
Foundation Series 1.5a In-Depth Tutorials — September, 1998 Printed in U.S.A.

Foundation
Series 1.5a
Tutorials

In-Depth Tutorial—
Schematic-Based Designs

In-Depth Tutorial—HDL-
Based Designs

In-Depth Tutorial—
Functional Simulation

In-Depth Tutorial—Design
Implementation

In-Depth Tutorial—Timing
Simulation

In-Depth Tutorial—
Hardware Verification

x

Foundation Series 1.5a In-Depth Tutorials

Xilinx Development System

The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

FPGA Architect, FPGA Foundry, NeoCAD, NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard, TRACE,
XACT, XILINX, XC2064, XC3090, XC4005, XC5210, and XC-DS501 are registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, Alliance Series, AllianceCORE, BITA, CLC, Configurable Logic Cell, Dual
Block, EZTag, FastCLK, FastCONNECT, FastFLASH, FastMap, Foundation, HardWire, LCA, LogiBLOX, Logic
Cell, LogiCORE, LogicProfessor, MicroVia, Plus Logic, PLUSASM, Plustran, P+, PowerGuide, PowerMaze,
SelectI/O, Select-RAM, Select-RAM+, Smartguide, SmartSearch, Smartspec, Spartan, TrueMap, UIM,
VectorMaze, VersaBlock, VersaRing, Virtex, WebLINX, XABEL, XACTstep, XACTstep Advanced, XACTstep
Foundry, XACT-Floorplanner, XACT-Performance, XAM, XAPP, X-BLOX, X-BLOX plus, XChecker, XDM, XDS,
XEPLD, Xilinx Foundation Series, XPP, XSI, and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic
Company and The Programmable Gate Array Company are service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174; 5,329,181;
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021;
5,450,022; 5,453,706; 5,455,525; 5,466,117; 5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707;
5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608;
5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124; 5,517,135; 5,521,835;
5,521,837; 5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018;
5,550,839; 5,550,843; 5,552,722; 5,553,001; 5,559,751; 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528;
5,563,529; 5,563,827; 5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199;
5,581,738; 5,583,450; 5,583,452; 5,592,105; 5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597;
5,608,342; 5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021; 5,617,041; 5,617,327; 5,617,573; 5,623,387;
5,627,480; 5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106; 5,642,058; 5,646,545;
5,646,547; 5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950;
5,657,290; 5,659,484; 5,661,660; 5,661,685; 5,670,896; 5,670,897; 5,672,966; 5,673,198; 5,675,262; 5,675,270;
5,675,589; 5,677,638; 5,682,107; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,056; 5,724,276;
5,694,399; 5,696,454; 5,701,091; 5,701,441; 5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,715,197;
5,717,340; 5,719,506; 5,719,507; 5,724,276; 5,726,484; 5,726,584; Re. 34,363, Re. 34,444, and Re. 34,808. Other
U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown or products described herein
are free from patent infringement or from any other third party right.

R

Foundation Series 1.5a In-Depth Tutorials

Xilinx, Inc. assumes no obligation to correct any errors contained herein or to advise any user of this text of any
correction if such be made. Xilinx, Inc. will not assume any liability for the accuracy or correctness of any engineering
or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-1998 Xilinx, Inc. All Rights Reserved.

Foundation Series 1.5a In-Depth Tutorials

Xilinx Development System

Foundation Series 1.5a In-Depth Tutorials — September, 1998 i

Conventions

Typographical
This manual uses the following conventions. An example illustrates
each convention.

• Courier font indicates messages, prompts, and program files
that the system displays.

speed grade: -100

• Courier bold indicates literal commands that you enter in a
syntactical statement. However, braces “{ }” in Courier bold are
not literal and square brackets “[]” in Courier bold are literal
only in the case of bus specifications, such as bus [7:0].

rpt_del_net=

Courier bold also indicates commands that you select from a
menu or buttons in dialog boxes that you click.

File → Open
Click OK

• Italic font denotes the following items.

• Variables in a syntax statement for which you must supply
values

edif2ngd design_name

• References to other manuals

See the Development System Reference Guide for more informa-
tion.

Foundation Series 1.5a In-Depth Tutorials

ii Xilinx Development System

• Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.

• Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edif2ngd [option_name] design_name

Square brackets also enclose footnotes in tables that are printed
out as hardcopy in DynaText.

• Braces “{ }” enclose a list of items from which you must choose
one or more.

lowpwr = {on|off }

• A vertical bar “|” separates items in a list of choices.

lowpwr = {on|off }

• A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

• A horizontal ellipsis “. . .” indicates that an item can be repeated
one or more times.

allow block block_name loc1 loc2 ... locn;

Foundation Series 1.5a Tutorials — September, 1998 iii

Contents

Chapter 1 In-Depth Tutorial — Schematic-Based Design

Getting Started .. 4-2
Nomenclature... 4-2
Required Software ... 4-2
Installing the Tutorial.. 4-2
Tutorial Project Directories and Files 4-3
Starting the Project Manager ... 4-3
Copying the Tutorial Files (Optional) 4-5

Design Description .. 4-5
The Project Manager... 4-8

Hierarchy Browser ... 4-9
Project Manager Functional Tabs .. 4-10
Message Console Window .. 4-10

Design Entry.. 4-10
Starting the Schematic Editor .. 4-11
Executing Commands.. 4-12

Hotkeys... 4-12
Toolbar Buttons .. 4-12

Manipulating the Screen .. 4-13
Creating a Schematic-Based Macro .. 4-13
Creating the CNT60 Schematic ... 4-16

Opening the Schematic .. 4-16
Connectivity—Hierarchy Connectors.................................. 4-16
Project Libraries.. 4-17
Adding Components to CNT60... 4-18
Correcting Mistakes .. 4-20
Placing the Remaining Components 4-21
Moving Hierarchy Terminals ... 4-21
Drawing Nets .. 4-21
Adding Buses.. 4-22
Adding Bus Taps .. 4-24

iv Xilinx Development System

Foundation Series 1.5a Tutorials

Saving the Schematic ... 4-25
Placing the CNT60 Macro... 4-25

Creating a LogiBLOX Module .. 4-27
Creating a State Machine Module.. 4-29

Opening the State Editor .. 4-30
Adding New States ... 4-32
Adding a Transition... 4-32
Adding a State Action ... 4-33
Adding a State Machine Reset Condition 4-34
Adding a Transition Condition... 4-35
Creating the State Machine Macro 4-36
Placing the STMACH symbol ... 4-36

Creating an HDL-Based Module .. 4-37
Using the HDL Design Wizard and HDL Editor 4-38
Using the Language Assistant .. 4-40
Synthesizing the HDL Code and Creating a Macro 4-42
Adding the HEX2LED Component to the Schematic.......... 4-42

Specifying Device Inputs/Outputs .. 4-43
Hierarchy Push/Pop.. 4-43
Adding Input Pins.. 4-45

Labeling Nets ... 4-46
Assigning Pin Locations... 4-47
Using the 4K Internal Oscillator ... 4-49
Using Global Buffers .. 4-50
Hardware Verification -- Startup and Readback (Optional)...... 4-51
Completing the Schematic ... 4-52

Chapter 2 In-Depth Tutorial — HDL-Based Design

Getting Started .. 5-2
Nomenclature... 5-2
Required Software ... 5-2
Installing the Tutorial.. 5-2
Tutorial Project Directories and Files 5-3
VHDL or Verilog? ... 5-4
Starting the Project Manager ... 5-4
Copying the Tutorial Files .. 5-5

Design Description .. 5-6
The Project Manager... 5-8

Hierarchy Browser ... 5-9
Project Manager Functional Tabs .. 5-9
Message Console Window .. 5-10

Foundation Series 1.5a Tutorials v

Contents

Design Entry.. 5-10
Adding Source Files... 5-10
Correcting HDL errors.. 5-11
Starting the HDL Editor .. 5-12
Creating an HDL-Based Module .. 5-12

Using the HDL Design Wizard and HDL Editor 5-13
Using the Language Assistant .. 5-15
Examining the Top-Level HDL.. 5-17

Creating a LogiBLOX Module .. 5-18
Running the LogiBLOX Module Selector 5-18
Instantiating the LogiBLOX Module in the HDL Code......... 5-21

Synthesizing the Design.. 5-25
The Express Constraints Editor (Foundation Express Only)......... 5-27
Using the Express Constraints Editor (Foundation Express Only) 5-28
Viewing Synthesis Results (Foundation Express Only) 5-32

Chapter 3 In-Depth Tutorial — Functional Simulation

Starting the Logic Simulator .. 6-2
Performing Simulation... 6-2
Adding Signals .. 6-2

Adding Signals Using Probes .. 6-3
Adding Signals Using the Component Selection Window........ 6-5
Deleting a Signal.. 6-7

Adding Stimulus .. 6-8
Stimulating with the Internal Binary Counter............................ 6-9
Stimulating with Keyboard Stimulators 6-10
Stimulating with Custom Formulae .. 6-10
Other Sections of the Stimulator Selector................................ 6-12

Running the Simulation ... 6-13
Saving the Simulation ... 6-16

Chapter 4 In-Depth Tutorial — Design Implementation

Project Management ... 7-1
Starting Implementation .. 7-2

Implementing the Schematic Design 7-2
Implementing the HDL Design ... 7-3

Implementation Options .. 7-5
User Constraints File ... 7-5
Program Option Templates.. 7-6
Optional Targets .. 7-7

Running Implementation — The Flow Engine............................... 7-8

vi Xilinx Development System

Foundation Series 1.5a Tutorials

Viewing Implementation Results ... 7-9
Other Implementation Tools.. 7-11

Chapter 5 In-Depth Tutorial — Timing Simulation

Invoking Timing Simulation ... 8-1
Simulating with Script Files ... 8-2

Creating Script Files — Script Wizard and Script Editor 8-2
Viewing the Script File with the Script Editor 8-10
Running the Simulation from the Script Editor 8-11
Viewing the Printed Output File ... 8-13
Closing the Simulator... 8-13

Chapter 6 In-Depth Tutorial — Hardware Verification

Preparing for the Tutorial .. 9-1
Testing the Design Using a Demonstration Board 9-2

Preparing the Design for Readback... 9-2
Generating a Bitstream .. 9-5
Connecting the Cable .. 9-5

Downloading and Verifying the Bitstream 9-9
Testing the Design .. 9-12
Synchronous Debugging... 9-14

Setting up the Synchronous Debugging Mode 9-14
Specifying Signal Groups... 9-16
Adding Signal Groups to Your Display List 9-20
Reading the Device States .. 9-21
Changing the Signals Groups Radix.. 9-25
Saving and Closing the Waveform Window............................. 9-26

Asynchronous Debugging ... 9-26
Objective for this Section ... 9-26
Setting up the Demonstration Board.. 9-27
Setting up the Asynchronous Debugging Mode....................... 9-28
Capturing the State Machine ... 9-29

Further Reading .. 9-30

Foundation Series 1.5a In-Depth Tutorials — September, 1998 1-1

Chapter 1

In-Depth Tutorial — Schematic-Based Design

This chapter guides you through a typical FPGA schematic-based
design procedure using a design of a runner’s stopwatch called
“Watch”. The design example used in this tutorial demonstrates
many device features, software features, and design flow practices
that you can apply to your own design. The Watch design targets an
XC4000E device; however, all of the principles and flows taught are
applicable to any Xilinx device family, unless otherwise noted.

For an example of how to design with CPLDs, see the online help by
selecting Help → Foundation Help Contents from the Project
Manager. Under Tutorials, select CPLD Design Flows.

