAD, OPAD, BPAD, UPAD, PADU)
• I/O block primitives (IOB symbols)
• Configurable logic blocks (CLB symbols)
• 3-state buffers (BUFT symbols)
• Mapping control symbols (CLBMAP, FMAP, HMAP)

Syntax

The syntax of the HBLKNM attribute is the following:
HBLKNM=blockname

where blockname is a valid LCA block name for that type of symbol. For a list of prohibited block names,
see the “Naming Conventions” section of each user interface manual.

Example

A schematic is created that contains a four-input function and a flip-flop. The logic function is mapped using
an FMAP symbol. Both the FMAP and the flip-flop are given the attribute HBLKNM=GROUP1. A symbol is

created to represent the schematic, and both are given the name of FUNC. Another schematic is then created,
and four instances of FUNC are placed on it. Because hierarchy is taken into account when the design is
translated, the software recognizes four distinct groups, as opposed to one large group called GROUP1, and
each instance of FUNC is mapped into a separate CLB.

HU_SET

Architectures

The HU_SET constraint applies to the XC4000 and XC4000A/H families only.

Description

Like the H_SET constraint, the HU_SET constraint is defined by the design hierarchy. However, it also
allows you to specify a set name. It is possible to have only one H_SET constraint within a given
hierarchical element (macro) but by specifying set names, you can specify several HU_SET sets.
XNFMerge hierarchically qualifies the name of the HU_SET as it flattens the design and attaches the
hierarchical names as prefixes. The difference between an HU_SET constraint and an H_SET constraint is
that an HU_SET has an explicit user-defined and hierarchically qualified name for the set, but an H_SET
constraint has only an implicit hierarchically qualified name generated by the design-flattening program. An
HU_SET set “starts” with the symbols that are assigned the HU_SET constraint, but an H_SET set “starts”
with the instantiating macro one level above the symbols with the RLOC constraints.
For detailed information about this attribute, refer to the “Relative Location (RLOC) Constraints” section
later in this chapter.

Syntax

To designate a design element as a member of a HU_SET set, apply the following syntax to a design element:
HU_SET=name

where name is the identifier for the set; it must be unique among all the sets in the design.

INIT

Architectures

The INIT attribute applies to the XC4000 and XC4000A/H families only.

Description

The INIT attribute initializes ROMs.
On a ROM, the INIT attribute gives an initial value to the contents of the ROM. Either four or eight
hexadecimal digits are required, depending on the width of the ROM.

Syntax

Use the following syntax to implement the INIT attribute:
INIT=value

For ROMs, value can be four or eight hexadecimal digits, depending on whether the ROM is a 16- or 32-
word-deep ROM, respectively.

LOC

Architectures

The LOC constraint applies to all families.

Description for FPGAs

For FPGAs, the LOC constraint defines where a symbol can be placed within an FPGA. It specifies the
absolute placement of a design element on the FPGA die. It can be a single location, a range of locations, or a
list of locations. The LOC constraint can only be specified from the schematic. However, statements in a
constraints file can also be used to direct placement.
The LOC constraint can be used on the following elements:
• BUFTs
• Elements that map into a CLB: flip-flops, FMAPs, HMAPs, CLBMAPs, CLBs
• Elements that map into an IOB: pads, IBUFs, OBUFs, INFFs, OUTFFs, and so forth
• For XC4000 only, WANDs and clock buffers
If a LOC constraint is placed on a macro symbol, XNFMerge passes it down onto every symbol of the
appropriate type underneath that macro. For example, if LOC=CLB_R3C7 is placed on a macro, that LOC
constraint is passed to flip-flops and map symbols but not to BUFTs.
You can use the LOC constraint to assign a specific LCA location to the following symbols:
• All flip-flop and latch primitives
• Xilinx soft macros (only flip-flops are affected)
• User-created symbols (only flip-flops are affected)
• Input buffers, output buffers, or pad symbols
• Clock buffers (ACLK, GCLK, BUFGP, BUFGS)
• I/O block primitives (IOB symbols) — XC2000, XC3000,

XC3000A/L, XC3100, and XC3100A only
• Configurable logic blocks (CLB symbols) — XC2000, XC3000, XC3000A/L, XC3100, and XC3100A

only
• 3-state buffers (BUFT symbols) — XC3000, XC3000A/L, XC3100, XC3100, and XC4000 only
• XC3000 horizontal longline pull-up resistors (PULLUP symbols)
• XC4000 wide-edge decoders (WANDn and DECODEn symbols)
• Mapping control symbols (CLBMAP, FMAP, HMAP)
You can ignore LOC constraints in the design or in various parts of the design by using the Ignore_xnf_locs
option in XNFPrep and PPR.
You can specify multiple LOC constraints for the same symbol by using a semicolon (;) to separate each LOC
within the field. It specifies that the symbols be placed or prohibited from being placed in any of the
locations specified. Also, you can specify an area in which to place a symbol or group of symbols.
The legal names are a function of the target LCA part type. However, to find the correct syntax for specifying
a target location, you can load an empty part into the XACT Design Editor (XDE). Place the cursor on any
block to display its location in the lower left corner of the screen. Do not include the pin name such as .I, .O,
or .T as part of the location.
You can use the LOC constraint for logic that uses multiple CLBs, IOBs, soft macros, or other symbols. To
do this, use the LOC attribute on a soft macro symbol, which passes the location information down to the
logic on the lower level. However, the location restrictions are only applied to the flip-flops within the logic
block or to mapping symbols or 3-state buffers in user-created macros.

Description for EPLDs

 For EPLDs, use the LOC=pinname attribute on a PAD symbol to assign the signal to a specific pin. The PAD
symbols are IPAD, OPAD, IOPAD, and UPAD.
Pin assignments are unconditional; that is, the software does not attempt to relocate a pin if it cannot achieve
the specified assignment. You can apply the LOC constraint to as many PAD symbols in your design as you
like. However, each pin assignment further constrains the software as it automatically allocates logic and I/O
resources to internal nodes and I/O pins with no LOC constraints.
To save all resulting pin assignments so they are preserved the next time you modify and re-integrate the
design, use the PinSave command in the XDM Translate menu. This command saves the pin assignments to a
design_name.vmf file. You can override individual pin assignments saved in the VMF file by changing or
adding LOC=pinname attributes in the schematic.
Note: Pin assignment using the LOC attribute is not supported for bus pad symbols such as OPAD8.

Syntax for FPGAs

The syntax for specifying single LOC constraints for FPGAs is the following:
LOC=location

where location is a legal LCA location for the LCA part type.
You can specify areas of CLBs or BUFTs using the LOC constraint. Specify the upper left and lower right
corners of an area in which logic is to be placed. Use a colon (:) to separate the two boundaries.

LOC=location:location
Conversely, you can also prohibit the placement of logic into a particular CLB or IOB by using the following
syntax. Single locations or an entire area can be prohibited.

LOC<>location
LOC<>location:location

LOC= and LOC<> constraints can be used on the same symbol. If multiple LOC= constraints are placed on a
single symbol or group of symbols, such as a macro, they are interpreted by the software as “ORing” each of
the constraints together. Multiple LOC<> constraints are interpreted as “ANDing” the constraints together.
The convention for specifying multiple LOC constraints is to separate each of them with a semicolon (;).
Examples are shown in the “Examples” section, following.

Syntax for EPLDs

For EPLDs, the LOC syntax is the following:
LOC=pinname

where the pin name is Pnn for PC packages; nn is a pin number. The pin name is rc (row number and column
number) for PG packages. Examples are LOC=P24 and LOC=G2.

Examples

This section gives several examples of the LOC syntax for FPGAs.

Single LOC Constraints

Examples of the syntax for single LOC constraints are given in table shown below.

Single LOC Constraint Examples

Attribute Description

LOC=P12 Place I/O at location P12.

LOC=B Place decode logic or I/O on the bottom edge.

LOC=TL Place decode logic or I/O on the top left edge, or global buffer in the top

left corner.

LOC=AA(XC2000 and XC3000 only) Place logic in CLB AA.

LOC=TBUF.AC.2

(XC2000 and XC3000 only)

Place BUFT in TBUF above and one column to the right of CLB AC.

LOC=CLB_R3C5 (XC4000 only) Place logic in the CLB in row 3, column 5.

LOC=CLB_R4C5.ffx (XC4000 only) Place CLB flip-flop in the X flip-flop of the CLB in row 4, column 5.

LOC=CLB_R4C5.F(XC4000 only) Place CLB function generator in the F generator of CLB-R4C5.

LOC=TBUF_R2C1.1(XC4000 only) Place BUFT in row 2, column 1, along the top.

LOC=TBUF_R*C0(XC4000 only) Place BUFT in any row in column 0.

Area LOC Constraints

Examples of LOC constraints used to specify area are given in table shown below.

Area LOC Constraint Examples

Attribute Description
LOC=AA:FF(XC2000 and XC3000 only) Place CLB logic anywhere in the top left corner of the LCA

bounded by row F and column F.
LOC=CLB_R1C1:CLB_R5C5(XC4000 only) Place logic in the top left corner of the LCA in a 5 x 5 area

bounded by row 5 and column 5.
LOC=TBUF_R1C1:TBUF_R2C8(XC4000 only) Place BUFT anywhere in the area bounded by row 1, column 1 and

row 2, column 8.

Prohibit LOC Constraints

Examples of the correct syntax for prohibiting locations are shown below.

Prohibit LOC Constraint Examples

Attribute Description
LOC<>T Do not place I/O or decoder on the top edge.
LOC<>A* (XC2000 and XC3000 only) Do not place logic anywhere in the top row.
LOC<>CLB_R5C*.ffy (XC4000 only) Do not place the CLB flip-flop in the Y flip-flop of any CLB in

row 5.
LOC<>CLB_R1C1:CLB_R5C5(XC4000 only) Do not place the logic in any CLB in the top left corner extending

to row 5, column 5.
LOC<>TBUF_R*C0 (XC4000 only) Do not place BUFT anywhere in column 0.

Multiple LOC Constraints

Examples of multiple LOC constraints are provided in the table shown below.

Multiple LOC Constraint Examples

Attribute Description
LOC<>*A;LOC<>*D(XC2000 and XC3000 only) Do not place flip-flop in first or fourth

column of CLBs
LOC=T:LOC=L Place I/O or decoder (XC4000) on the top

or left edge.
LOC=CLB_R1C1:CLB_R5C5; LOC<>CLB_R5C5
(must be specified in one continuous line)
 (XC4000 only)

Place CLB logic in the top left corner of the
LCA in a 5 x 5 area, but not in the CLB in
row 5, column 5.

CLB Placement Examples

You can assign soft macros and flip-flops to a single CLB location, a list of CLB locations, or a rectangular
block of CLB locations. You can also specify the exact function generator or flip-flop within a CLB. CLB
locations are identified as CLB_R#C# for an XC4000, or nn for an XC2000 or XC3000, where nn is a two-
letter designator. The upper left CLB is CLB_R1C1 or AA.

The following examples illustrate the format of CLB constraints. Enter LOC= or LOC<> and the pin or CLB
location. If the target symbol represents a soft macro, the LOC constraint is applied to all appropriate
symbols (flip-flops, maps) contained in that macro. If the indicated logic does not fit into the specified
blocks, an error is generated.
The following statements place logic in the designated CLB.

LOC=AA (XC2000 and XC3000)
LOC=CLB_R1C1(XC4000)

The following statements prohibit the placement of logic in the designated CLB.
LOC<>AA (XC2000 and XC3000)
LOC<>CLB_R1C1 (XC4000)

The following statements place logic within the first column of CLBs. The asterisk (*) is a wildcard
character.

LOC=*A (XC2000 and XC3000)
LOC=CLB_R*C1(XC4000)

The next two statements place logic in any of the three designated CLBs. There is no significance to the order
of the LOC statements.

LOC=AA;LOC=AB;LOC=AC (XC2000 and XC3000)
LOC=CLB_R1C1;LOC=CLB_R1C2;LOC=CLB_R1C3 (XC4000)

The following statements place logic within the rectangular block defined by the first specified CLB in the
upper left corner and the second specified CLB in the lower right corner.

LOC=AA:HE (XC2000 and XC3000)
LOC=CLB_R1C1:CLB_R8C5 (XC4000)

The next statement places logic in the X flip-flop of CLB_R2C2. For the Y flip-flop, use the FFY tag.
LOC=CLB_R2C2.FFX (XC4000)

IOB Placement Examples

You can assign I/O pads, buffers, and registers to an individual IOB location or to a specified die edge or
half-edge. IOB locations are identified by the corresponding package pin designation or by the edge of the
FPGA array.
The following examples illustrate the format of IOB constraints. Specify either LOC= or LOC<> and the pin
location. If the target symbol represents a soft macro containing only I/O elements, for example, INFF8, the
LOC constraint is applied to all I/O elements contained in that macro. If the indicated I/O elements do not fit
into the specified locations, an error is generated.
The following statement places the I/O element in location P13. For PGA packages, the letter-number
designation is used, for example, B3.

LOC=P13
The next statement places I/O elements in IOBs along the top edge of the die. For the other three die edges,
use B (bottom), L (left), or R (right).

LOC=T
The following statement places I/O elements in IOBs along the top half of the left edge of the die. The first
letter in this code represents the die edge, and the second letter represents the desired half of that edge. Other
legal half-edge values are LB (left bottom), RT (right top), RB (right bottom), TL (top left), TR (top right),
BL (bottom left), and BR (bottom right).

LOC=LT
The next statement prohibits the placement of I/O elements on the left edge of the die.

LOC<>L
Note: The edges referred to in these constraints are die edges, which do not necessarily correspond to
package edges. View the device in EditLCA to determine which pins are on which die edge.

BUFT Placement Examples

You can assign internal 3-state buffers (BUFTs) to an individual BUFT location, a list of BUFT locations, or
a rectangular block of BUFT locations. In XC4000, BUFT locations are identified by the adjacent CLB.
Thus, TBUF_R1C1.1 is just above CLB_R1C1, and TBUF_R1C1.2 is just below it in an XC4000 part. In
XC2000 and XC3000, BUFT locations are not as straightforward. View the device in EditLCA to determine
the exact BUFT names.