In the first part of the tutorial, you will use the Foundation design
entry tools to complete the design. The design is composed of
schematic elements, a state machine, a LogiBLOX component, and an
HDL macro. After the design is successfully entered in the Schematic
Editor, it is ready for functional simulation with the Foundation Logic
Simulator, implementation with the Xilinx Implementation Tools,
timing simulation, and, finally, downloading and hardware
debugging in a Xilinx FPGA on the FPGA Demonstration Board. This
board is not supplied with Foundation. To obtain a board, contact
your local Xilinx sales representative.

These implementation, simulation, and downloading portions of the
tutorial can be found in the subsequent tutorial chapters.

Note: If you use Verilog or VHDL to create an HDL macro, then you
must have Base Express or Foundation Express and a valid license.

Foundation Series 1.5a In-Depth Tutorials

1-2 Xilinx Development System

This chapter includes the following sections.

• “Getting Started”

• “Design Description”

• “The Project Manager”

• “Design Entry”

Getting Started
The following subsections describe the basic requirements for
running the tutorial.

Nomenclature
In this tutorial, the following terms are used:

• “XC4000 family” includes XC4000E, XC4000L, XC4000EX,
XC4000XL, XC4000XLA and XC4000XV devices.

• “Right-click” means click the right mouse button. Unless
specified, all other mouse operations are performed with the left
mouse button.

Throughout this tutorial, file names, project names, and directory
names (paths) are specified in lower case, and the design is referred
to as “Watch”.

Required Software
The Xilinx Foundation Series package, Version 1.5, is required to
perform this tutorial. The design requires that you install the
XC4000E libraries and device files, as well as the XABEL interface.
These options are selected by default in the install program.

Installing the Tutorial
This tutorial assumes that the software is installed in the default
location c:\fndtn\active. If you have installed the software in a
different location, substitute your installation path for
c:\fndtn\active.

In-Depth Tutorial — Schematic-Based Design

Foundation Series 1.5a In-Depth Tutorials 1-3

The tutorial projects are optionally installed (as sample projects) in
the c:\fndtn\active\projects directory when you install the
Foundation Series software. If you have installed the software, but
are not sure whether the tutorial projects were installed, check for
directories named c:\fndtn\active\projects\wtut*. These directories
contain the various tutorial files.

Tutorial Project Directories and Files
During the software installation, the following schematic project
directories are installed.

• c:\fndtn\active\projects\wtut_sc
(incomplete schematic tutorial)

• c:\fndtn\active\projects\watch_sc
(complete schematic tutorial)

The schematic tutorial files are copied into these directories.

The wtut_sc project contains an incomplete copy of the tutorial
design. You will create the remaining files when you perform the
tutorial. As described in a later step, you can copy this project to
another area and perform the tutorial in this new area if desired.

The watch_sc solution project contains the design files for the
completed tutorial, including schematics and the bitstream file.To
conserve disk space, some intermediate files are not provided. Do not
overwrite any files in the solutions directories.

Starting the Project Manager
1. Double click the Foundation Series Project Manager icon on your

desktop or select Start → Programs → Xilinx Foundation
Series → Xilinx Foundation Project Manager from the
Start menu.

Foundation Series 1.5a In-Depth Tutorials

1-4 Xilinx Development System

2. A Getting Started dialog box displays, allowing you to select a
project to open. If you have not opened this tutorial project before
now, click the More Projects... button.

Figure 1-1 Getting Started Dialog Box

3. Browse to the c:\fndtn\active\projects directory in the
Directories list (it should open to this location by default) and
select the wtut_sc project in the Projects list of the Open Project
dialog box. Select Open to open the wtut_sc project.

In-Depth Tutorial — Schematic-Based Design

Foundation Series 1.5a In-Depth Tutorials 1-5

Copying the Tutorial Files (Optional)
You can either work within the wtut_sc directory as it has originally
been installed, or you can make a copy to work on. Perform the
following steps to make a working copy of the tutorial files.
Whenever copying projects in Foundation, it is important to use the
“Copy Project” feature in the Project Manager to ensure that the
project’s directory structure is kept intact.

1. Select File → Copy Project .

2. Under the Destination section, type Mywatch (or a unique name
of your choice) in the Name field.

3. Click OK.

4. Select File → Open Project .

5. Scroll down in the project list and select Mywatch . Click Open.

6. The Mywatch project may contain two UCF files. If this is the
case, select the wtut_sc.ucf file. Select Document → Remove or
press Del to remove the file from the project. Click Yes to
confirm the removal of the file.

This does not delete the file from disk. It only removes it from the
project so that it is not used during compilation. The file still
exists in the project directory on the disk. If you mistakenly
remove a file from a project, select Document → Add to add it
back.

Design Description
Throughout this tutorial, the design is referred to as Watch.

The design used in this tutorial is a hierarchical, schematic-based
design, meaning that the top-level design file is a schematic sheet
which refers to several other lower-level macros. The lower-level
macros are a variety of different types of modules including
schematic-based modules, LogiBLOX modules, state machine
modules, and HDL modules.

The design begins as an unfinished design. Throughout the tutorial,
you will complete the design by creating some of the modules, and
by completing some others from existing files. After the design is
complete, you will simulate it to verify the functionality.

Foundation Series 1.5a In-Depth Tutorials

1-6 Xilinx Development System

Watch is a simple runner’s stopwatch. The completed schematic is
shown in the following figure.

Figure 1-2 Completed Watch Schematic

There are two external inputs and three external outputs in the
completed design. The system clock is an internally generated signal
produced by OSC4, the internal oscillator in the XC4000 devices. The
following list summarizes the inputs and outputs and their functions.

In-Depth Tutorial — Schematic-Based Design

Foundation Series 1.5a In-Depth Tutorials 1-7

Inputs:

• STRTSTOP—Starts and stops the stopwatch. This is an active-low
signal which acts like the start/stop button on a runner’s
stopwatch.

• RESET—Resets the stopwatch to 00.0 after it has been stopped.

Outputs:

• TENSOUT[6:0]—7-bit bus which represents the Tens digit of the
stopwatch value. This bus is in 7-segment display format to be
viewable on the 7-segment LED display on the Xilinx
demonstration board.

• ONESOUT[6:0]—similar to TENSOUT bus above, but represents
the Ones digit of the stopwatch value.

• TENTHSOUT[9:0]—10-bit bus which represents the Tenths digit
of the stopwatch value. This bus is one-hot encoded.

The completed design consists of the following functional blocks.
Most of these blocks do not appear yet on the schematic sheet in the
tutorial project since they will be created during this tutorial.

Functional Blocks

• OSC4

Xilinx Unified Library component which represents the XC4000
on-chip oscillator.

• STMACH_A or STMACH_V

State Machine macro. This module uses the Foundation State
Editor to enter and implement the state machine. One is an ABEL
version; the other is a VHDL version.

• CNT60

Schematic-based module which counts from 0 to 59, decimal.
This macro has two 4-bit outputs, which represent the ‘ones’ and
‘tens’ digits of the decimal values, respectively.

• TENTHS

LogiBLOX 10-bit, one-hot encoded counter. This macro outputs
the ‘tenths’ digit of the watch value as a 10-bit one-hot encoded
value.

Foundation Series 1.5a In-Depth Tutorials

1-8 Xilinx Development System

• HEX2LED

HDL-based macro. This macro decodes the ones and tens digit
values from hexadecimal to 7-segment display format to view on
the FPGA Demonstration Board.

• OUTS1, OUTS2, OUTS3

Schematic-based macros which define the external output pin
assignments for TENSOUT, ONESOUT, and TENTHSOUT
output buses.

• DEBUG_CKT

Schematic-based macro containing the necessary logic to perform
hardware debugging and readback using the Hardware
Debugger.

The Project Manager
The Project Manager controls all aspects of the design flow.You can
access all of the various design entry and design implementation
tools as well as the files and documents associated with your project.
The Project Manager also maintains revision control over multiple
design iterations.

The Project Manager is divided into three main subwindows. To the
left is the Design Hierarchy Browser which displays the project
elements. To the right is a set of tabs, each one opens a separate
functional window. The third window at the bottom of the Project
Manager is the Message Console and shows status messages, errors,
and warnings, and is updated during all project actions. These
windows are discussed in more detail in the following sections.

In-Depth Tutorial — Schematic-Based Design

Foundation Series 1.5a In-Depth Tutorials 1-9

Figure 1-3 Project Manager

Hierarchy Browser
The Hierarchy Browser displays the project source files in a
hierarchical tree. Within this display, you can quickly navigate to any
point in your design.

In the Files tab of the Hierarchy Browser, the design source files and
libraries are displayed. Next to each filename, an icon tells you the
file type (schematic, HDL file, state machine, library, text file). If a file
contains lower levels of hierarchy, the icon has a “+” in the lower
right corner. You can expand the tree by clicking this icon. You can
open a file to edit by simply double-clicking the filename in the
browser.

Foundation Series 1.5a In-Depth Tutorials

1-10 Xilinx Development System

A Versions tab is also available behind the Files tab. This tab displays
a design’s implementation revisions. Because this is a new design
which has not yet been implemented, the Versions tab does not yet
contain any revision information. Versions are discussed in more
detail later in the tutorial during design implementation.

Project Manager Functional Tabs
As mentioned previously, the right-hand side of the Project Manager
contains a series of functional tabs. Briefly, the functions of these tabs
follow.

• Flow—Provides access to tools you use to complete your entire
design, arranged in a flow-chart style to guide you through the
design flow. Status indicators in the lower right corner of each
phase button indicate whether the step has been completed
successfully.

• Contents—Lists contents and date the file selected in the
Hierarchy Browser was last modified.

• Reports—Displays design flow reports.

• Synthesis—Displays all of the HDL macros contained in the
project, and, from this tab, you can update these macros.

You have the option to browse through these tabs to see how the tabs
are updated during the design flow process.

Message Console Window
Errors, warnings, and informational messages are displayed in the
Message Window. Errors are displayed in red, warnings in blue, and
informational messages in black.

Design Entry
In this hierarchical design, you will create various types of macros,
including schematic-based macros, HDL-based macros, state
machine macros, and LogiBLOX macros. You will learn the process
for creating each of these types of macros, and then you will connect
them all together to create the completed Watch design. This tutorial
gives you experience with creating and using each type of design
macro so that you can apply this knowledge to your own design.

In-Depth Tutorial — Schematic-Based Design

Foundation Series 1.5a In-Depth Tutorials 1-11

Starting the Schematic Editor
There are two different ways to open the Schematic Capture tool.

• From the Flow tab, click the Schematic Capture icon in the Design
Entry phase button. This instructs the Schematic Editor to open
the project’s top level schematic sheet.

or,

• Double click the file name WATCH.SCH in the Files tab.

The Schematic Editor opens with the Watch schematic sheet loaded.
The Watch schematic is incomplete at this point. Throughout the
tutorial, you create the components to complete the design. The
unfinished design is shown in the figure below.

Foundation Series 1.5a In-Depth Tutorials

1-12 Xilinx Development System

Figure 1-4 Incomplete Watch Schematic

If you need to stop the tutorial at any time, save your work by
selecting File → Save from the pulldown menus.

Executing Commands
There are three ways to execute commands within the Foundation
tools: pulldown menus, hotkeys, and toolbar buttons. In most cases,
this tutorial instructs you to use the pulldown menus.

Hotkeys

You can use the keyboard to execute various commands. These
“hotkeys” are listed next to the commands within the pulldown
menus. Some of the hotkeys are the function keys, some are single
letters, and some require the Ctrl or Alt keys. You cannot customize
them.

Toolbar Buttons

There are also toolbars that are located beneath the pulldown menus
and to the left of the main Schematic Editor window. Hold your
mouse over the buttons to see their function.

In-Depth Tutorial — Schematic-Based Design

Foundation Series 1.5a In-Depth Tutorials 1-13

Figure 1-5 Schematic Editor

Manipulating the Screen
Under the Display pulldown menu is a series of commands that
modify the viewing area of the Schematic Editor window. Zoom in
the schematic to comfortably view it.

Creating a Schematic-Based Macro
A schematic-based macro consists of a symbol and an underlying
schematic. You can create either the underlying schematic or the
symbol first, and the tools can automatically generate the
corresponding symbol or schematic file, respectively. In the following
steps, you create a schematic-based macro by first creating the
symbol using the Symbol Wizard. A template schematic file is then
created by the tools, and you complete the schematic with the
appropriate logic. The created macro is then automatically added to
the project’s library.

Foundation Series 1.5a In-Depth Tutorials

1-14 Xilinx Development System

The macro you will create is called CNT60. CNT60 is a binary counter
with two 4-bit outputs, which represent the Ones and Tens values of
the stopwatch. The counter counts from 0 to 59, decimal.

1. Select Hierarchy → New Symbol Wizard . The Design Wizard
opens.

The Design Wizard guides you through the process of creating a
macro symbol. It also creates a “skeleton” file based on the pins
you define and the type of macro (schematic, ABEL, VHDL, or
state machine). The State Editor and the HDL Editor (described
later in this tutorial) also use the Design Wizard.

2. Click Next .

3. In the Symbol Name field, type CNT60. In the Contents section,
select Schematic . This tells the tool that the underlying file for
the symbol is a schematic.

Figure 1-6 Symbol Wizard - Contents Page

4. Click Next .

5. Click New to create a new pin. In the Name field, type CE. Check
that the direction of the pin is set to Input .

6. Repeat Step 5 for input pins CLK and CLR.

In-Depth Tutorial — Schematic-Based Design

Foundation Series 1.5a In-Depth Tutorials 1-15

7. Repeat Step 5 for output bus pins LSBSEC[3:0] and MSBSEC[3:0].
To create a bus pin, type the name of the bus in the Name field
(that is, LSBSEC), and then use the up/down arrows in the Bus
field to set the bounds of the bus (that is, 3:0). Check that the
Direction of the pin is set to Output.

Figure 1-7 Symbol Wizard - Ports Page

8. Click Next .

Note: In the Comments section, you can type text that appears on the
symbol when it is placed. You can also define a longer comment that
only appears in the SC Symbols window when you place
components.

9. Click Next and then click Finish .

The symbol is created and placed in the project library and can be
accessed from the SC Symbols toolbox. The Symbol Wizard
automatically creates and opens a schematic sheet with I/O
terminals corresponding to the defined symbol pins.

Note: If the schematic is not automatically created, the most likely
cause is that Empty was selected in step 4. Repeat steps 1-9, and click
Yes or OK when prompted to overwrite the existing symbol.

Foundation Series 1.5a In-Depth Tutorials

1-16 Xilinx Development System

Creating the CNT60 Schematic
You have now created the symbol for CNT60 with the help of the
Symbol Wizard. The next step is to create the underlying
corresponding schematic for this macro. You can then reference this
macro symbol by placing it on a schematic sheet.

Opening the Schematic

1. If the CNT60 schematic is not open, select File → Open. The
Open Sheet dialog box opens. Click Browse , select cnt60.sch
from the files list, then click OK.

2. Zoom in or out until all of the Hierarchy Connectors are clearly
visible. The hierarchy connectors represent connections between
this schematic sheet and the pins of the corresponding symbol.

Figure 1-8 CNT60 Schematic Hierarchy Connectors

Connectivity—Hierarchy Connectors

Hierarchy Connectors logically connect the CNT60 symbol and its
underlying schematic. The name of each pin on the symbol must
have a corresponding connector in the underlying schematic.

In-Depth Tutorial — Schematic-Based Design

Foundation Series 1.5a In-Depth Tutorials 1-17

The Symbol Wizard automatically places hierarchy connectors on the
schematic. If you need to add hierarchy connectors manually, you can
use the Hierarchy Connector icon in the vertical toolbar.

When you save a macro, the Schematic Editor checks the hierarchy
connectors against the corresponding symbol. If there is a
discrepancy, you can let the software update the symbol
automatically, or you can modify the symbol manually. Hierarchy
connectors should only be used to connect signals between levels of
hierarchy. Never use hierarchy connectors on top-level schematic
sheets.

Project Libraries

When you create a new project in Foundation, three libraries are
automatically added to the project: the appropriate device family
library based on the target family you have chosen (for example,
xc4000e), the project library (with the same name as the project), and
the SIMPRIMS library (for simulation). All libraries which are part of
the project are listed in the Files tab of the Project Manager. You can
double click on any of these libraries to see the contents of the library.

Figure 1-9 Project Libraries

The device family library (XC4000E for this project) contains all of the
Xilinx Unified Library components for the given family. A complete
description of all of these components can be found in the DynaText
Xilinx Libraries Guide.

The project library (WTUT_SC for this project) is a writable library
containing user-created macros. Any macro you create in this project
is automatically placed in this library.

Foundation Series 1.5a In-Depth Tutorials

1-18 Xilinx Development System

Additionally, you can copy macros from other libraries into this
project library and vice versa using the Schematic Symbols Library
Manager which you can open with the Tools → Utilities menu
in the Project Manager.

To facilitate simulation with the Foundation Logic Simulator, the
SIMPRIMS is added to the project. This library contains the
simulation models for the Xilinx devices.

You can add more libraries to the project by choosing File →
Project Libraries from the Project Manager. After you add a
library to the project, you can use any component from that library in
the current project.

Adding Components to CNT60

Components from all of the libraries (except SIMPRIMS) for the given
project are available from the SC Symbols toolbox to place on the
schematic. The available components listed in this toolbox are
arranged alphabetically within each library.

1. From the menu bar, select Mode→ Symbols or click the Symbols
Toolbox button in the vertical toolbar on the left side of the
Schematic Editor.

This opens the SC Symbols window and displays the libraries
and their corresponding components.

In-Depth Tutorial — Schematic-Based Design

Foundation Series 1.5a In-Depth Tutorials 1-19

Figure 1-10 SC Symbols Toolbox

2. The first component you will place is an AND2, a 2-input AND
gate. You can select this component by either scrolling down the
list and selecting it or by typing AND2 in the bottom of the SC
Symbols Window. Then move the mouse back into the schematic
window.

In the SC Symbols window, when the AND2 component is
selected, a description of the component appears in the bottom of
the window.

3. Move the symbol outline to the location shown in the following
figure and click the left mouse button to place the object.

Foundation Series 1.5a In-Depth Tutorials

1-20 Xilinx Development System

Figure 1-11 Completed CNT60 Schematic

Note: The preceding schematic illustrates the completed CNT
schematic. Use this figure as a reference for drawing nets and buses
in the following subsections.

Correcting Mistakes

If you make a mistake when placing a component, you can easily
move or delete the component.

1. Press the Esc key on the keyboard to exit the Symbols Mode.

2. Select the component you want to move or delete. Make sure that
no other components are selected (clicking on a blank area of the
schematic deselects everything).

3. Click and drag to correctly place the component, or press the
Del key on the keyboard or the Cut icon in the toolbar to delete
the component.

In-Depth Tutorial — Schematic-Based Design

Foundation Series 1.5a In-Depth Tutorials 1-21

Placing the Remaining Components

Follow the steps listed previously in the “Adding Components to
CNT60” section to place the CD4CE, OR2, CB4RE, INV, and AND4
components on the schematic sheet as shown in the “Completed
CNT60 Schematic” figure. For a detailed description of the
functionality of each of these components, refer to the Xilinx Libraries
Guide.

Moving Hierarchy Terminals

To make the schematic easier to draw and clearer to read, move some
of the hierarchy connectors which were automatically created by the
Symbol Wizard. Follow these steps to relocate the hierarchy
connectors as shown in the “Completed CNT60 Schematic” figure.

1. With the mouse cursor in point/select mode, select the CLR
hierarchy connector, and drag it to the lower left area of the
schematic sheet. If the mouse cursor is not in point/select mode,
Press the Esc key on the keyboard to get into this mode.

2. To move the bus hierarchy terminal MSBSEC[3:0], select and drag
an area surrounding the entire bus hierarchy terminal and label
it, so that both the bus and the label are highlighted in red. With
the bus and label highlighted, click on the terminal again, and
drag the entire unit down to the lower right area of the schematic
sheet. Release the mouse to place the terminal, and then click
anywhere else on the schematic sheet to deselect the bus and
label.

Drawing Nets

You use the Draw Wires icon in the vertical toolbar to draw wires
(also called nets) between the various components on the schematic.
Use Nets to physically connect single bits together.

Signals can also logically be connected by naming multiple segments
identically. In this case, the nets do not need to be physically
connected on the schematic to make the logical connection. In the
CNT60 schematic, you will draw nets to connect the components
together. Do not yet worry about drawing the nets for the LSBSEC
and MSBSEC buses. These nets will be drawn in the next section.

Follow these steps to draw a net between the AND2 and the CB4RE
components on the CNT60 schematic.

Foundation Series 1.5a In-Depth Tutorials

1-22 Xilinx Development System

1. Click the Draw Wires icon in the vertical toolbar.

2. Click the source symbol pin (output pin of the AND2), then click
on the destination pin (CE pin on the CB4RE). The net will
automatically be drawn between the two pins.

Note: You can specify the shape of the net by moving the mouse in
the direction you want to draw the net and then single-clicking to
create a 90-degree bend in the wire.

Draw the nets to connect the remaining components as shown in the
“Completed CNT60 Schematic” figure. To draw a net between an
already existing net and a pin, click once on the component pin and
once on the existing net. A junction point will be drawn on the
existing net.

You should now have all the nets drawn except those connected to
the LSBSEC and MSBSEC buses. You will draw these in the next
section.

Adding Buses

Sometimes it is convenient to draw a set of signals as a bus rather
than as several separate wires. You have the option to group signals
in the form of a bus and “tap” this bus off to use each signal
individually. In this CNT60 schematic, you will create two buses,
each comprised of the 4 output bits of each counter. These buses will
be named LSBSEC[3:0] and MSBSEC[3:0], and they will also be
connected to hierarchy connectors to connect them to the CNT60
symbol.

Add buses to the schematic as follows.

1. Select Mode→ Draw Buses or click the Draw Buses button in the
vertical toolbar to get into the Draw Buses mode.

2. The CNT60 schematic has some bus “stubs” connected to
Hierarchy Connectors which represent the symbol pins on the
CNT60 macro symbol as defined with the Symbol Wizard.

In-Depth Tutorial — Schematic-Based Design

Foundation Series 1.5a In-Depth Tutorials 1-23

Click the end of the LSBSEC[3:0] stub, then move the mouse to a
new position. Click to make a corner in the bus.

3. Terminate the bus by either double clicking with the left mouse
button, or single-clicking with the right mouse button. This opens
the Add Bus Terminal/Label dialog box where you can define the
bus name, width, and the type of terminal you want to use.

4. In the Add Bus Terminal/Label dialog box, change the Terminal
Marker type to None by choosing this selection from the
pulldown menu. This sets the type of terminal for the point
where you are terminating the bus. Do not change any of the
other settings. Click Bus End (the bus name and width were
defined with the Symbol Wizard, so it is unnecessary to redo this
here).

Figure 1-12 Creating Bus Ends

5. Repeat Steps 2 through 4 for the MSBSEC[3:0] bus.

6. If you make a mistake, press the Esc key on the keyboard to exit
the Draw Buses mode. Then click the bus you want to delete so
that it is highlighted. Press Del to remove the bus.