BUFT constraints all refer to locations with a prefix of TBUF, which is the name of the physical element on
the device.
The following examples illustrate the format of BUFT LOC constraints. Specify either LOC= or LOC<> and
the BUFT location.
The following statements place the BUFT in the designated location.

LOC=TBUF.AA.1 (XC2000 and XC3000)
LOC=TBUF_R1C1.1 (XC4000)

The next statements place BUFTs at any location in the first column of BUFTs. The asterisk (*) is a wildcard
character.

LOC=TBUF.*A (XC2000 and XC3000)
LOC=TBUF_R*C0 (XC4000)

The following statements place BUFTs within the rectangular block defined by the first specified BUFT in
the upper left corner and the second specified BUFT in the lower right corner.

LOC=TBUF.AA:TBUF.BH (XC2000 and XC3000)
LOC=TBUF_R1C1:TBUF_R2C8 (XC4000)

The following statements prohibit the placement of BUFTs at any location in the first row of BUFTs.
LOC<>TBUF.A* (XC2000 and XC3000)
LOC<>TBUF_R1C* (XC4000)

Global Buffer Placement Examples (XC4000 Only)

You can assign global buffers (BUFGP and BUFGS) to one of the four corners of the die. Specify either
LOC= or LOC<> and the global buffer location. The following example illustrates the format of global buffer
constraints.

LOC=TL
This statement places the global buffer in the top left corner of the die. For the other three corners, use TR
(top right), BL (bottom left), and BR (bottom right).
You cannot assign placement to the GCLK or ACLK buffers in the XC2000 and XC3000 families, since there
is only one of each, and their placements are fixed on the die.

Decode Logic Placement Examples (XC4000 Only)

In an XC4000 design, you can assign the decode logic to a specified die edge or half-edge. All elements of a
single decode function must lie along the same edge.
The following example illustrates the format of decode constraints. Specify either LOC= or LOC<> and the
decode logic symbol location. If the target symbol represents a soft macro containing only decode logic, for
example, DECODE8, the LOC constraint is applied to all decode logic contained in that macro. If the
indicated decode logic does not fit into the specified decoders, an error is generated.

LOC=L
This statement places the decoder logic along the left edge of the die. For the other three edges, use T (top), B
(bottom), or R (right).

LOGIC_OPT

Architectures

The LOGIC_OPT attribute applies to the XC7200 and XC7300 families only.

Description

The LOGIC_OPT global attribute controls the default logic optimization for the entire design.

Syntax

The syntax for this attribute is the following:
LOGIC_OPT={on|off}

To inhibit logic optimization for the whole design, set this attribute to Off. The default is On. You can
override the global setting for individual symbols using the OPT=on or OPT=off component attribute.

LOWPWR

Architectures

The LOWPWR attribute applies to the XC7300 family only.

Description

You can use the LOWPWR attribute as either a global or component attribute. When used as a component
attribute, it determines the power setting of the macrocells used by an individual symbol. When used as a
global attribute, it makes low power the global default power setting.
This attribute is ignored if it is assigned to a symbol that uses no macrocells, such as an inverter, AND/OR
gate (when optimized), input register, and so on.

Syntax

To make low power the setting of the macrocells used by an individual symbol, use the following syntax:
LOWPWR={on|off}

To make low power the global default power setting, place the following syntax in the schematic:
LOWPWR=ALL

The default is LOWPWR=off, indicating a high-speed power setting for all macrocells used in the design
unless otherwise specified.

MAP

Architectures

The MAP attribute applies to all FPGA families.

Description

The MAP attribute is placed on an FMAP, HMAP, or CLBMAP to specify whether pin swapping and the
merging of other functions with the logic in the map are allowed. If pin swapping is allowed, the net
connections to the pins on the CLB may differ from the connections to the map symbol. If merging with other
functions is allowed, other logic can also be placed within the CLB, if space allows.

Syntax

The syntax of the MAP attribute is the following:
MAP={PLC|PUC|PLO|PUO}

where the keywords have the following meanings:
• PLC means that the CLB pins are locked, and the CLB is closed.
• PLO means that the CLB pins are locked, and the CLB is open.
• PUC means that the CLB pins are unlocked, and the CLB is closed.
• PUO means that the CLB pins are unlocked, and the CLB is open.
“Locked” in these definitions means that the software cannot swap signals among the pins on the CLB;
“unlocked” indicates that it can. “Open” means that the software can add or remove logic from the CLB;
conversely, “closed” indicates that the software cannot add or remove logic from the function specified by
the MAP symbol.
The default is PUC.

Example

A two-input function is mapped using an FMAP. Upon reaching the place and route stage of the design, the
software determines that additional logic could be merged into the function generator containing the first
function. If the MAP attribute value is PLO or PUO, the logic is merged into the function generator. If the
MAP attribute value is PLC or PUC, the logic is not merged into the function generator. The software also
determines that routing can be improved if the first and second pins on the function generator containing the 2-
input function are swapped. If the MAP attribute is PUC or PUO, the pins are swapped. If the MAP attribute
value is PLC or PLO, the pins are not swapped.

MEDFAST and MEDSLOW

Architectures

The MEDFAST and MEDSLOW attributes apply to the XC4000A family only.

Description

MEDFAST and MEDSLOW specify the slew rate of an XC4000A output driver. MEDFAST decreases
output transition time and is slightly faster than MEDSLOW, possibly resulting in more noise and power
consumption that an output driver specified as MEDSLOW.
The MEDFAST and MEDSLOW attributes can be attached to the I/O symbols and the special function access
symbols TDI, TMS, and TCK.

Syntax

The syntax of the MEDFAST and MEDSLOW attributes is the following:
MEDFAST or MEDSLOW

MINIMIZE

Architectures

The MINIMIZE attribute applies to the XC7200 and XC7300 families only.

Description

The MINIMIZE global attribute determines whether or not the software minimizes the logic for the whole
design. If the logic is minimized, any redundant or non-effective logic found in any user-specified equation
files is eliminated through Boolean minimization.

Syntax

The syntax of the MINIMIZE attribute is the following:
MINIMIZE={on|off}

where On allows logic minimization, and Off inhibits it. The default is On.

MRINPUT

Architectures

The MRINPUT attribute applies to the XC7300 family only.

Description

The MRINPUT global attribute in an XC7354 or XC7336 design changes the master reset pin to an ordinary
input pin. If this attribute is set to On, the EPLD device is initialized only on power-up.

Syntax

The syntax of the MRINPUT attribute is the following:
MRINPUT={on|off}

The On setting changes the master reset pin to an ordinary input pin.
The default is Off.

Net

Architectures

Net attributes apply to all families except where noted in the following paragraphs.

Description

Attaching attributes to nets affects the mapping, placement, and/or routing of the LCA design. Net attributes
can be any of the following values:
• C Critical (all FPGA families)

The C net attribute flags a net as critical so the software tries to route the net earlier than others. See
also W, the weight net attribute.
Note: The use of the C (critical) and W (weight net) attributes is not recommended. In many cases,
their use can degrade rather than improve routability and performance.

• F (XC7300 only)
The F net attribute in an XC7300 device specifies that the macrocell implementing a component
output should be placed in a fast function block (FFB). When placed on the output of an IBUF, the F
attribute specifies that the input signal is to use the FastInput (FI) path when the signal is used in a
fast function block.
The F attribute is not valid on outputs of components that require features only present in high-
density function blocks, such as PLFB9, ADD, ADSU, ACC, COMPM, LD, FDCP, FDCPE, XOR7,
XOR8, and XOR9.
Note: The BUFE symbol can be assigned to FFB only when driving an OBUF, and it must allow
FOE optimization.

• G G Output (XC2000 and XC2000L only on flip-flop clock pins and latch enable pins)
Any CLB clocks driven by this net are connected to the G function output.

• H (XC7300 only)
The H net attribute in an XC7300 device specifies that the macrocell implementing a component
output should be placed in a high-density function block.
The H attribute is not valid on outputs of a PLFFB9 or any of the input/ output buffer symbols.

• I C Input (XC2000 and XC2000L only on flip-flop clock pins and latch enable pins)
Any CLB clocks driven by this net are connected to the C input pin.

• K K Input (XC2000 and XC2000L only on flip-flop clock pins and latch enable pins)
Any CLB clocks driven by this net are connected to the K input.

• L Longline (XC2000, XC3000, and XC3100 only)
The APR router attempts to use a longline to route this net; a longline is useful for nets with high fan-
out that need low skew.

• N Non-critical (all FPGA families)
The N attribute flags a net as non-critical so the routing software gives this signal low priority. See
also W, the weight net attribute.
Note: The use of the N (non-critical) and W (weight net) attributes is not recommended. In many
cases, their use can degrade rather than improve routability and performance.

• P Pin-lock (XC2000 and XC3000 only on CLBMAP primitives; XC4000 only on FMAPs and
HMAPs)

The P attribute specifies that the signal should not be moved from the CLB pin to which it is
assigned. It is useful for aligning CLB inputs with a specified longline.

• S Save (all FPGA families)

The S attribute prevents the removal of unconnected signals, which is useful when using the map-
then-merge method on lower-level hierarchy. If you do not have the S attribute on a net, any signal not
connected to logic and/or an I/O primitive is removed.

• W Weight Net (all FPGA families)
The W attribute indicates the routing order of the specified net by assigning it a net weight. For
XC4000 and XC3000A/L (PPR) designs, legal values are 1-99, with 0 being equivalent to the N
(non-critical) attribute and 100 being equivalent to the C (critical) attribute. For XC2000 and
XC3000 devices (APR), a value of 0 or 1 means non-critical, 10 or higher means critical, and net
weights of 2 through 9 are not graded.
Note: The use of the C (critical) or N (non-critical) and W (weight net) attributes is not
recommended. In many cases, their use can degrade rather than improve routability and
performance.

• X Explicit or External (all FPGA families)
With this attribute, XNFMAP or PPR ensures that a net is not mapped inside the combinational logic
of a CLB, which would make the net “disappear.” For example, an external net between a logic gate
and a flip-flop forces the software to place the combinational logic and the flip-flop in different
CLBs. This mapping may make the mapping of the design less efficient, but it guarantees that the
flagged net exists at a CLB output, which allows the signal to be probed in XDE.

Syntax

Methods of entering this attribute vary by user interface. Consult the appropriate user interface guide for
instructions.

NODELAY

Architectures

The NODELAY attribute applies to the XC4000 and XC4000A families only.

Description

The default configuration of IOB flip-flops in XC4000 and XC4000A designs includes an input delay that
results in no external hold time on the input data path. However, this delay can be removed by placing the
NODELAY attribute on input flip-flops or latches, resulting in a smaller setup time but a positive hold time.
The NODELAY attribute can be attached to the I/O symbols and the special function access symbols TDI,
TMS, and TCK.

Syntax

The syntax of the NODELAY attribute is the following:
NODELAY

OPT

Architectures

The OPT attribute applies to the XC7200 and XC7300 families only.

Description

The OPT attribute controls the optimization of all macrocells used by a symbol.
If you build combinational logic using low-level gates and multiplexers, the logic optimizer attempts to pack
all logic bounded between device I/O pins and registers into a single macrocell.

The logic optimizer optimizes components forward into components connected to their outputs. It also moves
forward any logic, whether combinational or sequential, that is buffered by a 3-state buffer. However, logic
that itself contains a 3-state control is not moved forward.
The OPT=off attribute prevents any logic in a component from optimizing forward.
The OPT attribute has no effect on any symbol that contains no macrocell logic, such as an input/output
buffer.

Syntax

The syntax of the OPT attribute is the following:
OPT={on|off}

OPT=on allows optimization of macrocell logic; OPT=off inhibits optimization. The default is the value of
the LOGIC_OPT attribute, which is On unless otherwise specified.

PLD

Architectures

The PLD attribute applies to XC7200 and XC7300 families only.

Description

The PLD attribute is placed on a PLD symbol to specify the name of the file containing the logic equations for
that PLD. Use it on custom primitive symbols and the following PLDs: PL20V8, PL22V10, PL20PIN,
PL24PIN, PL48PIN, PLFB9, and PLFFB9.
All PLD components in your schematic design must be assigned the PLD attribute. Running XEMake
automatically assembles all equation files named by all PLD=filename attributes found in the schematic. If
you do not use XEMake, you must assemble each PLD file in the design using PLUSASM before you run the
FITNET command.
Like PLDs, user-specified (custom) primitives are defined by PLUSASM equation files. The PLD=filename
attribute is not required but can be applied as a convenient way to have your equation file automatically
assembled when XEMake is invoked. If you omit the PLD attribute, FITNET will expect to find a bitmap file
for the symbol (symbol_name.vmh) in your local CLIB subdirectory.

Syntax

Following is the syntax of the PLD attribute:
PLD=filename

Do not specify the filename extension. You must specify this filename as the first parameter of the CHIP
statement inside the equation file, as described in the “PLUSASM Language Reference” section of the
XEPLD Reference Guide. Here is an example:

CHIP filename PL22V10

PRELOAD_OPT

Architectures

The PRELOAD_OPT attribute applies to XC7200 and XC7300 families only.

Description

The PRELOAD_OPT global attribute allows the XEPLD software to change the preload values in the design
to match the preload values supported by specified device resources such as fast function blocks and input
registers. The XEPLD software can therefore map your design most efficiently, using the device resources
most suited to the elements of your design. Unless you specify PRELOAD_OPT=off, the software is free to
change the initial register states of any component, including PLD (custom) components defined in

PLUSASM. Use PRELOAD=off to preserve the initial states specified in this manual for library components
and in the PRLD equations in your PLUSASM file for PLD or custom components.
You can set a high or low preload for high-density function blocks. The preload value of fast function blocks
depends on the use of Set or Reset. Input register preload values are fixed at 1, except for those on the
XC7272, which are undefined.

Syntax

The syntax of the PRELOAD_OPT attribute is the following:
PRELOAD_OPT={on|off}

The On setting, which is the default, allows XEPLD to change the preload values; Off preserves all preload
values defined in the library and specified in your PLD equation files.

REG_OPT

Architectures

The REG_OPT attribute applies to XC7200 and XC7300 families only.

Description

The REG_OPT global attribute controls input register optimization for the entire design. Input register
optimization reduces the number of macrocells in a design by moving simple FD registers connected to
IBUFs into a pad register, provided that the IBUF has no other fanouts. The clock by which the input register
is controlled must be a FastCLK or an input that can be assigned to a FastCLK pin.

Syntax

Use the following the syntax with the REG_OPT option:
REG_OPT={on|off}

To inhibit input register optimization, set this attribute to Off. To enable this optimization, set it to On, which
is the default.

RES

Architectures

The RES attribute applies to the XC4000H family only.

Description

You can specify an XC4000H output driver as operating in either resistive (RES) or capacitive, “softedge”
(CAP) mode. In resistive mode, the output is faster and draws more power. Use this mode when the output is
attached to purely resistive loads, or when ground bounce is not predicted to be a problem with the output.
The RES attribute allows you to specify resistive mode.
Use capacitive mode when connecting an output to a capacitive mode, or when ground bounce is predicted to
be a problem with the output. In capacitive mode, the pull-down transistor is slowly turned off as the output
is pulled to ground, minimizing the likelihood of ground bounce.
See the section on the CAP attribute for more information.
The RES attribute can be attached to the I/O symbols and the special function access symbols TDI, TMS, and
TCK.

Syntax

The syntax of the RES attribute is the following:
RES

RLOC

Architectures

The RLOC constraint applies to XC4000 and XC4000A/H families only.

Description

Relative location (RLOC) constraints group logic elements into discrete sets and allow you to define the
location of any element within the set relative to other elements in the set, regardless of eventual placement in
the overall design. See the “Relative Location (RLOC) Constraints” section later in this chapter for detailed
information about this type of constraint.

Syntax

Use the following syntax with the RLOC constraint:
RLOC=Rrow#Ccolumn#[.extension]

where the row and column numbers can be any positive integer, including zero.
The optional .extension can take all the values that are available with the current absolute LOC syntax: FFX,
FFY, F, G, H, 1, and 2. The 1 and 2 values are available for BUFT primitives, and the rest are available for
primitives associated with CLBs. Only extensions for the XC4000 family designs are currently supported.
The RLOC value cannot specify a range or a list of several locations; it must specify a single location.
See the “Relative Location (RLOC) Constraints” section later in this chapter for information on the RLOC
syntax.

RLOC_ORIGIN

Architectures

The RLOC_ORIGIN constraint applies to XC4000 and XC4000A/H families only.

Description

An RLOC_ORIGIN constraint fixes the members of a set at exact die locations. This constraint must specify a
single location, not a range or a list of several locations. For detailed information about this constraint, refer
to the “Relative Location (RLOC) Constraints” section later in this chapter.
The RLOC_ORIGIN constraint is required for a set that includes BUFT symbols.

Syntax

The syntax of the RLOC_ORIGIN constraint is the following:
RLOC_ORIGIN=Rrow#Ccolumn#

where the row and column numbers are positive non-zero integers.

RLOC_RANGE

Architectures

The RLOC_RANGE constraint applies to XC4000 and XC4000A/H families only.

Description

The RLOC_RANGE constraint is similar to the RLOC_ORIGIN constraint except that it limits the members
of a set to a certain range on the die. The range or list of locations is meant to apply to all applicable
elements with RLOCs, not just to the origin of the set.

Syntax

The RLOC_RANGE constraint has the following syntax:
RLOC_RANGE=Rrow1#Ccol#:Rrow2#Ccol2#

where the row numbers and the column numbers can be non-zero positive numbers or the wildcard (*)
character. This syntax allows three kinds of range specifications, which are defined in the RLOC_RANGE
section of the “Relative Location (RLOC) Constraints” section later in this chapter.

TNM

Architectures

The TNM attribute applies to XC3000A/L, XC3100A, and XC4000 families only, and only when XACT-
Performance is used.

Description

The TNM attribute tags specific flip-flops, RAMs, pads, and input latches as members of a group to simplify
the application of timing specifications to the group.
See the “XACT-Performance Utility” chapter of the XACT Reference Guide for detailed information about
this attribute.

Syntax

Following is the syntax of the TNM attribute:
TNM=identifier

where identifier can be any combination of letters, numbers, or underscores.
Do not use reserved words, such as FFS, LATCHES, RAMS, or PADS for TNM identifiers.

TSidentifier

Architectures

The TSidentifier attribute applies to XC3000A/L, XC3100A, and XC4000 families only.

Description

TSidentifier properties beginning with the letters “TS” are placed on the TIMESPEC symbol. The value of
the TSidentifier attribute corresponds to a specific timing specification that can then be applied to paths in the
design.
See the “XACT-Performance Utility” chapter of the XACT Reference Guide for detailed information about
this attribute.

Syntax

The syntax of the TSidentifier attribute is the following:
TSidentifier

where identifier can be any combination of letters, numbers, or underscores. It is commonly 01, 02, 03, and
so forth. In Mentor, it must be 01, 02, 03, and so forth.

TTL

Architectures

The TTL attribute applies to the XC4000H family only.

Description

The TTL attribute configures output drivers on the XC4000H to drive to TTL-compatible levels. Similarly, it
configures IOBs to have TTL-compatible input thresholds.
To configure output drive levels, attach the TTL attribute to any of the following output symbols: OBUF,
OBUFT, OUTFF/OFD, OUTFFT/OFDT.
To configure input threshold levels, attach the TTL attribute to any of the following input symbols: IBUF,
INFF/IFD, INLAT/ILD, INREG.
See the section on the CMOS attribute for more information.

Syntax

The syntax of the TTL attribute is the following:
TTL

UIM_OPT

Architectures

The UIM_OPT attribute applies to the XC7200 and XC7300 families only.

Description

UIM optimization extracts AND expressions and inverters out of macrocell logic functions and moves them
into the UIM, which reduces the use of function block resources. The UIM_OPT global attribute turns this
type of optimization on or off.

Syntax

The syntax of the UIM_OPT attribute is the following:
UIM_OPT={on|off}

where On activates UIM optimization, and Off inhibits it. The On setting is the default.

USE_RLOC

Architectures

The USE_RLOC constraint applies to the XC4000 and XC4000A/H families only.

Description

The USE_RLOC constraint turns on or off the RLOC constraint for a specific element or section of a set. For
detailed information about this constraint, refer to the “Relative Location (RLOC) Constraints” section later
in this chapter.

Syntax

The syntax of the USE_RLOC constraint is the following:
USE_RLOC={true|false}

where True turns on the RLOC attribute for a specific element, and False turns it off.

U_SET

Architectures

The U_SET constraint applies to the XC4000 and XC4000A/H families only.

Description

The U_SET constraint groups design elements with attached RLOC constraints that are distributed throughout
the design hierarchy into a single set. The elements that are members of a U_SET can cross the design
hierarchy; that is, you can arbitrarily select objects without regard to the design hierarchy and tag them as
members of a U_SET. For detailed information about this attribute, refer to the “Relative Location (RLOC)
Constraints” section later in this chapter.

Syntax

The syntax of the U_SET constraint is the following:
U_SET=name

where name is the identifier of the set. This name is absolute; you specify it, and it is not prefixed by a
hierarchical qualifier.

Relative Location (RLOC) Constraints
This section describes the relative location (RLOC) constraint, RLOC sets, and RLOC set constraints and
modifiers.

Description
Relative location constraints group logic elements into discrete sets. You can define the location of any
element within the set relative to other elements in the set, regardless of eventual placement in the overall
design. For example, if RLOC constraints are applied to a group of eight flip-flops organized in a column,
PPR maintains the columnar order and moves the entire group of flip-flops as a single unit. In contrast,
absolute location (LOC) constraints constrain design elements to specific locations on the FPGA die with no
relation to other design elements.
RLOC constraints allow you to place logic blocks relative to each other to increase speed, use die resources
efficiently, and take advantage of the special carry logic built into the control logic blocks (CLBs) of the
XC4000 devices. They provide an order and structure to related design elements without requiring you to
specify their absolute placement on the FPGA die. They allow you to replace any existing hard macro with an
equivalent that can be directly simulated.
The relationally placed macro (RPM) library, which replaces the hard macro library, uses RLOC constraints
to define the order and structure of the underlying design primitives. The RPM library offers the functionality
and precision of the hard macro library with added flexibility. You can optimize RPMs and merge other logic
within them. Because these macros are built upon standard schematic parts, they do not have to be translated
before simulation.
In the Unified Libraries, you can use RLOC constraints with BUFT- and CLB-related primitives, that is, DFF,
HMAP, FMAP, and CY4 primitives. You can also use them on non-primitive macro symbols. There are some
restrictions on the use of RLOC constraints on BUFT symbols. See the section on the RLOC_ORIGIN
attribute later in this chapter. However, you cannot use RLOC constraints with decoders, clocks, or I/O
primitives. LOC constraints, on the other hand, can be used on all primitives: BUFTs, CLBs, IOBs, decoders,
and clocks.
The libraries created before the release of the Unified Libraries do not include RLOC constraints on the
primitive symbols below the macro symbols. To add RLOC constraints to the underlying macro primitives,
make a copy of the library in your local directory and add the RLOC=R0C0 constraint to the underlying
primitives. You can also attach RLOC constraints directly to non-macro primitives as you can for the Unified
Libraries.
The following symbols (primitives) accept RLOCs:

FDCE
FDPE
FMAP
HMAP
RAM16X1
RAM32X1
ROM16X1

ROM32X1
BUFT

Syntax
The syntax of the RLOC constraint is the following:

RLOC = Rrow#Ccolumn#[.extension]
where the optional .extension can take all the values that are available with the current absolute LOC syntax:
FFX, FFY, F, G, H, 1, and 2. The 1 and 2 values are available for BUFT primitives, and the rest are
available for primitives associated with CLBs. Only extensions for the XC4000 family designs are currently
supported.
The row and column numbers can be any positive integer, including zero. Absolute die locations, in contrast,
cannot have zero as a row or column number. Because row and column numbers in RLOC constraints define
only the order and relationship between design elements and not their absolute die locations, their numbering
can include zero. Even though you can use any positive integer in numbering rows and columns for RLOC
constraints, it is recommended that you use small integers for clarity and ease of use.
It is not the absolute values of the row and column numbers that is important in RLOC specifications but their
relative values or differences. For example, if design element A has an RLOC=R3C4 constraint and design
element B has an RLOC=R6C7 constraint, the absolute values of the row numbers (3 and 6) are not important
in themselves. However, the difference between them is important; in this case, 3 (6 -3) specifies that the
location of design element B is three rows away from the location of design element A. To capture this
information, a normalization process is used at some point in the design implementation. In the example just
given, normalization would reduce the RLOC on design element A to R0C0, and the RLOC on design element
B to R3C3.
In Xilinx programs, rows are numbered in increasing order from top to bottom, and columns are numbered in
increasing order from left to right. RLOC constraints follow this numbering convention.

RLOC Sets
As noted previously, RLOC constraints give order and structure to related design elements. This section
describes RLOC sets, which are groups of related design elements to which RLOC constraints have been
applied. You can create multiple sets, but a design element can belong to one set only.
Sets can be defined in several ways: explicitly through the use of a set parameter or implicitly through the
structure of the design hierarchy.
There are four distinct types of rules associated with each set:
• Definition rules define the requirements for membership in a set.
• Linkage rules specify how elements can be linked to other elements to form a single set.
• Modification rules dictate how to specify parameters that modify RLOC values of all the members of the

set.
• Naming rules specify the nomenclature of sets.
These rules are discussed in the sections that follow.
The following sections discuss three different set constraints: U_SET, H_SET, and HU_SET. Elements must
be tagged with both the RLOC constraint and one of these set constraints to belong to a set.

U_SET
U_SET constraints enable you to group into a single set design elements with attached RLOC constraints that
are distributed throughout the design hierarchy. The letter U in the name U_SET indicates that the set is user-
defined. U_SET constraints allow you to group elements, even though they are not directly related by the
design hierarchy. By attaching a U_SET constraint to design elements, you can explicitly define the members
of a set. The design elements tagged with a U_SET constraint can exist anywhere in the design hierarchy; they
can be primitive or non-primitive symbols. When attached to non-primitive symbols, the U_SET constraint
propagates to all the primitive symbols with RLOC constraints that are below it in the hierarchy.
The syntax of the U_SET constraint is the following:

U_SET=name

where name is the user-specified identifier of the set. All design elements with RLOC constraints tagged with
the same U_SET constraint name belong to the same set. Names therefore must be unique among all the sets in
the design.

H_SET

In contrast to the U_SET constraint, which you explicitly define by tagging design elements, the H_SET
(hierarchy set) is defined implicitly through the design hierarchy. The combination of the design hierarchy
and the presence of RLOC constraints on elements defines a hierarchical set, or H_SET set. You do not use
an HSET constraint to tag the design elements to indicate their set membership. The set is defined
automatically by the design hierarchy. All design elements with RLOC constraints at a single node of the
design hierarchy are considered to be in the same H_SET set unless they are tagged with another type of set
constraint such as RLOC_ORIGIN or RLOC_RANGE. These constraints are discussed later in this chapter.
If you explicitly tag any element with an RLOC_ORIGIN, RLOC_RANGE, U_SET, or HU_SET constraint, it
is removed from an H_SET set. Most designs contain only H_SET constraints, since they are the underlying
mechanism for relationally placed macros.
The design-flattening program, XNFMerge, recognizes the implicit H_SET set, derives its name, or
identifier, attaches the H_SET constraint to the correct members of the set, and writes them to the output file.
The syntax of the H_SET constraint as generated by XNFMerge follows:

H_SET=name
Name is the identifier of the set and is unique among all the sets in the design. The base name for any H_SET
is “hset,” to which XNFMerge adds a hierarchy path prefix to obtain unique names for different H_SET sets
in the XNFMerge output file.
The name of the H_SET set is derived from the symbol or node in the hierarchy that includes all the RLOC
elements. Constraints that modify sets are discussed later in this chapter.