Foundation Series 1.5a In-Depth Tutorials

1-24 Xilinx Development System

7. After adding the two buses, press Esc or right-click to exit the
Draw Buses mode.

Adding Bus Taps

Next, you add nets to attach the appropriate pins from the CB4RE
and CD4CE counters to the buses. Use Bus Taps to tap off a single bit
of a bus and connect it to another component. The Schematic Capture
tool can automatically name the bus taps incrementally as they are
drawn.

You have the option to enlarge the view of the schematic to make it
easier to draw the nets.

1. Select Mode→ Draw Bus Taps or click the Draw Bus Taps button
in the vertical toolbar. The cursor changes, indicating that you are
now in Draw Bus Taps mode.

2. Click the LSBSEC[3:0] bus label.

The status bar at the bottom of the window displays the message
Expand Bus Tap: LSBSEC3 . This tells you that the next bus tap
drawn will be labeled LSBSEC3.

Note: The default is to start at 3 and decrement as bus taps are
drawn. You can use the up and down arrow keys to change which
bus bit will be tapped first.

3. Click the Q3 output pin of the CD4CE component to draw the
bus tap. The net is automatically drawn and labeled. The status
bar now reads Expand Bus Tap: LSBSEC2 .

4. Click next on each of the other output pins of the CD4CE
component. The bus taps will be drawn and labeled
incrementally.

Note: If the bits are not automatically being labeled incrementally,
check that you clicked the bus name (label) before clicking the
counter output pins.

Note: If the nets appear disconnected, try selecting Display →
Redraw to refresh the screen.

In-Depth Tutorial — Schematic-Based Design

Foundation Series 1.5a In-Depth Tutorials 1-25

If there is an error with the labeling of the bus taps, double click
the bus tap net to edit the label.

5. Repeat Steps 1 through 4 for the MSBSEC[3:0] bus.

6. Press Esc twice or right-click to exit the Draw Bus Taps mode.

7. Complete the schematic by drawing the nets to connect the
MSBSEC bus taps to the INV and AND4 components. If
necessary, refer to the “Drawing Nets” section for guidance.

8. Compare your CNT60 schematic again with the “Completed
CNT60 Schematic” figure to ensure that all connections are
properly made.

Saving the Schematic

The CNT60 schematic is now complete.

Save the schematic by selecting File → Save or clicking the Save
icon in the horizontal toolbar.

All errors, warnings, and informational messages are displayed in the
Message Window in the Project Manager. If any errors are issued,
resolve them and save the schematic again.

Placing the CNT60 Macro

So far, you have created the CNT60 macro. The next step is to place
this macro on the top-level Watch schematic sheet, where it may then
be connected to other components in the design.

1. Open the Watch schematic sheet. If the Watch schematic is
already open, you will see a tab at the bottom of the Schematic
Capture tool where you can select that sheet.

2. If the Watch schematic is not open, select File → Open, select
the Watch sheet, and click OK.

3. Open the SC Symbols Toolbox to display a list of all the available
design components. As mentioned before, you can select the
Symbols Toolbox icon to open the SC Symbols Toolbox.

Foundation Series 1.5a In-Depth Tutorials

1-26 Xilinx Development System

4. Near the top of the SC Symbols Toolbox, there is a header with
the name of the project representing the current project library.
Beneath this, find the newly created CNT60 macro in this list.
Select this component.

5. Place the CNT60 macro as shown below.

Figure 1-13 Placing the CNT60 Macro

6. Press Esc to exit the Symbols mode. The cursor now returns to
the standard “point and select” mode.

Notice that the SC Symbols window remains open. With this
window open, you can quickly place additional symbols without
having to click on the Symbols Toolbox icon again. If you want to
close the SC Symbols window, click the ‘-’ button in the upper left
corner of the window.

7. Do not yet worry about connecting nets to the pins of the CNT60
symbol. You will do this later in the tutorial after you add the
other components to the Watch schematic.

In-Depth Tutorial — Schematic-Based Design

Foundation Series 1.5a In-Depth Tutorials 1-27

Creating a LogiBLOX Module
LogiBLOX is a graphical interactive design tool that you use to create
high-level modules such as counters, shift registers, RAM, and
multiplexers. You can customize and pre-optimize the modules to
take advantage of the inherent architectural features of the Xilinx
FPGA architectures, such as Fast Carry Logic for arithmetic functions
and on-chip RAM for dual-port and synchronous RAM.

In this design, you create a LogiBLOX module called Tenths. Tenths is
a 10-bit one-hot encoded counter. It counts the tenths digit of the
stopwatch’s time value. To better see the digit when it is downloaded
on the FPGA Demonstration Board, the encoding is set to one-hot.
The series of LED lights displays the Tenths digit, where one light is
on for each count of the tenths digit.

You use the LogiBLOX Module Selector GUI to select the type of
module you want to create, as well as the specific features of the
module. You may invoke this GUI from either the Project Manager,
the Schematic Editor, or the HDL Editor. The operation of the tool is
the same regardless of where you invoke it.

1. From within the Schematic Editor, select Options → LogiBLOX .

2. Fill in the Logiblox Module Selector with the following settings:

• Module Name: Tenths

Defines the name of the module.

• Module Type: Counters

Defines the type of module.

• Bus Width: 10

Defines the width of the data bus. You either choose from the
pulldown menu, or type in a value.

• Operation: Up

Defines how the counter will operate. This field is dependent
on the type of module selected.

• Style: Maximum Speed

Defines the type of optimization strategy for the module.
This dictates how the layout of the module is defined.

Foundation Series 1.5a In-Depth Tutorials

1-28 Xilinx Development System

• Encoding: One Hot

Defines the register encoding for the module.

• Async Val: 0000000001

Defines the value of the module on power-up and reset.

3. “Check” or “uncheck” the appropriate boxes on the module
diagram so that only the following pins are used.

Q_OUT, Clock Enable, Async Control, Terminal Count

Figure 1-14 LogiBLOX Module Selector

4. Click OK. The module is created and automatically added to the
project library. Additionally, it will be automatically attached to
the cursor to immediately place on the schematic.

In-Depth Tutorial — Schematic-Based Design

Foundation Series 1.5a In-Depth Tutorials 1-29

Note: If you do not want to place the symbol at this time, you can
press the Esc key on the keyboard to get out of the Place Symbol
mode. You can then select it at any time from the SC Symbols Toolbox
to place on the schematic.

5. Place the newly created Tenths component on the Watch
schematic sheet, as shown below. You will connect this symbol to
the rest of the schematic later in the tutorial. The symbol is
labeled “L1” on the schematic sheet.

Figure 1-15 Placing the Logiblox TENTHS component

6. Save the schematic by selecting File → Save . Close the Sche-
matic Editor.

Creating a State Machine Module
With the Foundation State Editor, you graphically create finite state
machines. You draw states, inputs/outputs, and state transition
conditions on the diagram using a simple windows GUI. Transition
conditions and state actions are typed into the diagram in
appropriate VHDL, Verilog, or ABEL syntax. The State Editor then
synthesizes the diagram into either VHDL, Verilog or ABEL code.
The resulting HDL file is finally synthesized to create a netlist and/or
macro for you to place on a schematic sheet.

Foundation Series 1.5a In-Depth Tutorials

1-30 Xilinx Development System

For this tutorial, a partially complete state machine diagram is
provided. In the next section, you complete the diagram and
synthesize the module into a macro to place on the Watch schematic.
Both a VHDL and an ABEL version of the State Machine diagram
have been provided for you.

If you have a Foundation Express package, you can use either the VHDL or
ABEL version. If you have a Foundation Standard or a Foundation Base
package, then you must use the ABEL version of the diagram.

Opening the State Editor

To invoke the State Editor, click the State Editor button in the Flow
tab of the Project Manager.

A dialog box prompts you to select a document. Click Existing
Document , click OK, and then select STMACH_V.ASF (VHDL) or
STMACH_A.ASF (ABEL) to open the partially completed stopwatch
state machine.

The unfinished State Machine diagram is shown below.

In-Depth Tutorial — Schematic-Based Design

Foundation Series 1.5a In-Depth Tutorials 1-31

Figure 1-16 Incomplete State Machine Diagram

• The circles represent the various states.

• The purple underlined expressions are the transition conditions,
defining how you move between states.

• The boxes containing expressions attached to each state are
output actions for each state, defining how the outputs behave in
each state.

In the State Machine diagrams, the transition conditions and the state
actions are written in proper HDL syntax, either VHDL or ABEL.

In the following section, you add the remaining states, transitions,
actions, and also a reset condition to complete the state machine.

Foundation Series 1.5a In-Depth Tutorials

1-32 Xilinx Development System

Adding New States

Complete the state machine by adding a new state called CLEAR.

1. Click the State icon in the vertical toolbar.

The state bubble is now attached to the cursor.

2. Place the new state on the left-hand side of the diagram as shown
below. Click the mouse to place the state bubble.

3. The state is given a default name, in this case S1. Double click the
S1 in the state bubble, and change the name of the state by typing
CLEAR. The name of the state is for your use only; it does not
affect the synthesis, and so you can name it whatever you want.

Figure 1-17 Adding the CLEAR State

You can change the shape of the state bubble by clicking the bubble
and dragging in the direction to “stretch” the bubble.

Adding a Transition

A transition defines the movement between states of the state
machine. Transitions are represented by arrows in the State Editor.
You will be adding a transition from the CLEAR state to the ZERO
state in the following steps. Because this transition is unconditional,
there is no Transition Condition associated with it.

1. Click the Transition icon in the vertical toolbar.

In-Depth Tutorial — Schematic-Based Design

Foundation Series 1.5a In-Depth Tutorials 1-33

2. Click first on the CLEAR state, then on the ZERO state to draw
the transition arrow. The arrow’s shape can be manipulated by
clicking it and then dragging the mouse.

Figure 1-18 Adding State Transition

Adding a State Action

A State Action dictates how the outputs should behave in a given
state. There are three types of state actions: Entry Action, State
Action, and Exit Action. These determine if the outputs should act
upon entry to, existence in, or exit from a given state, respectively.

You will add two state actions to the CLEAR state, one to drive the
CLKOUT output to 0, and one to drive the RST output to 1.

1. Click the State Action icon in the vertical toolbar.

2. Move the mouse over the diagram so that the small round ball at
the end of the pointer is over the CLEAR state. After you are in
this position, click the mouse to place the State Action box.

3. When a cursor appears, type the following state action:

• For ABEL:

clkout = 0;

rst = 1;

• For VHDL:

clkout <= ‘0’;

rst <= ‘1’;

Foundation Series 1.5a In-Depth Tutorials

1-34 Xilinx Development System

4. Click in an empty space in the diagram to exit out of state action
entry mode. The State Action should now appear in a black box
next to the CLEAR state.

You have the option to click and drag the State Action to move it.

Figure 1-19 Adding State Actions

Adding a State Machine Reset Condition

Using the State Machine Reset, you specify a reset condition for the
State Machine. The state machine initializes to this specified state and
enters the specified state whenever the reset condition is met. In this
design, you add a Reset condition which sends the state machine to
the CLEAR state whenever the RESET signal is asserted.

1. Click the Reset icon in the vertical toolbar.

2. Place the Reset triangle onto the diagram near the CLEAR state,
as shown in the diagram below.

3. The cursor is automatically attached to the transition arrow for
this Reset. Move the cursor to the CLEAR state, and click the state
bubble.

Figure 1-20 Adding Reset

In-Depth Tutorial — Schematic-Based Design

Foundation Series 1.5a In-Depth Tutorials 1-35

Adding a Transition Condition

Add the Transition Condition to the Reset. Transition Conditions are
applied to all transitions, not only Reset transitions, in the same way.
Transition Conditions are attached to the transition arrows, and
describe the required condition for the movement between states.

Add a transition condition which tells the state machine to reset to
the CLEAR state whenever the signal RESET is high.

1. Click the Condition icon in the vertical toolbar.

2. Click the transition arrow which was drawn between the Reset
triangle and the CLEAR state.

3. When the cursor appears, type in the following condition:

• For ABEL:

reset

• For VHDL:

reset = ‘1’

4. Click in an empty space in the diagram to exit the Draw
Condition mode. The condition should now appear underlined
and in purple text.

Figure 1-21 Adding Reset Transition Condition

5. Save your changes by selecting File → Save .

Foundation Series 1.5a In-Depth Tutorials

1-36 Xilinx Development System

Creating the State Machine Macro

You will now synthesize the state machine and a macro will be
created that you can place on the Watch schematic. The macro symbol
will automatically be added to the project library. The synthesis
process encompasses the creation of the HDL code from the state
machine diagram and the synthesis of the HDL code by either the
Foundation Express (VHDL) or XABEL (ABEL) compiler.
Additionally, you have the option to use the State Editor to create a
symbol for the state machine which you can place on the schematic.

1. Select Project → Create Macro . This synthesizes the design
as well as creates the macro symbol and adds the symbol to the
SC Symbols toolbox.

2. To view the HDL code which the State Editor produced, select
Tools → HDL Editor .

3. Close the State Editor by clicking the X in the upper right corner
of the window.

Placing the STMACH symbol

You can now place the STMACH state machine macro on the Watch
schematic. If it is not already opened, open the Schematic Editor.
Open the SC Symbols Toolbox to view the list of available library
components. You should now be able to locate the STMACH_A or
STMACH_V macro in this list. (If the SC Symbols Toolbox was
already open, and you do not see the STMACH macro, select File
→ Update Libraries .) Select the appropriate symbol, and add it to
the Watch schematic as shown below. Do not worry about drawing
the wires to connect this symbol. You will connect the entire sche-
matic later in the tutorial.

In-Depth Tutorial — Schematic-Based Design

Foundation Series 1.5a In-Depth Tutorials 1-37

Figure 1-22 Placing the State Machine Macro

Save the schematic.

Creating an HDL-Based Module
With Foundation you can create modules from HDL code. The HDL
code is synthesized by either the Express compiler (for VHDL or
Verilog), or the XABEL compiler (for ABEL), and a symbol is
generated which you can place on the schematic.

Note: If you use Verilog or VHDL to create an HDL macro, then you
must have Base Express or Foundation Express and a valid license.

You will create an HDL module from scratch. This macro serves to
convert the two 4-bit outputs of the CNT60 module into 7-segment
LED display format.

Foundation Series 1.5a In-Depth Tutorials

1-38 Xilinx Development System

Using the HDL Design Wizard and HDL Editor

The HDL Wizard is very similar to the Symbol Wizard that you used
to create the CNT60 macro earlier.You enter the name and ports of the
component and the HDL Wizard creates a “skeleton” HDL file which
you can complete with the remainder of your code.

1. From the Flow tab in the Project Manager, click the HDL Editor
button.

2. A dialog box opens, asking if you want to create an empty HDL
file, select an existing HDL file, or use the HDL Wizard to create a
new file. Click the radio button next to Use HDL Design Wizard
and click OK.

3. Follow the instructions from the Wizard. When you are
prompted for a preferred HDL language, choose one.

Note: You must have a Base Express or Foundation Express package
in order to use VHDL or Verilog.

4. When you are prompted for a file name, type HEX2LED and click
Next .

5. The HEX2LED component will have a 4-bit input port named
HEX, and a 7-bit output port named LED. To enter these ports,
click the New button in the Ports dialog box. Select Input as the
direction and type HEX in the Name field. Then, click the arrow
next to the Bus field to select 3:0 , which is the width of the bus.
In the Name field, you should now see HEX[3:0], and a
corresponding pin should appear on the symbol diagram on the
left.

In-Depth Tutorial — Schematic-Based Design

Foundation Series 1.5a In-Depth Tutorials 1-39

Figure 1-23 HDL Wizard

6. Repeat the previous step for the LED[6:0] output bus. Be sure to
set the direction to Output .

If you use ABEL, set the outputs to combinatorial instead of the
default (registered). To set the outputs, make sure the LED[6:0]
pin is highlighted and click the Advanced ... button. In the
Advanced Port Settings dialog box, click the radio button next to
Combinatorial.

7. Click Finish to complete the Wizard session. A “skeleton” HDL
file now appears in the HDL Editor.

Foundation Series 1.5a In-Depth Tutorials

1-40 Xilinx Development System

Figure 1-24 Skeleton HDL File

In the HDL Editor, the ports are already declared in the HDL file, and
some of the basic file structure is already in place. Keywords are
printed in red, comments in green, and values are gray. This color-
coding enhances readability and recognition of typographical errors.

Using the Language Assistant

Use the templates from the Language Assistant for commonly used
HDL constructs, as well as synthesis templates for commonly used
logic components such as counters, D flip-flops, multiplexers, and
global buffers. You can add your own templates to the Language
Assistant for components or constructs you use often.

1. To invoke the Language Assistant, select Tools → Language
Assistant from the HDL Editor pulldown menu.

In-Depth Tutorial — Schematic-Based Design

Foundation Series 1.5a In-Depth Tutorials 1-41

2. The Language Assistant is divided into three sections: Language
Templates, Synthesis Templates and User Templates. To expand
the view of any of these sections, click the ‘+’ next to the topic.
Click any of the listed templates to view the template in the right
hand pane.

3. Use the template called HEX2LED Converter located under the
Synthesis Templates heading. Locate this template, preview it in
the right hand pane by clicking the template. This template
provides source code to convert a 4-bit value to 7-segment LED
display format.

Figure 1-25 HDL Language Assistant

4. Before adding this template to your HDL file, be sure that the
cursor in the HDL Editor is positioned below the line with the
comments “<<enter your statements here>>” for VHDL. For
Verilog, enter code after the “// Add your code here” line. For
ABEL, add the template below the line “<<add your equations
here>>”. When you use the template, the code is placed
wherever the cursor is currently positioned in the HDL Editor.

5. To add the HEX2LED Converter template code, click the Use
button in the Language Assistant while the HEX2LED Converter
template is selected. The code is automatically placed in the HDL
file.

6. Close the Language Assistant by clicking the X in the upper right
corner of the window.

Foundation Series 1.5a In-Depth Tutorials

1-42 Xilinx Development System

7. (Verilog only) After the “//add your declarations here”
statement and before the HEX2LED converter that you just
added, add the following line of code to the HDL file to allow an
assignment.

reg LED;

8. You now have complete and functional HDL code and can check
the syntax using Synthesis → Check Syntax .

9. After you successfully complete the syntax check, save the file by
selecting File → Save from the HDL Editor.

Synthesizing the HDL Code and Creating a Macro

Synthesize the code and create a macro symbol which may be placed
on the schematic.

1. From within the HDL Editor, select Project → Create Macro .

The code is synthesized, and a symbol is created and placed in
the project library.

2. Close the HDL Editor by clicking the X in the upper right corner
of the window.

Adding the HEX2LED Component to the Schematic

You are now ready to place the HEX2LED macro on the Watch
schematic. Open the Schematic Editor if it is not already open. Open
the SC Symbols Toolbox (refer to the “Adding Components to
CNT60” section) to view the list of available library components. You
should now be able to locate the HEX2LED macro in this list. Select it,
and add it to the Watch schematic as shown below.

This component will be placed on the Watch schematic sheet in two
separate instances. To duplicate the component in the schematic, click
the left mouse button while the pointer is on the placed symbol, and
then click again to place the duplicate symbol.

Note: The Symbols Toolbox icon must still be depressed on the
vertical toolbar to enable this feature to automatically duplicate a
symbol.

Again, do not worry about drawing the wires and buses to connect
this macro. You will connect the entire schematic later in the tutorial.

In-Depth Tutorial — Schematic-Based Design

Foundation Series 1.5a In-Depth Tutorials 1-43

Figure 1-26 Placing the HEX2LED Component

Specifying Device Inputs/Outputs
When specifying device I/O on a schematic sheet, use components
from the Xilinx Unified Library to represent the input/output pads
and buffers in the device. The XC4000E library, which is attached to
this Foundation project, contains primitive components for these,
such as IPAD, OPAD, IBUF, OBUF, and IOPAD. You can place I/O
components on any level of hierarchy in a Foundation schematic.
However, it is recommended that the pad and the buffer (that is,
IPAD/IBUF) reside on the same level of hierarchy. In other words, do
not split up the pad and the buffer between levels of hierarchy.

Hierarchy Push/Pop

Descend into a lower-level of hierarchy to view the underlying file.
You will be pushing down into the OUTS1 macro, which is a
schematic-based user-created macro.

1. To push down into OUTS1, click the Hierarchy Push/Pop button.
The mouse cursor changes to the letter “H”. Double click the
OUTS1 symbol.

Foundation Series 1.5a In-Depth Tutorials

1-44 Xilinx Development System

In the OUTS1 schematic, you see a series of output buffers
(OBUF) and output pads (OPAD). These represent output pins on
the XC4000E device. Each of these pads has a LOC=P__ attribute
attached to them. This attribute assigns each of the pins to a
particular pin on the target device. You will add more pins with
LOC attributes in the next section.

Figure 1-27 OUTS1 Schematic Macro

The OUTS2 and OUTS3 macros are similar to OUTS1, except that
the pins have been locked to different device I/O. All of these pin
assignments are based on the 4003EPC84 device/package which
is on the Xilinx demonstration board. The pins are connected to
the LED indicator lights on the demo board.

2. “Pop” back out of the OUTS1 component. You can do this in one
of two ways. Either click the Hierarchy Push/Pop icon, then
double click in an empty space in the OUTS1 schematic, or click
the Watch tab at the bottom of the Schematic Capture tool to
return to the top-level Watch schematic sheet.

In-Depth Tutorial — Schematic-Based Design

Foundation Series 1.5a In-Depth Tutorials 1-45

Adding Input Pins

Add two more input pins to the Watch schematic, called RESET and
STRTSTOP.

1. Add an IPAD and an IBUF for each of these two new input pins,
shown in the diagram below. To add these components, click the
SC Symbols icon in the vertical toolbar to open the SC Symbols
Toolbox. Browse to locate the IPAD and IBUF components in the
XC4000E library. Drop these on the schematic as shown below.

2. Draw a net between each IPAD/IBUF pair. If necessary, refer to
the section on drawing nets (see the “Drawing Nets” section) for
instruction.

Figure 1-28 Placing RESET and STRTSTOP I/O Components

Foundation Series 1.5a In-Depth Tutorials

1-46 Xilinx Development System

Labeling Nets
It is important to label nets and buses for several reasons. It aids in
debugging and simulation, as you will more easily trace nets back to
your original design. Any nets which remain unnamed in the design
will be given machine-generated names which will mean nothing to
you later in the implementation process. Naming nets also enhances
readability and aids in documenting your design.

Label the two input nets you just drew. When naming input and
output pins, it is advisable to label the net between the pad and the
buffer. This name is carried through the entire design flow including
place and route. If you label only the output of the buffer (in the case
of an input pin) or input of the buffer (in the case of an output pin),
you will not be able to easily trace your I/O pins in implementation
tools and reports.

1. Double click the RESET net.

2. In the Net Name field, type RESET as shown below.

Figure 1-29 Labeling Nets

3. Click OK.

4. Repeat Steps 1 through 3 for the STRTSTOP pin. You have the
option to click and drag the new attributes to better place them
on the schematic.