Set Modification

As noted earlier, the RLOC constraint assigns a primitive an RLOC value (the row and column numbers with
the optional extensions), specifies its membership in a set, and links together elements at different levels of
the hierarchy.
When the design is flattened, the row and column numbers of an RLOC constraint on an element are added to
the row and column numbers of the RLOC constraints of the set members below it in the hierarchy. This
feature gives you the ability to modify existing RLOC values in submodules and macros without changing the
previously assigned RLOC values on the primitive symbols. This modification process also applies to the
optional extension field. However, when using extensions for modifications, you must ensure that inconsistent
extensions are not attached to the RLOC value of a design element that may conflict with RLOC extensions
placed on underlying elements. For example, if an element has an RLOC constraint with the FFX extension,
all the underlying elements with RLOC constraints must either have the same extension, in this case FFX, or
no extension at all; any underlying element with an RLOC constraint and an extension different from FFX,
such as FFY or F, is flagged as an error. After resolving all the RLOC constraints, extensions that are not
valid on primitives are removed from those primitives. For example, if XNFMerge generates an FFX
extension to be applied on a primitive after propagating the RLOC constraints, it applies the extension if and
only if the primitive is a flip-flop. If the primitive is an element other than a flip-flop, the extension is
ignored. Only the extension is ignored in this case, not the entire RLOC constraint.
The ability to modify RLOC values down the hierarchy is particularly valuable when instantiating the same
macro more than once.

HU_SET

The HU_SET constraint is a variation of the implicit H_SET (hierarchy set). Like H_SET, HU_SET is
defined by the design hierarchy. However, you can use the HU_SET constraint to assign a user-defined name
to the HU_SET.
The syntax of the HU_SET constraint is the following:

HU_SET=name

where name is the identifier of the set; it must be unique among all the sets in the design. You must define the
base names to ensure unique hierarchically qualified names for the sets after XNFMerge flattens the design
and attaches the hierarchical names as prefixes.
This user-defined name is the base name of the HU_SET set. Like the H_SET set, in which the base name of
“hset” is prefixed by the hierarchical name of the lowest common ancestor of the set elements, the user-
defined base name of an HU_SET set is prefixed by the hierarchical name of the lowest common ancestor of
the set elements.
The HU_SET constraint defines the start of a new set: all design elements at the same node that have the same
user-defined value for the HU_SET constraint are members of the same HU_SET set. Along with the
HU_SET constraint, elements can also have an RLOC constraint. The presence of an RLOC constraint in an
H_SET constraint links the element to all elements tagged with RLOCs above and below in the hierarchy.
However, in the case of an HU_SET constraint, the presence of an RLOC constraint along with the HU_SET
constraint on a design element does not automatically link the element to other elements with RLOC
constraints at the same hierarchy level or above.

Set Modifiers
A modifier, as its name suggests, modifies the RLOC constraints associated with design elements. Since it
modifies the RLOC constraints of all the members of a set, it must be applied in a way that propagates it to
all the members of the set easily and intuitively. For this reason, the RLOC modifiers of a set are placed at
the start of that set. This section discusses the different modifiers that you can use to modify the RLOC set
constraints.

RLOC

As discussed previously, the RLOC constraint associated with a design element modifies the values of other
RLOC constraints below the element in the hierarchy of the set. Regardless of the set type, RLOC row,
column, and extension values on an element always propagate down the hierarchy and are added at lower
levels of the hierarchy to RLOC constraints on elements in the same set.

RLOC_ORIGIN

Specifying RLOC constraints to describe the spatial relationship of the set members to themselves allows the
members of the set to float anywhere on the die as a unit. You can, however, fix the exact die location of the
set members. The RLOC_ORIGIN constraint allows you to change the RLOC values into absolute LOC
constraints that respect the structure of the set.
Following is the syntax of this constraint:

RLOC_ORIGIN=Rrow#Ccolumn#
where the row and column numbers are positive non-zero integer values. When an RLOC_ORIGIN constraint
is applied to a set, the row and column values of the RLOC_ORIGIN are added to the individual RLOC
values of the members of the set to obtain a final LOC constraint for each element in the set. Since the row
and column numbers of an RLOC_ORIGIN constraint refer to actual die locations, its value must exclude
zero.
Note: In the XACT 5.0 release, you must use the RLOC_ORIGIN constraint with sets that include BUFT
symbols. Sets with BUFT symbols must be fixed to an exact die location.
The design flattening program, XNFMerge, translates the RLOC_ORIGIN constraint into LOC constraints.
The row and column values of the RLOC_ORIGIN are added individually to the members of the set after all
RLOC modifications have been made to their row and column values by addition through the hierarchy. The
final values are then turned into LOC constraints on individual primitives.
When this constraint is used in conjunction with an implicit H_SET (hierarchy set), it must be placed on the
element that is the start of the H_SET set, that is, on the lowest common ancestor of all the members of the
set. If you apply an RLOC_ORIGIN constraint to an HU_SET constraint, place it on the element at the start of
the HU_SET set, that is, on an element with the HU_SET constraint. However, since there could be several
elements linked together with the HU_SET constraint at the same node, the RLOC_ORIGIN constraint can be
applied to only one of these elements to prevent more than one RLOC_ORIGIN constraint from being applied
to the HU_SET set. Similarly, when used with a U_SET constraint, the RLOC_ORIGIN constraint can be
placed on only one element with the U_SET constraint. If you attach the RLOC_ORIGIN constraint to an

element that has only an RLOC constraint, the membership of that element in any set is removed, and the
element is considered the start of a new H_SET set with the specified RLOC_ORIGIN constraint attached to
the newly created set.

RLOC_RANGE

As noted in the previous discussion, you can fix the members of a set at exact die locations with the
RLOC_ORIGIN constraint. In the XACT 5.0 release, you must use the RLOC_ORIGIN constraint with sets
that include BUFT symbols. However, for sets that do not include BUFT symbols, you can limit the members
of a set to a certain range on the die. In this case, the set could “float” as a unit within the range until a final
placement. Since every member of the set must fit within the range, it is important that you specify a range that
defines an area large enough to respect the spatial structure of the set.
The syntax of this constraint is the following:

RLOC_RANGE=Rrow1#Ccol1#:Rrow2#Ccol2#
where row1, row2, col1, and col2 can be non-zero positive numbers, or the wildcard (*) character. This
syntax allows for three kinds of range specifications:
• Rr1Cc1:Rr2Cc2 — A rectangular region enclosed by rows r1, r2, and columns c1, c2
• R*Cc1:R*Cc2 — A region enclosed by the columns c1 and c2 (any row number)
• Rr1C*:Rr2C*— A region enclosed by the rows r1 and r2 (any column number)
For the second and third kinds of specifications with wildcards, applying the wildcard asterisk differently on
either side of the separator colon creates an error. For example, specifying R*C1:R2C* is an error since the
wildcard asterisk is applied to rows on one side and to columns on the other side of the separator colon.
The values of the RLOC_RANGE constraint are not simply added to the RLOC values of the elements. In
fact, the RLOC_RANGE constraint does not change the values of the RLOC constraints on underlying
elements. It is an additional constraint that is attached automatically by XNFMerge to every member of a set.
The RLOC_RANGE constraint is attached to design elements in exactly the same way as the RLOC_ORIGIN
constraint. The values of the RLOC_RANGE constraint, like RLOC_ORIGIN values, must be non-zero
positive numbers since they directly correspond to die locations.

USE_RLOC

Another important set modifier is the USE_RLOC constraint. It turns the RLOC constraints on and off for a
specific element or section of a set.
The syntax of this constraint is:

USE_RLOC=value
where value is either True or False.
The application of the USE_RLOC constraint is strictly based on hierarchy. A USE_RLOC constraint
attached to an element applies to all its underlying elements that are members of the same set. If it is attached
to a symbol that defines the start of a set, the constraint is applied to all the underlying member elements,
which represent the entire set. However, if it is applied to an element below the start of the set, only the
members of the set below the specified element are affected. You can also attach the USE_RLOC constraint
directly to a primitive symbol so that it affects only that symbol.
When the USE_RLOC=false constraint is applied, the RLOC and set constraints are removed from the
affected symbols in the XNFMerge output file. This process is different than that followed for the
RLOC_ORIGIN constraint. For RLOC_ORIGIN, XNFMerge generates and outputs a LOC constraint in
addition to all the set and RLOC constraints in the output file. XNFMerge does not retain the original
constraints in the presence of a USE_RLOC=false constraint because these cannot be turned on again in later
programs.
Applying the USE_RLOC constraint on U_SET sets is a special case because of the lack of hierarchy in the
U_SET set. Because the USE_RLOC constraint propagates strictly in a hierarchical manner, the members of a
U_SET set that are in different parts of the design hierarchy must be tagged separately with USE_RLOC
constraints; no single USE_RLOC constraint is propagated to all the members of the set that lie in different
parts of the hierarchy. If you create a U_SET set through an instantiating macro, you can attach the
USE_RLOC constraint to the instantiating macro to allow it to propagate hierarchically to all the members of
the set. You can create this instantiating macro by placing a U_SET constraint on a macro and letting
XNFMerge propagate that constraint to every symbol with an RLOC constraint below it in the hierarchy.

While propagating the USE_RLOC constraint, XNFMerge ignores underlying USE_RLOC constraints if it
encounters elements higher in the hierarchy that already have USE_RLOC constraints. For example, if
XNFMerge encounters an underlying element with a USE_RLOC=true constraint during the propagation of a
USE_RLOC=false constraint, it ignores the newly encountered True constraint.

Xilinx Macros
Xilinx-supplied flip-flop macros include an RLOC_R0C0 constraint on the underlying primitive, which
allows you to attach an RLOC to the macro symbol. This symbol links the underlying primitive to the set that
contains the macro symbol. Simply attach an appropriate RLOC constraint to the instantiation of the actual
Xilinx flip-flop macro. XNFMerge adds the RLOC value that you specified to the underlying primitive so that
it has the desired value.
If you do not put an RLOC constraint on the flip-flop macro symbol, the underlying primitive symbol is the
lone member of a set. XNFMerge removes RLOC constraints from a primitive that is the only member of a
set or from a macro that has no RLOC objects below it.

LOC Propagation Through Design Flattening
XNFMerge continues to propagate LOC constraints down the design hierarchy. It adds this constraint to
appropriate objects that are not members of a set. While RLOC constraint propagation is limited to sets, the
LOC constraint is applied from its start point all the way down the hierarchy.

Summary
Table below summarizes the RLOC set types and the constraints that identify members of these sets.

Summary of Set Types

Type Definition Naming Linkage Modification
Set A set is a collection

of elements to which
relative location con-
straints are applied.

U_SET= name All elements with the
same user-tagged
U_SET constraint
value are members of
the same U_SET set.

The name of the set
is the same as the
user-defined name
without any
hierarchical quali-
fication.

U_SET links ele-
ments to all other
elements with the
same value for the
U_SET constraint.

U_SET is modified
by applying
RLOC_ORIGIN or
RLOC_RANGE
constraints on, at
most, one of the
U_SET constraint-
tagged elements.

H_SET (implicit
through hierarchy) is
not available as a
constraint that you
can attach to
symbols.

RLOC on the node.
Any other constraint
removes a node from
the H_SET set.

The lowest common
ancestor of the
members defines the
start of the set. The
name is the hierar-
chically qualified
name of the start
followed by the base
name, “hset.”

H_SET links ele-
ments to other ele-
ments at the same
node that do not have
other constraints. It
links down to all
elements that have
RLOC constraints
and no other
constraints.
Similarly, it links to
other elements up the
hierarchy that have
RLOC constraints but
no other constraints.

H_SET is modified
by applying
RLOC_ORIGIN and
RLOC_RANGE at
the start of the set:
the lowest common
ancestor of all the
elements of the set.

HU_SET= name All elements with the The lowest common HU_SET links to The start of the set is

same hierarchically
qualified name are
members of the same
set.

ancestor of the
members is prefixed
to the user-defined
name to obtain the
name of the set.

other elements at the
same node with the
same HU_SET con-
straint value. It links
to elements with
RLOC constraints
below.

made up of the ele-
ments on the same
node that are tagged
with the same
HU_SET constraint
value. An
RLOC_ORIGIN or
an RLOC_RANGE
can be applied to, at
most, one of these
start elements of an
HU_SET set.

Relationally Placed Macros (RPMs)
The Xilinx libraries contain three types of elements.
• Primitives are basic logical elements such as AND2 and OR2 gates.
• Soft macros are schematics made by combining primitives and sometimes other soft macros.
• Relationally placed macros (RPMs) are soft macros that contain relative location constraint (RLOC)

information, carry logic symbols, and FMAP/HMAP symbols, where appropriate. RPMs are currently
only available in the XC4000 library.

Designs created with RPMs can be functionally simulated.
The HM2RPM utility translates old custom hard macro files into RPM files. If you created your own hard
macro files, you must run HM2RPM on each hard macro file and place the new XNF file in your current
working directory or in a search directory specified for XNFMerge. For instructions on using the HM2RPM
utility, see the “HM2RPM” chapter of the XACT Reference Guide.
RPMs can, but need not, include all the following elements:
• FMAPs, HMAPs, and CLB-grouping attributes to control mapping. FMAPs and HMAPs have pin-lock

attributes, which allow better control over routing. FMAPs and HMAPs are described in the “Mapping
Constraints” section of the “PPR Placement Constraints” section earlier in this chapter.

• Relative location (RLOC) constraints to provide placement structure. They allow positioning of elements
relative to each other. They are discussed in the “Relative Location Constraints” section earlier in this
chapter.

• Carry logic primitive symbols. Carry logic is discussed in the next section, “Carry Logic in XC4000
LCAs.”

These elements allow you to access carry logic easily and to control mapping and block placement. Because
RPMs are a super-set of ordinary macros, you can design them in the normal design entry environment. They
can include any primitive logic. The macro logic is fully visible to you and can be easily back-annotated with
timing information.
RPMs do not include routing capability. XACT-Performance specifications address timing issues more
effectively.