In-Depth Tutorial — Schematic-Based Design

Foundation Series 1.5a In-Depth Tutorials 1-47

Figure 1-30 Labeled Nets

Assigning Pin Locations
Xilinx recommends that you let the automatic placement and routing
program, PAR, define the pinout of your design. Pre-assigning
locations to the pins can sometimes degrade the performance of the
place and route tools. However, it is usually necessary, at some point,
to lock the pinout of a design so that it can be integrated into a PCB
(Printed Circuit Board).

Define the initial pinout by running the place-and-route tools without
pin assignments, then locking down the pin placement so that it
reflects the locations chosen by the tools. In this design, you assign
locations to the pins in the Watch design so that the design can
function in a Xilinx demonstration board. Because the design is
simple and timing is not critical, these pin assignments will not
adversely affect the ability of PAR to place and route the design.

Specify pin locations by attaching a LOC parameter to a pad
component. Assign a LOC parameter to the pad associated with the
RESET signal on the Watch schematic as follows.

1. Double click the IPAD connected to the net labeled RESET. The
Symbol Properties dialog box opens.

2. In the Parameters section, add a new parameter with these
values:

Name: LOC

Description: P28

This step assigns the RESET signal to pin P28 of the target device.

Foundation Series 1.5a In-Depth Tutorials

1-48 Xilinx Development System

Figure 1-31 Assigning Pin Locations

3. Click Add. The parameter appears in the list box.

Notice the two black dots to the left of the parameter. This
indicates that both the Name field and the Description field of the
parameter will be displayed on the schematic. You can double
click on the parameter to change the number of dots shown.

• One dot—only the Description field will show on the
schematic

• Zero dots—neither the Description field nor the Name field
will appear on the schematic.

This function only affects what is displayed on the schematic; in
all cases, the parameter has the same effect on the tools.

4. Click Apply . You see the parameter next to the IPAD.

5. Click OK to close the window.

6. Repeat Steps 1 through 5 to assign the STRTSTOP input pin to
pin P18.

In-Depth Tutorial — Schematic-Based Design

Foundation Series 1.5a In-Depth Tutorials 1-49

Note: You may click and drag the attributes to position them where
you wish on the schematic.

Figure 1-32 STRTSTP Pin Assignment

Using the 4K Internal Oscillator
The XC4000 devices contain an on-chip oscillator which may be used
to generate internal clock signals. To access the internal oscillator,
place the OSC4 component from the XC4000 Unified Library on your
schematic. Nominal clock frequencies of 8MHz, 500kHz, 16kHz,
490Hz, and 15Hz are available, and are specified by corresponding
output pins of the OSC4 symbol. In the Watch design you use the
15Hz clock output of the OSC4 component as the system clock in the
design. The frequency of these clock signals is not precise. Do not use
the OSC4 when you require a high degree of clock speed precision.

From the SC Symbols list, locate the OSC4 component in the XC4000E
library and place this component on the schematic as shown below.

Foundation Series 1.5a In-Depth Tutorials

1-50 Xilinx Development System

Figure 1-33 Placing the OSC4

Using Global Buffers
All Xilinx devices contain a set of Global Buffers which provide low-
skew distribution of high fanout signals. The number and type of
global buffers differ depending on the Xilinx device family you
target. Consult the Xilinx Libraries Guide for more information
regarding the various types of global buffers available.

In the Watch design, you will use a BUFG component from the
XC4000E library to drive the clock signal from the OSC4. The signal
on the output of the BUFG is the buffered clock signal which will
drive all the clocks in the system.

1. From the SC Symbols toolbox, locate the BUFG component in the
XC4000E library, and place it on the schematic as shown below.

2. Draw a net (see the “Drawing Nets” section) between the F15 pin
of the OSC4 and the input pin of the BUFG.

3. Label this net CLK (see the “Labeling Nets” section).

In-Depth Tutorial — Schematic-Based Design

Foundation Series 1.5a In-Depth Tutorials 1-51

Figure 1-34 Placing the BUFG

Hardware Verification -- Startup and Readback
(Optional)

This section describes the necessary preparations you must make in
the design entry phase of the design flow in order to do in-circuit
hardware debugging after implementation.

The last tutorial chapter of this manual is called the “In-Depth
Tutorial — Hardware Verification” chapter. In this chapter, you have
the option to both download the design to the Xilinx Demonstration
Board and also perform on-chip hardware debugging using the
Hardware Debugger tool.

In order to perform hardware debugging, place the READBACK
symbol in your design, and provide access to an external clock source
in order to perform the synchronous debugging. In the Watch design,
a schematic-based macro called DEBUG_CKT is provided in the
project library which contains the necessary circuitry to perform
hardware debugging later in this tutorial.

If you wish to complete the hardware debugging chapter later, place
the DEBUG_CKT on the Watch schematic as shown below.
Disconnect the CLK net that you just drew in order to place the
DEBUG_CKT in the design. To delete the CLK net, select it, then
press the Del key on your keyboard. Label the new CLK net that you
draw.

Note: If you only want to download the design to the Demo Board
and do not want to perform in-circuit hardware debugging, then it is
not necessary to use this DEBUG_CKT macro, and you can leave the
schematic as is.

Foundation Series 1.5a In-Depth Tutorials

1-52 Xilinx Development System

Figure 1-35 Placing the DEBUG_CKT Macro

Completing the Schematic
Complete the schematic by wiring the components you have created
and placed, adding any additional necessary logic, and labeling nets
appropriately. The following steps guide you through the process of
completing the schematic, or you may want to use the completed
schematic shown below for guidance. Each of the actions in this
section has been discussed in detail in earlier sections of the tutorial.
If you need to review these sections, you may return to them. The
finished schematic is shown in the following figure as a guide.

In-Depth Tutorial — Schematic-Based Design

Foundation Series 1.5a In-Depth Tutorials 1-53

Figure 1-36 Completed Watch Schematic

1. Draw a net (see the “Drawing Nets” section) between the BUFG
and the CLK pin of the STMACH state machine macro. Label this
net CLK_INT.

2. Draw a net (see the “Drawing Nets” section) between the IBUF of
the RESET input and the RESET pin of the STMACH state
machine macro.

3. Place an INV (inverter) component (see the “Adding
Components to CNT60” section) from the XC4000E library
between the IBUF of the STRTSTOP input and the STRTSTOP pin
of the STMACH state machine macro. Draw nets (see the
“Drawing Nets” section) to connect the INV to the both the IBUF
and the STMACH state machine macro.

4. Place an AND2 component (see the “Adding Components to
CNT60” section) to the left of the CNT60 macro.

Foundation Series 1.5a In-Depth Tutorials

1-54 Xilinx Development System

5. Draw a net (see the “Drawing Nets” section) to connect the
output of the AND2 with the CE pin of the CNT60 macro.

6. Draw a net (see the “Drawing Nets” section) to connect the
TERM_CNT pin of the TENTHS macro to one of the inputs to the
AND2.

7. Draw a hanging net (see the “Drawing Nets” section) from the
CLKOUT pin of the STMACH macro. To terminate a hanging
wire, double click.

8. Press Esc to get back into point/select mode and then label the
net you drew in Step 7 CLKEN_INT.

9. Draw a hanging net at the CLK_EN input pin of the TENTHS
macro. Label this net CLKEN_INT (see the “Labeling Nets”
section).

10. Draw a hanging net (see the “Drawing Nets” section) at the other
input of the AND2 component. Label this net CLKEN_INT again
(see the “Labeling Nets” section).

11. Draw a hanging net (see the “Drawing Nets” section) from the
RST output pin of the STMACH macro. Label this net RST_INT.

12. Draw two more hanging nets (see the “Drawing Nets” section),
also named RST_INT, from the ASYNC_CTRL pin of the
TENTHS macro and from the CLR pin of the CNT60 macro.

13. Draw two hanging nets (see the “Drawing Nets” section), each
named CLK_INT, from the CLOCK pin of the TENTHS macro
and from the CLK pin of the CNT60 macro.

Note: Remember that nets are logically connected if their names are
the same, even if the net is not physically drawn as a connection in
the schematic. This method is used to make the logical connection of
the RST_INT, CLKEN_INT and CLK_INT signals.

14. Draw buses (see the “Adding Buses” section) to complete the
schematic. Label them as shown on the preceding schematic
diagram.

The schematic is now complete!

15. Save the design by selecting File → Save .

Foundation Series 1.5a In-Depth Tutorials — September, 1998 2-1

Chapter 2

In-Depth Tutorial — HDL-Based Design

This chapter guides you through a typical HDL-based design
procedure using a design of a runner’s stopwatch called Watch. The
design example used in this tutorial demonstrates many device
features, software features and design flow practices which you can
apply to your own design. This design targets an XC4000E device;
however, all of the principles and flows taught are applicable to any
Xilinx device family, unless otherwise noted.

For an example of how to design with CPLDs, see the online help by
selecting Help → Foundation Help Contents from the Project
Manager. Under Tutorials, select CPLD Design Flows.

In the first part of the tutorial, you use the Foundation design entry
tools to complete the design. The design is composed of HDL
elements and a LogiBLOX macro; you will synthesize the design
using the Express tools.

Then, you will functionally simulate the design using the Foundation
Logic Simulator. In the third part, you will implement the design
using the Xilinx Implementation Tools. Finally, you will verify the
design through timing simulation, and then download the bitstream
to a Xilinx FPGA Demonstration Board. The simulation,
implementation, and bitstream generation are described in
subsequent chapters.

This chapter includes the following sections.

• “Getting Started”

• “Design Description”

• “The Project Manager”

• “Design Entry”

• “Synthesizing the Design”

Foundation Series 1.5a In-Depth Tutorials

2-2 Xilinx Development System

• “The Express Constraints Editor (Foundation Express Only)”

• “Using the Express Constraints Editor (Foundation Express
Only)”

• “Viewing Synthesis Results (Foundation Express Only)”

Getting Started
The following subsections describe the basic requirements for
running the tutorial.

Nomenclature
In this tutorial, the following terms are used:

• “XC4000 family” includes XC4000E, XC4000L, XC4000EX,
XC4000XL, and XC4000XV devices.

• “Right-click” means click the right mouse button. Unless
specified, all other mouse operations are performed with the left
mouse button.

Throughout this tutorial, file names, project names, and directory
names (paths) are specified in lower case, and the design is referred
to as Watch.

Required Software
The Xilinx Foundation Series package, Version 1.5, is required to
perform this tutorial. The design requires that you have installed the
XC4000E libraries and device files and are licensed for Foundation
Express or Base Express. These options are selected by default in the
install program for either Express configuration.

Note: A Foundation Express license is required to access the Express
Constraints GUI.

Installing the Tutorial
This tutorial assumes that the software is installed in the default
location c:\fndtn\active. If you have installed the software in a
different location, substitute your installation path for
c:\fndtn\active.

In-Depth Tutorial — HDL-Based Design

Foundation Series 1.5a In-Depth Tutorials 2-3

The tutorial projects are optionally installed (as sample projects) in
the c:\fndtn\active\projects directory when you install the
Foundation Series software. If you have installed the software, but
are not sure whether the tutorial projects were installed, check for
directories named c:\fndtn\active\projects\wtut*. These directories
contain the various tutorial files.

Tutorial Project Directories and Files
During the software installation, the WTUT_VHD and WTUT_VER
directories are created within c:\fndtn\active\projects, and the
tutorial files are copied into these directories. These directories
contain incomplete versions of the design, done in VHDL and
Verilog, respectively. You will complete the design in the tutorial.
However, solutions projects with all completed input and output files
are also provided. The following table lists the associated project.