Carry Logic in XC4000 LCAs
This section describes the use of carry logic in XC4000 CLBs and lists all the carry logic configuration
mnemonics available.
The XC4000 CLB contains a feature called dedicated carry logic. This carry logic is independent of the
function generators, although it shares some of the same input pins. Dedicated interconnect propagates carry
signals through a column of CLBs. The carry logic in each CLB can implement approximately 40 different
functions, which you can use to build faster and more efficient adders, subtracters, counters, comparators, and
so forth.

Primitives and Symbols
The schematic capture libraries that Xilinx supports contain one generic carry logic primitive and several
specific carry mode primitive symbols. The generic carry logic primitive represents the complete carry logic
in a single CLB. The carry mode primitive symbols represent unique carry modes, such as ADD-FG-CI. To
specify the particular mode that you wish, connect a carry mode symbol to the C0-C7 mode pins of the carry
logic symbol. It is the pair of symbols that defines the specific kind of carry logic desired.
A carry logic symbol requires you to place either a LOC or an RLOC constraint on it. If a LOC constraint is
used, it must be a single LOC= constraint; it cannot be an area or prohibit LOC constraint or use wildcards in
its syntax.
Table below lists the carry mode names and symbols.

Carry Modes

Carry Mode Name Symbol
ADD-F-CI cy4_01
ADD-FG-CI cy4_02
ADD-G-F1 cy4_03
ADD-G-CI cy4_04
ADD-G-F3 cy4_05
ADDSUB-F-CI cy4_12
ADDSUB-FG-CI cy4_13
ADDSUB-G-F1 cy4_14
ADDSUB-G-CI cy4_15
ADDSUB-G-F3 cy4_16
FORCE-0 cy4_37
FORCE-1 cy4_38
FORCE-F1 cy4_39
FORCE-CI cy4_40
FORCE-F3 cy4_41
EXAMINE-CI cy4_42
DEC-F-CI cy4_24
DEC-FG-CI cy4_25
DEC-FG-0 cy4_26
DEC-G-0 cy4_27
DEC-G-F1 cy4_28
DEC-G-CI cy4_29
DEC-G-F3- cy4_30
INC-F-CI cy4_17
INC-FG-CI cy4_18
INC-FG-1 cy4_19
INC-G-1 cy4_20
INC-G-F1 cy4_21
INC-G-CI cy4_22
INC-G-F3- cy4_23
SUB-F-CI cy4_06
SUB-FG-CI cy4_07
SUB-G-1 cy4_08
SUB-G-F1 cy4_10
SUB-G-CI cy4_09
SUB-G-F3 cy4_11
INCDEC-F-CI cy4_31
INCDEC-FG-CI cy4_32
INCDEC-FG-1 cy4_33
INCDEC-G-0 cy4_34
INCDEC-G-F1 cy4_35

INCDEC-G-CI cy4_36

cy4 and cy4_n are not supported by XC7000.

Carry Logic Handling in XNFPrep
The XNFPrep program checks for legal connections between carry logic symbols and also performs simple
trimming on some carry modes. CY4 symbols might be trimmed as follows:
• If neither the COUT0 pin nor the COUT pin is used, the CY4 symbol is removed from the design.

However, if the signal on the CIN pin connects to other logic, XNFPrep converts the CY4 to the
EXAMINE-CI mode. An EXAMINE-CI mode CY4 is trimmed only if there is no other load on the signal
on the CIN pin.

• If the COUT0 pin is used but the COUT pin is not, XNFPrep attempts to convert the CY4 symbol to use a
1-bit equivalent mode. That is, if the mode was originally of the form -FG-CI, it converts it to the
equivalent -F-CI mode, allowing signals to be removed from the CY4 A1 and B1 operand inputs, which
may save routing resources.

• If the specified mode does not require any of the A0, B0, A1, B1, and/or ADD CY4 inputs, XNFPrep
removes the signals from these pins, which may save routing resources.

Carry Mode Configuration Mnemonics
The first step in configuring a CLB for carry logic is to choose the appropriate carry mode configuration
mnemonic. Each of the 42 possible configurations of the carry logic has been assigned a three-part mnemonic
code, for example:

ADD-FG-CI
• The first field (ADD) describes the operation performed in the CLB function generators, in this case, a

binary addition. By implication, the carry logic in this CLB calculates the carry for this addition.
• The second field (FG) indicates which of the two function generators is used in the specified operation, in

this case, both F and G.
• The last field (CI) specifies the source of the carry-in signal to the CLB, in this case, the CIN pin itself.
Consider another example:

INCDEC-G-F1
This mnemonic describes a CLB in which the G function generator performs an increment/decrement
function. The carry-in to this CLB is sourced by the F1 pin.
All available carry mode configuration mnemonics are listed in the next section, “Carry Logic
Configurations.”

Carry Logic Configurations
This section lists and describes all the available carry mode configuration mnemonics. The following
information is given for each mnemonic:
• The name of the mode mnemonic
• A brief description of the CLB function
• The COUT0 and COUT1 equations performed by the carry logic
• Default equations for the F and G function generators
• Default assignments for the F4, G2, and G3 inputs
The default F and G functions and default F4, G2, and G3 inputs are based on the generic CLB function
described. You can change these defaults as required, allowing for features such as parallel enable or
synchronous reset. However, if these defaults are changed, the CLB may no longer function as the mnemonic
describes.
The COUT0 and COUT1 equations are absolutely determined by the carry mode configuration mnemonic.
The only way to change these carry logic outputs is by selecting a different mnemonic.

ADD-F-CI
The ADD-F-CI configuration performs a 1-bit addition of A+B in the F function generator, with the A and B
inputs on the F1 and F2 pins. The carry signal enters on the CIN pin, propagates through the F carry logic, and
exits on the COUT pin. This configuration can be used as the MSB of an adder, with the G function generator
accessing the carry-out signal or calculating a twos-complement overflow.
F=(F1@F2)@F4
COUT0=(F1*F2) + CIN*(F1+F2)
G=
COUT1=COUT0
F4=CIN
G2=G2I (COUT0 for overflow, OFL=G2@G3, or for carry-out, CO=G2)
G3=G3I (CIN for overflow, OFL=G2@G3)

ADD-FG-CI
The ADD-FG-CI configuration performs a 2-bit addition of A+B in both the F and G function generators,
with the lower-order A and B inputs on the F1 and F2 pins, and the higher-order A and B inputs on the G1
and G4 pins. The carry signal enters on the CIN pin, propagates through the F and G carry logic, and exits on
the COUT pin. This configuration comprises the middle bits of an adder.
F=(F1@F2)@F4
COUT0=(F1*F2) + CIN*(F1+F2)
G=(G4@G1)@G2
COUT1=(G4*G1) + COUT0*(G4+G1)
F4=CIN
G2=COUT0
G3=G3I

ADD-G-F1
The ADD-G-F1 configuration performs a 1-bit addition of A+B in the G function generator, with the A and B
inputs on the G1 and G4 pins. The carry signal enters on the F1 pin, propagates through the G carry logic, and
exits on the COUT pin. This configuration comprises the LSB of an adder, where the carry-in signal is routed
to F1. The F function generator is not used.
F=
COUT0=F1
G=(G4@G1)@G2
COUT1=(G4*G1) + COUT0*(G4+G1)
F4=F4I
G2=COUT0
G3=G3I

ADD-G-CI
The ADD-G-CI configuration performs a 1-bit addition of A+B in the G function generator, with the A and B
inputs on the G1 and G4 pins. The carry signal enters on the CIN pin, propagates through the G carry logic,
and exits on the COUT pin. This configuration is for the middle bit of an adder, where the F function
generator is reserved for another purpose.
F=
COUT0=CIN
G=(G4@G1)@G2
COUT1=(G4*G1) + COUT0*(G4+G1)
F4=F4I
G2=COUT0
G3=G3I

ADD-G-F3-
The ADD-G-F3- configuration performs a 1-bit addition of A+B in the G function generator, with the A and
B inputs on the G1 and G4 pins. The carry signal enters on the F3 pin, is inverted by the F carry logic,
propagates through the G carry logic, and exits on the COUT pin. This configuration comprises the LSB of an
adder, where the inverted carry-in signal is routed to F3. The F function generator is not used.
F=
COUT0=~F3
G=(G4@G1)@G2
COUT1=(G4*G1) + COUT0*(G4+G1)
F4=F4I
G2=COUT0
G3=G3I

SUB-F-CI
The SUB-F-CI configuration performs a 1-bit twos-complement subtraction of A-B in the F function
generator, with the A input on F1 and the B input on F2. The carry signal enters on the CIN pin, propagates
through the F carry logic, and exits on the COUT pin. This configuration can be used as the MSB of a
subtracter, with the G function generator accessing the carry-out signal or calculating a twos-complement
overflow.
F=(F1@F2)@~F4=~(F1@F2@F4)
COUT0=(F1*~F2) + CIN*(F1+~F2)
G=
COUT1=COUT0
F4=CIN
G2=G2I (COUT0 for overflow, OFL=G2@G3, or for carry-out, CO=G2)
G3=G3I (CIN for overflow, OFL=G2@G3)

SUB-FG-CI
The SUB-FG-CI configuration performs a 2-bit twos-complement subtraction of A-B in both the F and G
function generators. For the lower bit, the A input is on F1 and the B input is on F2. For the upper bit, the A
input is on G4 and the B input is on G1. The carry signal enters on the CIN pin, propagates through the F and
G carry logic, and exits on the COUT pin. This configuration comprises the middle bits of a subtracter.
F=(F1@F2)@~F4=~(F1@F2@F4)
COUT0=(F1*~F2) + CIN*(F1+~F2)
G=(G4@G1)@~G2=~(G4@G1@G2)
COUT1=(G4*~G1) +COUT0*(G4+~G1)
F4=CIN
G2=COUT0
G3=G3I

SUB-G-1
The SUB-G-1 configuration performs a 1-bit twos-complement subtraction of A-B in the G function
generator, with the A input on G4 and the B input on G1. The carry-in is tied High (no borrow). The carry
signal propagates through the G carry logic and exits on the COUT pin. This configuration comprises the LSB
of a subtracter with no carry-in. The F function generator is not used.
F=
COUT0=1
G=(G4@G1)
COUT1=(G4+~G1)
F4=F4I
G2=G2I
G3=G3I

SUB-G-F1
The SUB-G-F1 configuration performs a 1-bit twos-complement subtraction of A-B in the G function
generator, with the A input on G4 and the B input on G1. The carry signal enters on the F1 pin, propagates
through the G carry logic, and exits on the COUT pin. This configuration comprises the LSB of a subtracter,
where the carry-in signal is routed to F1. The F function generator is not used.
F=
COUT0=F1
G=(G4@G1)@~G2=~(G4@G1@G2)
COUT1=(G4*~G1) + COUT0*(G4+~G1)
F4=F4I
G2=COUT0
G3=G3I

SUB-G-CI
The SUB-G-CI configuration performs a 1-bit twos-complement subtraction of A-B in the G function
generator, with the A input on G4 and the B input on G1. The carry signal enters on the CIN pin, propagates
through the G carry logic, and exits on the COUT pin. This configuration is for the middle bit of a subtracter,
where the F function generator is reserved for another purpose.
F=
COUT0=CIN
G=(G4@G1)@~G2=~(G4@G1@G2)
COUT1=(G4*~G1) + COUT0*(G4+~G1)
F4=F4I
G2=COUT0
G3=G3I

SUB-G-F3-
The SUB-G-F3- configuration performs a 1-bit twos-complement subtraction of A-B in the G function
generator, with the A input on G4 and the B input on G1. The carry signal enters on the F3 pin, is inverted by
the F carry logic, propagates through the G carry logic, and exits on the COUT pin. This configuration
comprises the LSB of a subtracter, where the inverted carry-in signal is routed to F3. The F function
generator is not used.
F=
COUT0=~F3
G=(G4@G1)@~G2=~(G4@G1@G2)
COUT1=(G4*~G1) + COUT0*(G4+~G1)
F4=F4I
G2=COUT0
G3=G3I

ADDSUB-F-CI
The ADDSUB-F-C1 configuration performs a 1-bit twos-complement add/subtract of A+B in the F function
generator, with the A input on F1 and the B input on F2. The carry signal enters on the CIN pin, propagates
through the F carry logic, and exits on the COUT pin. The F3 input indicates add (F3=1) or subtract (F3=0).
This configuration can be used as the MSB of an adder/subtracter, with the G function generator accessing the
carry-out signal or calculating a twos-complement overflow.
F=(F1@F2)@F4@~F3=~(F1@F2@F4@F3)
COUT0=F3*((F1*F2) + CIN*(F1+F2)) + ~F3*((F1*~F2) + CIN*(F1+~F2))
G=
COUT1=COUT0
F4=CIN
G2=G2I (COUT0 for overflow, OFL=G2@G3, or for carry-out, CO=G2)
G3=G3I (CIN for overflow, OFL=G2@G3)

ADDSUB-FG-CI
The ADDSUB-FG-CI configuration performs a 2-bit twos- complement add/subtract of A+B in both the F
and G function generators. For the lower bit, the A input is on F1 and the B input is on F2. For the upper bit,
the A input is on G4 and the B input is on G1. The carry signal enters on the CIN pin, propagates through the
F and G carry logic, and exits on the COUT pin. The F3 and G3 inputs indicate add (F3=G3=1) or subtract
(F3=G3=0): the add/subtract control signal must be routed to both the F3 and G3 pins. This configuration
comprises the middle bits of an adder/subtracter.
F=(F1@F2)@F4@~F3=~(F1@F2@F4@F3)
COUT0=F3*((F1*F2) + CIN*(F1+F2)) + ~F3*((F1*~F2) + CIN*(F1+~F2))
G=(G4@G1)@G2@~G3=~(G4@G1@G2@G3)
COUT1=F3*((G4*G1)+COUT0*(G4+G1))+~F3*((G4*~G1)+COUT0*(G4+~G1))
F4=CIN
G2=COUT0
G3=G3I