The WATCHVHD and WATCHVER solution projects contain the
design files for the completed tutorials, including HDL files and the
bitstream file.To conserve disk space, some intermediate files are not
provided. Do not overwrite any files in the solutions directories.

The WTUT_VHD and WTUT_VER projects contain incomplete
copies of the tutorial design. You will create the remaining files when
you perform the tutorial. As described in a later step, you have the
option to copy the Watch project to another area and perform the
tutorial in this new area if desired.

Table 2-1 Tutorial Project Directories

Directory Description

WTUT_VHD Incomplete Watch Tutorial - VHDL

WTUT_VER Incomplete Watch Tutorial - Verilog

WATCHVHD Solution for Watch - VHDL

WATCHVER Solution for Watch - Verilog

Foundation Series 1.5a In-Depth Tutorials

2-4 Xilinx Development System

VHDL or Verilog?
This tutorial has been prepared for both VHDL and Verilog designs.
This document applies to both designs simultaneously, noting
differences where applicable. You will need to decide which HDL
language you would like to work through the tutorial when you open
the project.

Starting the Project Manager
1. Double click the Foundation Series Project Manager icon on your

desktop or select Programs → Xilinx Foundation Series →
Xilinx Foundation Project Manager from the Start menu.

2. A Getting Started dialog box opens. You can select a recently
opened project from this box. If have not opened this tutorial
project before now, click the More Projects... button.

In-Depth Tutorial — HDL-Based Design

Foundation Series 1.5a In-Depth Tutorials 2-5

Figure 2-1 Getting Started Dialog Box

3. In the Directories list, browse to c:\fndtn\active\projects. In the
Projects list, open WTUT_VHD or WTUT_VER by double
clicking.

Copying the Tutorial Files
You can either work within the project directory as it has been
installed from the CD, or you can make a copy to work on. To make a
working copy of the tutorial files, begin with an opened project and
perform the following steps.

Note: Whenever copying projects in Foundation, it is important to
use the “Copy Project” feature in the Project Manager to ensure that
the project’s directory structure is kept intact.

1. Select File → Copy Project .

2. Under the Destination section, type “wtch_hdl” in the Name
field.

3. Click OK.

4. Select File → Open Project .

5. Scroll down in the project list and select the wtch_hdl project
name. Click Open.

Foundation Series 1.5a In-Depth Tutorials

2-6 Xilinx Development System

6. The wtch_hdl project will contain two UCF files. If this is the
case, select wtut_vhd.ucf or wtut_ver.ucf. Select Document →
Remove or press Del to remove the file (wtut_ver.ucf or
wtut_vhd.ucf). Click Yes to confirm the removal of the file.

This does not delete the file from the disk. It merely removes it
from the project so that it is not used during compilation. The file
still exists in the project directory on the disk. If you mistakenly
remove a file from a project, select Document → Add to add it
back.

Design Description
The design used in this tutorial is a hierarchical, HDL-based design,
meaning that the top-level design file is an HDL file that references
several other lower-level macros. The lower-level macros are either
HDL modules or LogiBLOX modules.

The design begins as an unfinished design. Throughout the tutorial,
you complete the design by generating some of the modules from
scratch and by completing some others from existing files. When the
design is complete, you simulate it to verify the design’s
functionality.

Watch is a simple runner’s stopwatch. There are two external inputs,
and three external output buses in the completed design. The system
clock is an internally generated signal produced by the OSC4, the
internal oscillator in the XC4000 devices. The following list summa-
rizes the input lines and output buses.

Inputs:

• STRTSTOP —Starts and stops the stopwatch. This is an active
low signal which acts like the start/stop button on a runner’s
stopwatch.

• RESET—Resets the stopwatch to 00.0 after it has been stopped.

Outputs:

• TENSOUT[6:0]—7-bit bus which represents the Ten’s digit of the
stopwatch value. This bus is in 7-segment display format
viewable on the 7-segment LED display on the Xilinx
demonstration board.

In-Depth Tutorial — HDL-Based Design

Foundation Series 1.5a In-Depth Tutorials 2-7

• ONESOUT[6:0]—Similar to TENSOUT bus above, but represents
the One’s digit of the stopwatch value.

• TENTHSOUT[9:0]—10-bit bus which represents the Tenths’ digit
of the stopwatch value. This bus is one-hot encoded.

• GSRT—Active low global reset signal connected to the STARTUP
block.

• EXT_CLK, CLK_SELECT, CLK_OUT_15HZ—Signals required
for the hardware verification chapter of this tutorial.

The completed design consists of the following functional blocks.

• OSC4

Xilinx Unified Library component which represents the XC4000
on-chip oscillator.

• STATMACH

State Machine module.

• CNT60

HDL-based module which counts from 0 to 59, decimal. This
macro has 2 4-bit outputs, which represent the ones and tens
digits of the decimal values, respectively.

• TENTHS

Logiblox 10-bit, one-hot encoded counter. This macro outputs the
tenths digit of the watch value as a 10-bit one-hot encoded value.

• HEX2LED

HDL-based macro. This macro decodes the ones and tens digit
values from hexadecimal to 7-segment display format for
viewing on the FPGA Demonstration Board.

• SMALLCNTR

A simple Counter.

• DEBUG_CKT

HDL-based macro containing the necessary logic to perform
hardware debugging and readback using the Hardware
Debugger.

Foundation Series 1.5a In-Depth Tutorials

2-8 Xilinx Development System

The Project Manager
The Project Manager controls all aspects of the design flow. Through
the Project Manager, you can access all of the various design entry
and design implementation tools. You can also access the files and
documents associated with your project. The Project Manager
maintains revision control over multiple design iterations.

The Project Manager is divided into three main subwindows. To the
left is the Design Hierarchy Browser which displays the elements
included in the project. To the right is a set of tabs, each one brings up
a separate functional window. The third window at the bottom of the
Project Manager is the Message Console and shows status messages,
errors, and warnings and is updated during all project actions. These
windows are discussed in more detail in the following sections.

Figure 2-2 Project Manager

In-Depth Tutorial — HDL-Based Design

Foundation Series 1.5a In-Depth Tutorials 2-9

Hierarchy Browser
In the Files tab of the Hierarchy Browser, design source files and
libraries are displayed. Next to each filename is an icon which tells
you the file type (HDL file, state machine, schematic, library, text file,
for example). If a file contains lower levels of hierarchy, the icon has a
+ to the left of the name. HDL files have this + to show the entities
(VHDL) or modules (Verilog) within the file. You can expand the tree
by clicking this icon. You can open a file to edit by double clicking the
filename in the browser.

A Versions tab is also available behind the Files tab. Since this is a
new design which has not yet been implemented, the Versions tab is
empty. This tab is discussed in more detail later in the tutorial during
design implementation.

Project Manager Functional Tabs
As mentioned previously, the right-hand side of the Project Manager
contains a series of functional tabs. The functions of these tabs
follows:

• Flow—Provides access to tools you use to complete your entire
design, arranged in a flow-chart style to guide you through the
design flow. Status indicators in the upper right corner of each
phase box indicate whether the step has been completed
successfully.

• Contents—Lists the contents and date of the last modification of
the file selected in the Hierarchy Browser.

• Reports—Accesses design flow reports.

You have the option to browse through these tabs at this time, and at
any time during the tutorial to see how the tabs are updated during
the design flow process.

Foundation Series 1.5a In-Depth Tutorials

2-10 Xilinx Development System

Message Console Window
Errors, warnings, and informational messages are displayed in the
Message Window. Errors are displayed in red, warnings in blue, and
informational messages in black.

Information about synthesis results are displayed under the HDL
Errors, HDL Warnings, and HDL Messages tabs. Because the HDL
messages, errors and warnings are associated with a specific file or
version, you must select a synthesis version (functional structure or
optimized structure) or a specific file in the Files or Version tab to see
messages.

Design Entry
In this hierarchical design, you will examine HDL files, correct syntax
errors, create an HDL macro, and add a LogiBLOX module. This
tutorial gives you experience with creating and using each type of
design macro so that you can apply these procedures to your own
design.

Adding Source Files
You must add HDL files to the project before they can be synthesized.
Four HDL files have already been added to this project, but have not
yet been analyzed. Use Synthesis → Analyze All HDL Source
Files to update these files.

Now add the remaining HDL file to the project. Select Synthesis →
Add HDL Source Files and select SMALLCNTR.VHD or
SMALLCNTR.V from the project directory.

This file will be analyzed when it is added to the project. HDL files
that have been added to the project always have one of four status
indicators associated with the file. These indicators are:

• A red question mark means the file has been modified and needs
to be re-analyzed. Right-click the file and select Analyze.

• A red X means errors have been found. Select this file and
examine the errors under the HDL Errors tab. Errors are also
given in the HDL Editor.

In-Depth Tutorial — HDL-Based Design

Foundation Series 1.5a In-Depth Tutorials 2-11

• A red exclamation point means warnings have been issued.
Select the file and examine the warnings under the HDL
Warnings tab. Many warnings can be safely ignored.

• A green check means that the file is up-to-date with no errors or
warnings.

Correcting HDL errors
The SMALLCNTR design contains a syntax error that must be
corrected. The red “x” next to the filename indicates an error was
found during analysis. The Project Manager reports errors in red and
warnings in blue in the console.

Note: To open help on Express errors or warnings, select the error or
message in the HDL Error or Warning tab, then press the F1 key.

1. Open SMALLCNTR.VHD or SMALLCNTR.V in the HDL Editor
by double clicking the file name in the Files tab of the Hierarchy
Browser.

2. Correct any errors in the HDL source file. The comments next to
the error explain this simple fix.

3. Select File → Save to save the file.

4. Re-analyze the file by selecting Synthesis → Check Syntax , in
the HDL Editor or by right-clicking the HDL file in the Project
Manager and selecting Analyze.

Foundation Series 1.5a In-Depth Tutorials

2-12 Xilinx Development System

Starting the HDL Editor
There are three different ways to open the HDL Editor tool.

• From the Flow tab, click the HDL icon within the Design Entry
phase button.

or,

• Double click an HDL file in the Files tab.

or,

• Right-click an HDL file in the Files tab and select Edit.

If you need to stop the tutorial at any time, save your work by
selecting File → Save from the menus.

Creating an HDL-Based Module
With Foundation, you can easily create modules from HDL code. The
HDL code is connected to your top-level HDL design through
instantiation and compiled with the rest of the design.

You will create a new HDL module. This macro serves to convert the
two 4-bit outputs of the CNT60 module into a 7-segment LED display
format.

In-Depth Tutorial — HDL-Based Design

Foundation Series 1.5a In-Depth Tutorials 2-13

Using the HDL Design Wizard and HDL Editor

You enter the name and ports of the component in the HDL Wizard
and the Wizard creates a “skeleton” HDL file which you can complete
with the remainder of your code.

1. From the Flow tab in the Project Manager, click the HDL Editor
button.

2. A dialog box opens, asking if you want to create an empty HDL
file, select an existing HDL file, or use the HDL Wizard to create a
new file. Click the radio button next to Use HDL Design Wizard
and click OK.

3. Follow the instructions from the Wizard. When you are
prompted for a preferred HDL language, choose whichever one
you want, VHDL or Verilog.

4. When you are prompted for a file name, type HEX2LED.

5. The HEX2LED component has a 4-bit input port named HEX and
a 7-bit output port named LED. To enter these ports, first click the
New button in the Ports dialog box. Select Input as the direction
and type HEX in the Name field. Then, click the arrow next to the
Bus field to select 3:0 , which is the width of the bus. In the Name
field, you should now see HEX[3:0], and a corresponding pin
should appear on the symbol diagram on the left.