ADDSUB-G-F1
The ADDSUB-G-F1 configuration performs a 1-bit twos-complement add/subtract of A+B in the G function
generator, with the A input on G4 and the B input on G1. The carry signal enters on the F1 pin, propagates
through the G carry logic, and exits on the COUT pin. The F3 and G3 inputs indicate add (F3=G3=1) or
subtract (F3=G3=0): the add/ subtract control signal must be routed to both the F3 and G3 pins. This
configuration comprises the LSB of an adder/subtracter, where the carry-in signal is routed to F1. The F
function generator is not used.
F=
COUT0=F1
G=(G4@G1)@G2@~G3=~(G4@G1@G2@G3)
COUT1=F3*((G4*G1)+COUT0*(G4+G1))+~F3*((G4*~G1)+COUT0*(G4+~G1))
F4=F4I
G2=COUT0
G3=G3I

ADDSUB-G-CI
The ADDSUB-G-CI configuration performs a 1-bit twos-complement add/subtract of A+B in the G function
generator, with the A input on G4 and the B input on G1. The carry signal enters on the CIN pin, propagates
through the G carry logic, and exits on the COUT pin. The F3 and G3 inputs indicate add (F3=G3=1) or
subtract (F3=G3=0): the add/ subtract control signal must be routed to both the F3 and G3 pins. This
configuration is for the middle bit of an adder/subtracter, where the F function generator is reserved for
another purpose.
F=
COUT0=CIN
G=(G4@G1)@G2@~G3=~(G4@G1@G2@G3)
COUT1=F3*((G4*G1)+COUT0*(G4+G1))+~F3*((G4*~G1)+COUT0*(G4+~G1))
F4=F4I
G2=COUT0
G3=G3I

ADDSUB-G-F3-
The ADDSUB-G-F3 configuration performs a 1-bit twos-complement add/subtract of A+B in the G function
generator, with the A input on G4 and the B input on G1. The carry signal enters on the F3 pin, is inverted by
the F carry logic, propagates through the G carry logic, and exits on the COUT pin. Because the F3 input also
indicates add (F3=1) or subtract (F3=0), the carry-in is always null (0 for add, 1 for subtract). This
configuration comprises the LSB of an adder/subtracter with no carry-in. The F function generator is not
used.
F=
COUT0=~F3

G=(G4@G1)
COUT1=F3*G4*G1 + ~F3(G4+~G1)
F4=F4I
G2=COUT0
G3=G3I

INC-F-CI
The INC-F-CI configuration performs a 1-bit increment in the F function generator, with the input on the F1
pin. The carry signal enters on the CIN pin, propagates through the F carry logic, and exits on the COUT pin.
The G function generator can be used to output the terminal count of a counter.
F=(F1@F4)
COUT0=CIN*F1
G=
COUT1=COUT0
F4=CIN
G2=G2I (COUT0 for terminal count, TC=G2)
G3=G31

INC-FG-CI
The INC-FG-CI configuration performs a 2-bit increment in both the F and G function generators, with the
lower-order input on the F1 pin and the higher-order input on the G4 pin. The carry signal enters on the CIN
pin, propagates through the F and G carry logic, and exits on the COUT pin. This configuration comprises the
middle bits of an incrementer.
F=(F1@F4)
COUT0=CIN*F1
G=(G4@G2)
COUT1=COUT0*G4
F4=CIN
G2=COUT0
G3=G3I

INC-G-1
The INC-G-1 configuration performs a 1-bit increment in the G function generator, with the input on the G4
pin. The carry-in is tied High. The carry signal propagates through the G carry logic and exits on the COUT
pin. This configuration comprises the LSB of an incrementer that is always enabled. The F function generator
is not used. This configuration is identical to DEC-G-0, since the LSB of an incrementer is identical to the
LSB of a decrementer.
F=
COUT0=0
G=~(G4)
COUT1=G4
F4=F4I
G2=G2I
G3=G3I

INC-G-F1
The INC-G-F1 configuration performs a 1-bit increment in the G function generator, with the input on the G4
pin. The carry signal enters on the F1 pin, propagates through the G carry logic, and exits on the COUT pin.
This configuration comprises the LSB of an incrementer where F1 is an active-High enable. The F function
generator is not used.
F=
COUT0=F1
G=(G4@G2)
COUT1=COUT0*G4

F4=F4I
G2=COUT0
G3=G3I

INC-G-CI
The INC-G-CI configuration performs a 1-bit increment in the G function generator, with the input on the G4
pin. The carry signal enters on the CIN pin, propagates through the G carry logic, and exits on the COUT pin.
This configuration is for the middle bit of an incrementer where the F function generator is reserved for
another purpose.
F=
COUT0=CIN
G=(G4@G2)
COUT1=COUT0*G4
F4=F4I
G2=COUT0
G3=G3I

INC-G-F3-
The INC-G-F3- configuration performs a 1-bit increment in the G function generator, with the input on the G4
pin. The carry signal enters on the F3 pin, is inverted in the F carry logic, propagates through the G carry
logic, and exits on the COUT pin. This configuration comprises the LSB of an incrementer where F3 is an
active-Low enable. The F function generator is not used.
F=
COUT0=~F3
G=(G4@G2)
COUT1=COUT0*G4=~F3*G4
F4=F4I
G2=COUT0
G3=G3I

INC-FG-1
The INC-FG-1 configuration performs a 2-bit increment in both the F and G function generator, with the
lower-order A input on the F1 pin and the higher-order A input on the G4 pin. The carry-in is tied High. The
carry signal propagates through the F and G carry logic and exits on the COUT pin. This configuration
comprises the two least significant bits of an incrementer that is always enabled.
F=~(F1)
COUT0=F1
G=G2@G4
COUT1=COUT0*G4
F4=F4I or CIN
G2=COUT0
G3=G3I or CIN

DEC-F-CI
The DEC-F-CI configuration performs a 1-bit decrement in the F function generator, with the input on the F1
pin. The carry signal enters on the CIN pin, propagates through the F carry logic, and exits on the COUT pin.
The G function generator can be used to output the terminal count of a counter.
F=~(F1@F4)
COUT0=F1+CIN*~F1
G=
COUT1=COUT0
F4=CIN
G2=G2I (COUT0 for terminal count, TC=G2)
G3=G31

DEC-FG-CI
The DEC-FG-CI configuration performs a 2-bit decrement in both the F and G function generators, with the
lower-order input on the F1 pin and the higher-order input on the G4 pin. The carry signal enters on the CIN
pin, propagates through the F and G carry logic, and exits on the COUT pin. This configuration comprises the
middle bits of a decrementer.
F=~(F1@F4)
COUT0=F1+CIN*~F1
G=~(G4@G2)
COUT1=G4+COUT0*~G4
F4=CIN
G2=COUT0
G3=G3I

DEC-G-0
The DEC-G-0 configuration performs a 1-bit decrement in the G function generator, with the input on the G4
pin. The carry-in is tied High (no borrow). The carry signal propagates through the G carry logic and exits on
the COUT pin. This configuration comprises the LSB of a decrementer that is always enabled. The F function
generator is not used. This configuration is identical to INC-G-1, since the LSB of an incrementer is identical
to the LSB of a decrementer.
F=
COUT0=0
G=~(G4)
COUT1=G4
F4=F4I
G2=G2I
G3=G3I

DEC-G-F1
The DEC-G-F1 configuration performs a 1-bit decrement in the G function generator, with the input on the G4
pin. The carry signal enters on the F1 pin, propagates through the G carry logic, and exits on the COUT pin.
This configuration comprises the LSB of a decrementer where F1 is an active-Low enable. The F function
generator is not used.
F=
COUT0=F1
G=~(G4@G2)
COUT1=COUT0 + G4
F4=F4I
G2=COUT0
G3=G3I

DEC-G-CI
The DEC-G-CI configuration performs a 1-bit decrement in the G function generator, with the input on the G4
pin. The carry signal enters on the CIN pin, propagates through the G carry logic, and exits on the COUT pin.
This configuration is for the middle bit of a decrementer, where the F function generator is reserved for
another purpose.
F=
COUT0=CIN
G=~(G4@G2)
COUT1=G4+COUT0*~G4
F4=F4I
G2=COUT0
G3=G3I

DEC-G-F3-
The DEC-G-F3- configuration performs a 1-bit decrement in the G function generator, with the input on the
G4 pin. The carry signal enters on the F3 pin, is inverted in the F carry logic, propagates through the G carry
logic, and exits on the COUT pin. This configuration comprises the LSB of a decrementer, where F3 is an
active-High enable. The F function generator is not used.
F=
COUT0=~F3
G=~(G4@G2)
COUT1=COUT0 + G4
F4=F4I
G2=COUT0
G3=G3I

DEC-FG-0
The DEC-FG-0 configuration performs a 2-bit decrement in both the F and G function generator, with the
lower-order input on the F1 pin and the higher order input on the G4 pin. The carry-in is tied Low. The carry
signal propagates through the F and G carry logic and exits on the COUT pin. This configuration comprises
the two least significant bits of a decrementer that is always enabled.
F=~(F1)
COUT0=F1
G=~(G4@G2)
COUT=COUT1=(COUT0*~G4) + G4
F4=F4I
G2=COUT0
G3=G3I

INCDEC-F-CI
The INCDEC-F-CI configuration performs a 1-bit increment/decrement in the F function generator, with the
input on the F1 pin. The carry signal enters on the CIN pin, propagates through the F carry logic, and exits on
the COUT pin. The F3 input indicates increment (F3=1) or decrement (F3=0). The G function generator can
be used to output the terminal count of a counter.
F=(F1@F4)@~F3
COUT0=~F3*(F1+ CIN) + F3*F1*CIN
G=
COUT1=COUT0
F4=CIN
G2=G2I (COUT0 for terminal count, TC=G2)
G3=G31

INCDEC-FG-CI
The INCDEC-FG-CI configuration performs a 2-bit increment/decrement in both the F and G function
generators, with the lower-order input on the F1 pin and the higher-order input on the G4 pin. The carry
signal enters on the CIN pin, propagates through the F and G carry logic, and exits on the COUT pin. The F3
and G3 inputs indicate increment (F3=G3=1) or decrement (F3=G3=0): the increment/decrement control
signal must be routed to both the F3 and G3 pins. This configuration comprises the middle bits of an
incrementer/decrementer.
F=(F1@F4)@~F3
COUT0=~F3*(F1+ CIN) + F3*F1*CIN
G=(G4@G2)@~G3
COUT1=~F3*(G4+ COUT0) + F3*G4*COUT0
F4=CIN
G2=COUT0
G3=G3I

INCDEC-G-0
The INCDEC-G-0 configuration performs a 1-bit increment/decrement in the G function generator, with the
input on the G4 pin. The carry-in is tied High. The carry signal propagates through the G carry logic and exits
on the COUT pin. This configuration comprises the LSB of an incrementer/decrementer that is always
enabled. The F function generator is not used. F3 is not required for increment/decrement control, since the
LSB of an incrementer is identical to the LSB of a decrementer; this configuration is identical to INC-G-1 and
DEC-G-0.
F=
COUT0=0
G=~(G4)
COUT1=G4
F4=F4I
G2=G2I
G3=G3I

INCDEC-G-F1
The INCDEC-G-F1 configuration performs a 1-bit increment/decrement in the G function generator, with the
input on the G4 pin. The carry signal enters on the F1 pin, propagates through the G carry logic, and exits on
the COUT pin. This configuration comprises the LSB of an incrementer/decrementer where the carry-in
signal is routed to F1. The carry-in is active-High for an increment operation and active-Low for a decrement
operation. The F function generator is not used. The F3 and G3 inputs indicate increment (F3=G3=1) or
decrement (F3=G3=0): the increment/decrement control signal must be routed to both the F3 and G3 pins.
F=
COUT0=F1
G=(G4@G2)@~G3
COUT1=F3*(G4*COUT0) + ~F3*(G4+COUT0)
F4=F4I
G2=COUT0
G3=G3I

INCDEC-G-CI
The INCDEC-G-CI configuration performs a 1-bit increment/decrement in the G function generator, with the
input on the G4 pin. The carry signal enters on the CIN pin, propagates through the G carry logic, and exits on
the COUT pin. The F3 and G3 inputs indicate increment (F3=G3=1) or decrement (F3=G3=0): the
increment/decrement control signal must be routed to both the F3 and G3 pins. This configuration is for the
middle bit of an incrementer/decrementer, where the F function generator is reserved for another purpose,
although the F3 pin is used by the carry logic.
F=
COUT0=CIN
G=(G4@G2)@~G3
COUT1=~F3*(G4+ COUT0) + F3*G4*COUT0
F4=F4I
G2=COUT0
G3=G3I

INCDEC-FG-1
The INCDEC-FG-1 configuration performs a 2-bit increment/decrement in both the F and G function
generator, with the lower- order input on the F1 pin and the higher-order input on the G4 pin. The F3 and G3
inputs indicate increment (F3=G3=1) or decrement (F3=G3=0): the increment/decrement control signal must
be routed to both the F3 and G3 pins. The carry-in is always active (High in increment mode and Low in
decrement mode). The carry signal propagates through the F and G carry logic and exits on the COUT pin.
This configuration comprises the two least significant bits of an incrementer/decrementer that is always
enabled.
F=~(F1)

COUT0=F1
G=(G2@G4)@~G3
COUT=COUT1=~F3*((COUT0*~G4)+G4) + F3*(G4*COUT0)
F4=F4I
G2=COUT0
G3=G3I

FORCE-0
The FORCE-0 configuration forces the carry-out signal on the COUT pin to be 0.
COUT0=0
COUT1=0

FORCE-1
The FORCE-1 configuration forces the carry-out signal on the COUT pin to be 1.
COUT0=1
COUT1=1

FORCE-F1
The FORCE-F1 configuration forces the signal on the F1 pin to pass through to the COUT pin.
COUT0=F1
COUT1=COUT0=F1

FORCE-CI
The FORCE-CI configuration forces the signal on the CIN pin to pass through to the COUT pin.
COUT0=CIN
COUT1=COUT0=CIN

FORCE-F3-
The FORCE-F3- configuration forces the signal on the F3 pin to pass inverted to the COUT pin.
COUT0=~F3
COUT1=COUT0=~F3

EXAMINE-CI
The EXAMINE-CI configuration allows the carry signal on the CIN pin to be used in the F or G function
generators. This configuration forces the signal on the CIN pin to pass through to the COUT pin and is
equivalent to the FORCE-CI configuration. EXAMINE-CI is provided for CLBs in which the carry logic is
unused but the CIN signal is required.
COUT0=CIN
COUT1=COUT0=CIN

List of ACTIVE-CAD File Types
File Description
ABL ABEL source file
ALB Binary netlist file generated from the schematic
ALR Binary netlist file generated from netlist import (e.g. routed BAX file)
ALX Binary netlist file imported from X-BLOX functional simulation
ASC ASCII Test Vector file
ASX Port description file for HDL macro
ASF State Machine drawing file
BAX XNF file created by renaming XNFBA.XNF file for timing simulation
BSC Automatically saved schematic backup file

BPR Pin assignment back-annotation file for schematic editor. Created during post layout XNF import.
BRI Bus definition file generated by XNF import
CMD Viewsim compatible simulation script
CTL Control file for XEMAKE 6 programs
DES Simulation state file. Includes test vectors and simulation model states.
ENT Entity/Architecture definitions for VHDL macro
ER Formatted Error list from synthesis program or HDL analyzer
FRM Simulation formula file
INI Configuration files for applications
LCA Xilinx device configuration file created by XACT software
LOG Log files with messages
OPT Synthesis option file for each macro. Defines compiler and options
PAR Parameters for synthesis program. Includes command line and list of files to compile.
PDF Project description file. Stores information about the project.
PRJ Document modification LOG file. Each save records a change in this file.
PRO Profile file containing Xilinx file option for batch processing
SCH Schematic file
TVE Binary test vector file
VHD VHDL source file
XAS XABEL generated file
XFF Merged XNF files for entire project. Created by XNFMERGE program
XNF Xilinx netlist file. Created from schematic or synthesis program.
XNR XNF file created from routed LCA file when routed in batch mode (XMAKE)
XSF Port definition file generated by synthesis program for each generated XNF file

Hot Keys

 Project Manager:
Ctrl+N New Project
Ctrl+O Open Project
Ctrl+C Copy Project
Ctrl+D Delete Project
Ctrl+L List Libraries
Ctrl+T Project Type
Del Remove Document
Enter Open Document
Ctrl+I Document Info
+ Expand One Level
* Expand Branch
Ctrl+* Expand All
- Collapse Branch

Schematic Editor:
Ctrl+N New Sheet
Ctrl+O Open
Ctrl+S Scratchpad
Ctrl+P Print
Ctrl+T Printer Setup
Ctrl+B Table Setup
Alt+X Exit
Ctrl+A Undo
Ctrl+Z Redo

Ctrl+X Cut
Ctrl+C Copy
Ctrl+V Paste
Del Delete
Ctrl+U Deselect All
Ctrl+W Redraw Wires
F2 Select and Drag
F3 Symbols
F4 Draw Wires
F5 Draw Buses
F6 Draw Bus Taps
F7 Query
F8 Test Points
Shift+F2Create Netlist
Ctrl+F2 Integrity Test
Ctrl+K Annotate
Ctrl+E Symbol Editor
Ctrl+H Hierarchy Push
Ctrl+I Hierarchy Pop
Ctrl+G Snap to Grid
Ctrl++ Zoom In
Ctrl+- Zoom Out
PgDn Full Page
PgUp Previous Zoom
F9 Center
F10 Redraw
Shift+F4Tile
Shift+F5Cascade
Ctrl+L Rotate Symbol
Ctrl+M Mirror Symbol
Shift+F1Help Contents

Symbol Editor:
Ctrl+N New
Ctrl+O Open...
Ctrl+S Save
Ctrl+T Test Symbol
Ctrl+P Print...
Alt+Bksp Undo
Ctrl+X Cut
Ctrl+C Copy
Ctrl+V Paste
Del Delete
Ctrl++ Zoom In
Ctrl+- Zoom Out
F10 Redraw
Shift+F4Tile
Shift+F5Cascade

 HDL Editor:
Ctrl+N New
Ctrl+O Open...
Ctrl+S Save

Ctrl+P Print...
Ctrl+Z Undo
Ctrl+A Redo
Ctrl+X Cut
Ctrl+C Copy
Ctrl+V Paste
Del Delete
Alt+F3 Find...
F3 Find Next
Shift+F4Previous Error
F4 Next Error
Ctrl+G Go to...
Ctrl+F2 Toggle Bookmark
Shift+F2Previous Bookmark
F2 Next Bookmark
Ctrl+D Delete to the End of Word
Ctrl+Y Cut Line

State Editor:
Ctrl+N New
Ctrl+O Open...
Ctrl+S Save
Ctrl+P Print...
Ctrl+Z Undo
Ctrl+A Redo
Ctrl+X Cut
Ctrl+C Copy
Ctrl+V Paste
Del Delete
Alt+F3 Find String
F3 Find Next
Shift+F4Previous Error
F4 Next Error
Ctrl++ Zoom In
Ctrl+- Zoom Out
PgDn Page
PgUp Previous
F10 Redraw
Ctrl+H HDL Code Generation

Simulator:
F2 Cascade
F3 Tile
F8 Short Step
F9 Long Step

BTI.INI File Settings
Btrieve for Windows v6.15

BTI.INI File Settings

This document describes the settings in the BTI.INI file for Btrieve. It does not include all of the settings
used by the Btrieve utilities. Each utility maintains its own set of parameters within the program.

The BTI.INI file must reside in the local Windows directory. All parameters apply only to applications
running on that one computer. Many of the parameters are settable using the Btrieve Technologies, Inc.
Database Setup (DBSETUP) utility. You may use any standard text file editor to edit the parameters in the
BTI.INI. Be sure to save the file as an ASCII text file.

Btrieve for Windows Settings

The BTI.INI contains three sections for entering Btrieve parameters, each of which is described below. The
three sections are:

Btrieve Engine [Btrieve] Section
Btrieve Client [Btrieve Client] Section
Btrieve Requester [BrequestDPMI] Section

NOTE: The meaning of the /T parameter in options parameter in the Btrieve Client section has changed
from the previous Btrieve releases. The new /T parameter sets the maximum number of Btrieve clients that
can simultaneously have active transactions at the workstation. The old /T parameter specified the name of
the directory where Btrieve placed transaction files. To specify this directory name now, use
"trnfile=<dir-name>". See the discussion in the Btrieve Client section below.

Btrieve Engine [Btrieve] Section

The Btrieve Engine Section contains those parameters which are required by the Btrieve engine
(WBTR32.EXE) and the Loader and Requester interface (WBTRCALL.DLL) to set up internal data
structures and values. The section will normally be written by the DBSETUP utility by obtaining values for
various parameters from the user.

 [Btrieve]
 tasks=30
 local=Yes
 requester=No
 verbose=0
 chkparms=No

tasks Entry
The tasks entry specifies the maximum (total) number of applications using either the local engine or the
requester. This entry is directly settable by using the DBSETUP utility.

Range : 1..64,000 tasks
Default : 30

local Entry
The local entry specifies whether the local Btrieve engine should be loaded. This engine runs on the
workstation of a user, not a NetWare file server. This entry is directly settable by using the DBSETUP
utility, activated by selecting the CLIENT Engine Usage button.

Range : [Yes | No]
Default : Yes

requester Entry
The requester entry specifies whether the Btrieve requester interface will allow user access to a Btrieve
engine running on a NetWare file server. This entry is directly settable by using the DBSETUP utility,
activated by selecting the REQUESTER Engine Usage button. If you select Yes for this entry, you must also
load the Btrieve for DOS requester (BREQUEST.EXE) before loading Windows.

Range : [Yes | No]
Default : No

verbose Entry
The verbose entry determines if errors encountered during the loading of the Btrieve client engine, or Btrieve
requester will be displayed immediately, or detected when an application attempts to execute a Btrieve
operation. When you set this entry to 1, the Btrieve icon will appear when your application accesses
Btrieve. The possible settings and actions are as follows:

0 Detects an error on an attempt to execute Btrieve operation.
1 Displays an error message immediately.

This entry is not settable by the DBSETUP utility.

Range : 0..1
Default : 0

chkparms Entry
The chkparms entry determines if the input parameters for a Btrieve call will be checked (validated) by the
Btrieve engine every time an engine access occurs. This parameter should be used for debugging only, as it
will cause slight performance degradation on each call. This entry is not settable by the DBSETUP utility.

Range : [Yes | No]
Default : No

Btrieve Client [Btrieve Client] Section

The Btrieve Client Section contains those parameters required by the engine (WBTR32.EXE) in order to set
up internal data structures and values. The section will normally be written by the Database Setup Utility
(DBSETUP) by obtaining values for various parameters from the user.

 [Btrieve Client]
 options=/f:20 /h:60 /l:20 /t:15 /m:512 /u:0
 trnfile=

 desktopicon=No
 SharingOnLocalFiles=SingleEngine
 SharingOnRemoteFiles=MultiEngine
 EnableSharingBias=Yes
 echoargs=No
 trace=No
 tracefile=
 traceops=
 datalist=32
 keylist=32

options Entry
The options entry details the load parameters for the local Btrieve engine. The entry is a sequence of load
parameters of the form /<option>:<value>. All the default options are settable using the DBSETUP utility.

Range : Not Applicable (N/A)
Default : /f:20 /h:60 /l:20 /t:15 /m:512 /u:0

Other options may also be set. These options, /a, /b, /e, /g, /i, /o, and /q are described in the following
paragraphs.

/a option
The /a option controls whether Btrieve keeps a log of all operations executed on the specified files. Btrieve
v6.15 introduces an enhanced log file format. However, for compatibility with existing Btrieve v5.x clients,
Btrieve for Windows v6.15 can also write the pre-v6.x log format. If a log file already exists, the existing
format of the log file overrides any parameter setting. For any log files that do not exist, you can specify the
desired format by setting /a:5 or /a:6 on the options entry. If /a:5 is selected, Btrieve creates a log file in the
format specified by the Btrieve file version. If /a:6 is selected and no log file exists, all log files are created
in the v6.x format.

/b option
The /b option allows you to specify a buffer size that is allocated for temporary use by three different
features: extended get/step, get chunk, and create index operations. The buffer size is specified in KB. The
valid range for this value is 0 to 64,000 KB. The default value is 16KB. For extended get/step operations,
the buffer size must be large enough to hold the largest record in uncompressed format, plus the filter
expression and the field extraction information. For the get chunk operations, the buffer size must be large
enough for the chunk descriptors. For the create index operation, the buffer is only used for autoincrement
indexes, and any size (except 0) is sufficient. For example, to allocate a 4 KB buffer, you would specify
/b:4.

/e option
This option enables transaction durability when your Btrieve application issues an End Transaction
operation. When this option is set, Btrieve will ensure that all updates within a single transaction are
completed before returning the status code. A status code of 0 implies that the transaction was successfully
written to disk.

/g option
The /g option can be configured to specify transaction bundling for system transactions. The format is as
follows:

/g:<bundle limit>:<system transaction time limit>

bundle limit refers to the number of explicit Btrieve transactions or implicit transactions that are combined or
bundled into one system transaction. An explicit transaction involves the use of the Begin and End
Transaction operations; an implicit transaction is a single insert, update, or delete operation.

system transaction time limit refers to the number of milliseconds that elapses while Btrieve collects
operations into a system transaction.

When either the bundle limit or the system transaction time limit is reached (whichever happens first),
Btrieve initiates the writing of the system transaction to the operating system.

The default setting is /g:100:1000 meaning that Btrieve will bundle 100 transactions or wait one second
(1000 milliseconds) before it initiates a write to the operating system. In changing these settings, the
following guidelines should be observed:

If running in SEFS mode, your performance will be better if you set both values high.

If running in MEFS mode, you should set both values low to increase concurrency between Btrieve engines
running on the network.

There is a third factor that can trigger Btrieve to write a system transaction to the operating system; that is, if
the ratio of bundled pages and all memory cache pages exceeds the maximum amount of cache available. The
higher the values you choose for bundle limit and system transaction limit, the more cache you will need in
order to fully take advantage of these settings. You may increase the cache size by specifying a larger value
for the /m option.

/i option
The /i option specifies a drive letter other than the drive where your Btrieve files are located for storing pre-
image files for pre v6.x files. For v6.x formatted files, this drive letter specifies the location of the file
sharing lock files. The file sharing feature of Btrieve for Windows v6.15 creates a lock file to control access
to the Btrieve files from different workstations. The lock file is a temporary file with the same name as the
Btrieve file that is opened, but with a .LCK extension. One lock file is created for each Btrieve file that is
updated when file sharing is enabled.

By default, this lock file resides in the same directory as the actual Btrieve file that it is locking. To redirect
the pre-image and lock files to drive F:, for example, you would specify /i:F. The specified drive must
contain a directory with the same name at each level as the directory containing your Btrieve file.

IMPORTANT: If you are using multi-engine file sharing (MEFS), described below, the lock file drive must
be the same drive for all Btrieve engines and this drive must be one that is accessible to all of the Btrieve
engines on the network.

/o option
The /o option specifies the way Btrieve responds to DOS critical errors, such as "Drive Not Ready". This
option does not require an argument. If you specify the /o option and a DOS critical error occurs during a
Btrieve operation, Btrieve returns a status code, usually Status 2 (I/O Error) or 12 (File not found), to your
application. If you do not specify the /o option, Btrieve routes the error to the standard DOS critical error
handler, which usually results in a DOS error message being written to the screen. You can then either abort
or retry the operation in response to the error.

/q option
The /q option is used in conjunction with the Btrieve create index operation. This option allows you to set an
upper bound on the amount of memory (in KB) that Btrieve will allocate for sort/merge buffers. If an upper
bound value is not set, Btrieve will attempt to allocate as much memory as it needs for sort/merge operations
to complete the create index operation. This could cause conflicts for other applications that may also be
attempting to allocate memory. This is especially true if your application is using the callback function, and
other applications may run while an index is being created on a Btrieve file.

trnfile Entry
The trnfile entry identifies the location (path) of the transaction file used by the local Btrieve engine to
manage transactions for applications on that workstation. If transactions will not be used on a particular
workstation, then this entry may be left blank (NULL). This entry is settable using the DBSETUP utility.
Each workstation should define a unique location for this file. If Btrieve terminates abnormally during a
transaction, then upon reactivation, Btrieve uses this file to determine which incomplete transactions should
be rolled back.

Range : Any valid and existing directory path.
Default : NULL(use default path, the Windows installation directory)

desktopicon Entry
The desktopicon entry informs the local Btrieve engine to display the
icon representing the engine upon the Windows desktop. The icon can
then be accessed by a user. This entry is not settable using the DBSETUP utility. If you set verbose=1 in the
Btrieve section, the Btrieve icon will appear when Btrieve is accessed, regardless of the current desktopicon
setting.

Range : [Yes | No]
Default : No

SharingOnLocalFiles Entry
The SharingOnLocalFiles entry is utilized by the client Btrieve engine to determine if a Btrieve file located
on client disk drives (floppy and hard) may be accessed by other Btrieve engines located on different
workstations. The SingleEngine value indicates only Btrieve clients on this workstation may access local
Btrieve files (SEFS). The MultiEngine value allows Btrieve clients on other workstations in a peer-to-peer
network to access local Btrieve files (MEFS). See Chapter 2 of the Btrieve for Windows Installation and
Operations manual for more information on SEFS and MEFS concepts.

Range : [SingleEngine|MultiEngine]
Default : SingleEngine

SharingOnRemoteFiles Entry
The SharingOnRemoteFiles entry is utilized by the client Btrieve engine to determine if a Btrieve file
located on a file server or on a remote drive in a peer to peer network may be accessed by single or multiple
Btrieve engines. The SingleEngine value indicates the Btrieve files cannot be accessed by other Btrieve
engines, that is, only Btrieve users on this workstation can access remote Btrieve files in a sharing mode
(SEFS). The MultiEngine value allows Btrieve users on other workstations to simultaneously access remote
Btrieve files that are in use by this engine (MEFS). See Chapter 2 of the Btrieve for Windows Installation
and Operations manual for more information on SEFS and MEFS concepts.

Range : [SingleEngine|MultiEngine]
Default : MultiEngine

EnableSharingBias Entry
The EnableSharingBias entry is utilized by the client Btrieve engine to determine if an application is
allowed to override the file sharing modes defined in the BTI.INI file. When this parameter is set to Yes, the
application may specify a bias on the Btrieve OPEN call to override the current configuration setting.

Range : [Yes | No]
Default : Yes

echoargs Entry
The echoargs entry causes the Btrieve client engine to display information before and after each API call.
This information is written to Btrieve's window. The last 30K bytes of output is kept and can be scrolled.
Also, the information can be saved as plain text using the File|Save menu options. The desktopicon entry
must be set to Yes when this option is enabled. This parameter should be used for debugging only.

Range : [Yes | No]
Default : No

tracefile Entry
The tracefile entry enables Btrieve to write trace information for each API call. The information is written
to the file specified. This parameter should be used for debugging only, as it will cause the performance of
Btrieve to degrade. The information is written to the file using the 'forced write' mode to ensure that the data
is written in the event that Btrieve ends or terminates abnormally while running.

Range : Any valid file path
Default : None

trace Entry
The trace entry is used to enable or disable the trace capability. If set to yes, then the tracefile entry should
specify a valid file name. To disable the trace, you simply set trace=No.

Range : [Yes | No]
Default : No

traceops Entry
The traceops entry allows you to specify the set of Btrieve operations that you wish to trace. By default,
Btrieve will write trace information for all Btrieve operations. You can specify the list of operations
separated by blanks or commas, for example:

traceops=0,1,2,3

You can also specify that you want to trace operations that have a lock bias applied. For example, if you
wanted to trace only the Get Equal with single record wait locks, you would enter 105.

Range : N/A
Default: All Btrieve operations

datalist Entry
The datalist entry allows you change the size of the data buffer that is written when the trace is enabled. The
default value is 32 bytes.

Range : 0..64000
Default : 32

keylist Entry
The keylist entry allows you change the size of the key buffer that is written when the trace is enabled. The
default value is 32 bytes.

Range : 0..255
Default : 32

Btrieve Requester [BrequestDPMI] Section

The Btrieve Requester Section will contain those parameters needed by
the Loader and Requester interface (WBTRCALL.DLL) in order to communicate with a Novell NetWare
Server and transfer data between the workstation and the server. Currently, this section is not created or
maintained by any existing utility, this task must be performed by the user.

[BrequestDPMI]
freememory=No

freememory Entry
The freememory entry instructs the requester to allocate and free real-mode memory upon each request. For
any application executing strictly
in a Windows environment, the setting should be No. For those applications running in conventional memory,
a setting of Yes may be appropriate, however, performance will suffer due to the overhead of allocation and
free operations. This entry is not settable using the DBSETUP utility.

Range : [Yes | No]
Default : No

	XILINX Interface Guide
	Introduction
	Purpose
	Features
	Benefits
	Where to Get More Information
	Differences Between This and a Full Version of ACTIVE-CAD

	Installation
	Requirements
	Installing ACTIVE-CAD
	Installing XACT 6
	XACT Variable setting
	How XACT programs are executed
	Windows 95 compatibility
	Installing XACT

	Keylock
	Sentinel driver installation
	Multiple keylocks
	Keylock Utility

	On-Line Documentation
	Acrobat installation
	Navigating documents
	Searching for topics
	On-Line application Help
	Context -sensitive Help

	Getting Help

	Project Manager
	Starting Project Manager
	Structure of the project
	Managing projects
	Creating a new project
	XACTstep6 projects
	Opening existing projects
	Deleting a project
	Copying a project
	Changing Xilinx family

	Hierarchy Browser
	Expanding / collapsing hierarchy
	Starting applications from hierarchy browser
	Push/Pop functionality
	I/O port changes
	Non-project documents

	Design Flow
	Design Entry Tools
	File version checking

	Project Libraries
	System Libraries
	X-BLOX library

	Application Message Log
	Log settings
	Log files

	Schematic Projects vs. Top Level HDL Projects
	Adding Top Level documents
	Functional Simulation of Top Level HDL Projects
	Documents sequence

	Managing Project Documents
	Adding a file
	Removing files
	Adding non-project files
	Drag and drop functionality

	Document Info
	Project Type
	Upgrading Xilinx devices list

	Finding Objects in the design
	Finding schematic symbols
	Finding nets and pins

	Starting Applications from Project Manager
	Archive project option
	Customizing Project Manager
	Technical support numbers
	Bulletin board
	Internet sites
	E-mail support

	Creating Xilinx Schematic
	Naming Conventions
	Reserved Names
	Net Naming Conventions
	Component names
	Naming buses
	Creating a new schematic
	Selecting Libraries
	Xilinx Libraries
	Primitives and Macros
	X-BLOX
	Libraries Guide
	Navigating schematic window
	Placing Symbols
	Placing I/O pins
	Using I/O terminals
	Using PAD symbols
	Placing I/O pins in hierarchical macros

	Drawing nets
	Starting net from pins
	Starting net in empty space
	Ending nets in empty space
	Ending nets with net name
	Built-in net autorouting
	Connecting named nets

	Naming nets
	Adding name to a net
	Changing net name
	Placing net name without wire

	Drawing buses
	Naming buses
	Pin to pin connections

	Placing bus taps
	Naming existing bus taps
	Automatic naming and drawing
	Moving bus taps

	Power and Ground
	Using power nets
	Using Power symbols

	Editing schematic
	Deleting objects
	Moving objects

	Adding Parameters to Symbols, Nets and Pins
	Symbol Parameters
	Net Parameters
	Pin Parameters

	Query
	Importing Viewlogic Schematics
	Procedure for importing ViewLogic projects into ACTIVE-CAD
	Importing schematics and symbols
	Additional information about importing non-schematic macros
	ABEL Macros
	MEM files based macros
	PLD files based macros
	Simulation
	Conversion limitations
	Customizing importing procedure

	Verifying bus connections

	Hierarchy operations
	Schematic hierarchy rules
	Defining hierarchy pins
	Using $FILE parameters
	Saving macro in the library

	Creating new symbols
	New Symbol wizard
	Symbol Editor

	Converting empty symbol to a macro
	Converting a schematic into a macro
	Hierarchical Push/Pop
	Using hierarchy browser
	Deleting, renaming macros in the library
	Using the same macros in multiple projects
	Using user macro library
	Editing hierarchy macros

	Changing pins in hierarchical macros
	Adding/removing pins on the schematic
	Using $FILE links on the schematic macros

	HDL Edi tor
	Usage of HDL Editor
	Creating HDL macro
	Updating HDL macros
	Editing a file
	Syntax check
	Finding errors
	Selecting language, synthesis tool and synthesis options
	Synthesizing macro
	Viewing synthesis LOG
	Language Assistant
	Editing existing templates
	Deleting templates
	Creating user templates

	Using X-BLOX
	What are X-BLOX symbols?
	Placing X-BLOX symbols
	Connecting to X-BLOX symbols
	Single pins
	Bus pins

	X-BLOX buses
	Using X-BLOX in hierarchy macros
	Functional simulation

	Using VHDL
	Requirements
	Using HDL Design Wizard for VHDL
	Quick modifying of port clause
	Managing VHDL libraries
	Managing VHDL libraries for built-in syntax checker
	Top level VHDL projects
	VHDL synthesis options
	Available VHDL Templates
	Using On-Line VHDL Guide

	Using ABEL
	Requirements
	Using Xilinx-ABEL in FPGA and EPLD designs
	Identifiers case-sensitivity
	Module names
	Signal declarations for ABEL macros
	Including Xilinx FPGA Properties
	Including Xilinx EPLD Properties

	Using HDL Design Wizard for ABEL
	Available ABEL Templates
	ABEL designs at the top level
	Creating top level ABEL design
	Using multiple files
	Declaring signals
	FPGA design
	Device declaration
	Assigning device pins

	EPLD design
	Device declaration
	Assigning device pins

	ABEL synthesis options
	FPGA synthesis
	EPLD synthesis

	Using Memory Generator
	Requirements
	Memory definition file
	Creating memory macro
	Placing memory macro on the schematic
	Changing memory macro contents

	Functional Simulation
	Functional simulation methodology
	Starting functional simulation
	Functional simulation with X-BLOX symbols
	Functional simulation with VHDL files
	Functional simulation with ABEL files
	Functional simulation of EPLD designs
	Selecting probes in the schematic
	Selecting probes in the simulator
	Assigning stimulators
	Overriding device pins
	Emulating design modifications
	Saving signals (test vectors)
	Running simulation steps
	Cross-probing with the schematic
	Incremental design changes
	Updating functional simulation
	Simulating tri-state signals
	Simulating bi-directional signals

	Interface to XACT Step
	Loading project into XACT6 system
	Revision control
	Routing design with XACT 6
	Finding DRC errors on the schematic
	Using Hardware Debugger and PROM File Formatter
	Using DOS-based XACT Tools in XACT5 projects

	Timing Simulation
	Timing simulation methodology
	Creating timing simulation netlist
	Starting timing simulation
	Loading test vectors
	Using global reset
	Reviewing timing delays
	Scaling device timing
	Timing violations
	Tracing simulation errors
	Resolving bus conflicts
	Simulating external netlist

	EPLD Design Issues
	Schematic Library Components
	Buffers and Pads
	Input and Output Buffer Connections
	Input Buffers
	Assigning an FOE Line

	Output and 3-State Buffers
	Output Enable Behavior in EPLDs
	Controlling Output Using a PLD Equation

	On-Chip 3-State Multiplexing
	Input Buffers, Clocks, and Global Control Nets
	Use of the IFDX1 Symbol

	Sample Designs and Tutorials
	FLASH Introductory Tutorial
	XCALC Advanced Tutorial
	FIB Timing Simulation Tutorial
	Comparison of Schematic, ABEL and VHDL Design Methodology
	Comparison of the synthesis results

	FIBXBLOX
	FIBVHDL
	FIBABEL
	DACDEMO
	FIFO
	BUS_CTRL
	MULTI
	UART

	Appendix
	Attributes, Constraints, and Carry Logic
	Attributes
	BASE
	BLKNM
	CAP
	CLOCK_OPT
	CMOS
	CONFIG
	DECODE
	DOUBLE
	EQUATE_F and EQUATE_G
	FAST
	FILE
	FOE_OPT
	HBLKNM
	HU_SET
	INIT
	LOC
	LOGIC_OPT
	LOWPWR
	MAP
	MEDFAST and MEDSLOW
	MINIMIZE
	MRINPUT
	Net
	NODELAY
	OPT
	PLD
	PRELOAD_OPT
	REG_OPT
	RES
	RLOC
	RLOC_ORIGIN
	RLOC_RANGE
	TNM
	TSidentifier
	TTL
	UIM_OPT
	USE_RLOC
	U_SET

	Relative Location (RLOC) Constraints
	RLOC Sets
	U_SET
	Set Modifiers
	Xilinx Macros
	LOC Propagation Through Design Flattening
	Summary

	Relationally Placed Macros (RPMs)
	Carry Logic in XC4000 LCAs
	Primitives and Symbols
	Carry Logic Handling in XNFPrep
	Carry Mode Configuration Mnemonics
	Carry Logic Configurations

	List of ACTIVE-CAD File Types
	Hot Keys
	Project Manager
	Schematic Editor
	Symbol Editor
	HDL Editor
	State Editor
	Simulator

	BTI.INI File Settings
	Btrieve for Windows Settings
	Btrieve Engine [Btrieve] Section
	tasks Entry
	local Entry
	requester Entry
	verbose Entry
	chkparms Entry

	Btrieve Client [Btrieve Client] Section
	options Entry
	trnfile Entry
	desktopicon Entry
	SharingOnLocalFiles Entry
	SharingOnRemoteFiles Entry
	EnableSharingBias Entry
	echoargs Entry
	tracefile Entry
	trace Entry
	traceops Entry
	datalist Entry
	keylist Entry

	Btrieve Requester [BrequestDPMI] Section
	freememory Entry