Figure 2-3 HDL Wizard

Foundation Series 1.5a In-Depth Tutorials

2-14 Xilinx Development System

6. Repeat the previous step for the LED[6:0] output bus. Be sure that
the direction is set to Output .

7. Click Finish to complete the Wizard session. A “skeleton” HDL
file now displays in the HDL Editor.

Figure 2-4 Skeleton VHDL File

In-Depth Tutorial — HDL-Based Design

Foundation Series 1.5a In-Depth Tutorials 2-15

Figure 2-5 Skeleton Verilog File

In the HDL Editor, the ports are already declared in the HDL file, and
some of the basic file structure is already in place. Keywords are
printed in red, comments in green, and values are gray. This color-
coding enhances readability and recognition of typographical errors.

Using the Language Assistant

You use the templates in the Language Assistant for commonly used
HDL constructs, as well as synthesis templates for commonly used
logic components such as counters, D flip-flops, multiplexers, and
global buffers. You can add your own templates to the Language
Assistant for components or constructs you use often.

1. To invoke the Language Assistant, select Tools → Language
Assistant from the HDL Editor pulldown menu.

2. The Language Assistant is divided into three sections: Language
Templates, Synthesis Templates, and User Templates. To expand
the view of any of these sections, click the + next to the topic.
Click any of the listed templates to view the template in the right
hand pane.

Foundation Series 1.5a In-Depth Tutorials

2-16 Xilinx Development System

3. Use the template called HEX2LED Converter located under the
Synthesis Templates heading. Locate this template and preview it
in the right hand pane by clicking the template. This template
provides source code to convert a 4-bit value to 7-segment LED
display format.

Figure 2-6 Language Assistant

4. Before adding this template to your HDL file, be sure that the
cursor in the HDL Editor is positioned below the line with the
comments “<<enter your statements here>>” for VHDL. For
Verilog, enter code after the “// Add your code here” line. When
you use the template, the code is placed wherever the cursor
currently is in the HDL Editor.

5. To add the HEX2LED Converter template code, click the Use
button in the Language Assistant while the HEX2LED Converter
template is selected. The code is automatically placed in the HDL
file.

6. Close the Language Assistant by clicking the X in the upper right
corner of the window.

7. (Verilog only) After the “//add your declarations here”
statement and before the HEX2LED converter that you just
added, add the following line of code to the HDL file to allow an
assignment.

reg LED;

In-Depth Tutorial — HDL-Based Design

Foundation Series 1.5a In-Depth Tutorials 2-17

8. You now have complete and functional HDL code and can check
the syntax using Synthesis → Check Syntax .

9. After you successfully complete the syntax check, save the file by
selecting File → Save from the HDL Editor.

10. Add this HDL file to your current project by selecting Project
→ Add to Project .

11. Exit the HDL Editor.

Examining the Top-Level HDL

Open STOPWATCH.VHD or STOPWATCH.V in the HDL Editor.
This is the top level of the design and consists mainly of the top level
ports and connections to the lower hierarchical blocks. Two Xilinx
library components have been instantiated in this HDL file: OSC4
and the BUFG.

OSC4: The XC4000 devices contain an on-chip oscillator that you can
use to generate internal clock signals. To access the internal oscillator,
you must instantiate the OSC4 component. Nominal clock
frequencies of 8 MHz, 500 kHz, 16 kHz, 490 Hz, and 15 Hz are
available and are specified by corresponding output pins of the OSC4
symbol. In the Watch design, you use the 15Hz clock output of the
OSC4 component as the system clock in the design. The frequency of
these clock signals is not precise. Do not use the OSC4 when you
require a high degree of clock speed precision.

BUFG: All Xilinx devices contain a set of Global Buffers that provide
low-skew distribution of high fanout signals. The number and type of
global buffers differs depending on the Xilinx device family you want
to target. Consult the Xilinx Libraries Guide for more information
regarding the various types of global buffers available.

In the Watch design, a BUFG component drives the clock signal from
the OSC4. The signal on the output of the BUFG is the buffered clock
signal which drives all the clocks in the system. Express infers global
clock buffers, but since this clock signal is generated by the
instantiated OSC4 component, the BUFG must also be instantiated.

Consult the “Instantiated Components” appendix in the Foundation
Series User Guide for a list of components that can be instantiated.

Foundation Series 1.5a In-Depth Tutorials

2-18 Xilinx Development System

Creating a LogiBLOX Module
LogiBLOX is a graphical interactive design tool you use to create
high-level modules such as counters, shift registers, RAM and
multiplexers. You can customize and pre-optimize the modules to
take advantage of the inherent architectural features of the Xilinx
FPGA architectures, such as Fast Carry Logic for arithmetic functions,
and on-chip RAM for dual-port and synchronous RAM.

In this section, you create a LogiBLOX module called Tenths. Tenths
is a 10-bit one-hot encoded counter. It counts the tenths digit of the
stopwatch’s time value. The encoding is set to one-hot counter so that
the digit is easily viewed on the FPGA Demo Board when
downloaded. A series of LED lights display the Tenths digit, where
one light will be on for each count of the tenths digit.

Running the LogiBLOX Module Selector

You select the type of module you want in the GUI of the LogiBLOX
Module Selector dialog box as well as the specific features of the
module. You can invoke this GUI from either the Project Manager, the
HDL Editor, or the Schematic Editor. The operation of the tool is the
same regardless of where you invoke it.

1. If you have closed the HDL Editor, open STOPWATCH.VHD or
STOPWATCH.V.

2. From within the HDL Editor, select Synthesis → LogiBLOX .

3. The Setup window opens if this is your first call to the LogiBLOX
module generator. If the Setup window does not open, click the
Setup button. Enter the following items.

a) Under the Device Family tab, use the pulldown to select
xc4000e.

b) Under the Options tab, select VHDL Template or Verilog
Template, depending on the language you are using.

c) If you plan to simulate with an HDL simulator, select
Behavioral VHDL Netlist or Structural Verilog netlist,
depending on the HDL simulator you want to use.

4. Click OK when you have defined all of the options.

In-Depth Tutorial — HDL-Based Design

Foundation Series 1.5a In-Depth Tutorials 2-19

Figure 2-7 LogiBLOX Setup for VHDL Designs

5. Fill in the LogiBLOX Module Selector with the following settings.

• Module Type: Counters

Defines the type of module.

• Module Name: Tenths

Defines the name of the module.

• Bus Width: 10

Defines the width of the data bus. You either choose from the
pulldown menu, or type in a value.

• Operation: Up

Defines how the counter will operate. This field is dependant
on the type of module you select.

• Style: Maximum Speed

Defines the type of optimization strategy for the module.
This dictates how the layout of the module is defined.

• Encoding: One Hot

Defines the register encoding for the module.

Foundation Series 1.5a In-Depth Tutorials

2-20 Xilinx Development System

• Async Val: 0000000001

Defines the value of the module on power-up and reset.

6. Check or uncheck the appropriate boxes on the module diagram
so that only the following pins are used.

• Async. Control

• Clock Enable

• Q_OUT

• Terminal Count

Figure 2-8 LogiBLOX Module Selector

7. Click OK. The module is created and automatically added to the
project library.

In-Depth Tutorial — HDL-Based Design

Foundation Series 1.5a In-Depth Tutorials 2-21

A number of files are added to the project directory. These files
follow:

• TENTHS.NGC

This file is the netlist that is used during the Translate phase
of implementation.

• TENTHS.VHI or TENTHS.VEI

This is the instantiation template that is used to incorporate
the LogiBLOX module in your source HDL.

• TENTHS.VHD or TENTHS.V

This is the HDL file to be used only for functional simulation.
Do not attempt to synthesize this file. Also do not add this
file to the Foundation project.

• TENTHS.MOD

This file stores the configuration information for the Tenths
module.

• LOGIBLOX.INI

This file stores the LogiBLOX configuration for the project.

Instantiating the LogiBLOX Module in the HDL Code

VHDL Flow

1. If you have closed the HDL Editor, open STOPWATCH.VHD.

2. Place your cursor after the line that states:

“-- Place the LogiBLOX Component Declaration for Tenths here”

Select Edit → Insert File and choose Tenths.vhi. The VHDL
template file for the LogiBLOX instantiation is inserted.

The Component Declaration does not need to be modified.

3. Highlight the inserted code from “--Component Instantiation” to
“TERM_CNT=>);”. Select Edit → Cut .

Foundation Series 1.5a In-Depth Tutorials

2-22 Xilinx Development System

Figure 2-9 VHDL Component Declaration of LogiBLOX Module

4. Place the cursor after the line that states:

“--Place the LogiBLOX Component Instantiation for Tenths
here.”

Select Edit → Paste to place the instantiation here.

Change “instance_name” to “XCOUNTER”.

5. Edit this instantiated code to connect the signals in the Stopwatch
design to the ports of the LogiBLOX module. The completed code
looks like the following.

In-Depth Tutorial — HDL-Based Design

Foundation Series 1.5a In-Depth Tutorials 2-23

Figure 2-10 VHDL Component Instantiation of LogiBLOX
Module

6. Save the design and close the HDL Editor.

Verilog Flow

1. If you have closed the HDL Editor, open STOPWATCH.V

2. Place your cursor after the line that states:

“-- Place the LogiBLOX Module Declaration for Tenths here”

This line is at the end of the file.

Select Edit → Insert File and choose Tenths.vei. The Verilog
template file for the LogiBLOX instantiation is inserted.

The Component Declaration does not need to be modified.

Note: Alternatively, the remaining module declaration can be placed
in a new Verilog file (name it TENTHS.V) and added to the project. Be
careful not to overwrite the Verilog simulation model, also named
TENTHS.V, if one has been created. This module declaration is
required to define the port directions of the ports of the LogiBLOX
module.

Foundation Series 1.5a In-Depth Tutorials

2-24 Xilinx Development System

3. Highlight the inserted code from “Tenths instance_name” to
“.TERM_CNT=());”. Select Edit → Cut .

Figure 2-11 Verilog Module Declaration of LogiBLOX Module

4. Place the cursor after the line that states:

“--Place the LogiBLOX Component Instantiation for Tenths
here.”

Select Edit → Paste to place the instantiation here.

Change “instance_name” to “XCOUNTER”.

5. Edit this code to connect the signals in the Stopwatch design to
the ports of the LogiBLOX module. The completed code is shown
in the following figure.

In-Depth Tutorial — HDL-Based Design

Foundation Series 1.5a In-Depth Tutorials 2-25

Figure 2-12 Verilog Component Instantiation of LogiBLOX
Module

6. Save the design and close the HDL Editor.

Synthesizing the Design
Now that the design has been entered and analyzed, the next step is
to synthesize the design. In this step, the HDL files are translated into
gates and optimized to the target architecture.

1. Set the global synthesis options by selecting Synthesis →
Options . Set the Default Frequency to 20MHz, and check the
Export Timing Constraints box. Click OK to accept these values.

2. Click the + next to STOPWATCH.VHD (or STOPWATCH.V). This
shows the entities (or modules) within the HDL file. Some files
may have multiple entities (or modules).

3. Right click the entity named “stopwatch” and select
Synthesize .

Foundation Series 1.5a In-Depth Tutorials

2-26 Xilinx Development System

This step can also be done by clicking the Synthesis button under
the flow tab. Select the stopwatch entity or module by using the
pulldown in the Top Level field. Be sure that the Version Name
field has an entry.

4. Complete the Target Device fields with this information:

• Family: XC4000E

• Device: 4003EPC84

• Speed Grade: -3

5. Check the boxes labeled Edit Synthesis/Implementation
Constraints and View Estimated Performance after Optimization.

Selecting the Edit Synthesis/Implementation Constraints box
automatically opens the Express Constraints Editor after
synthesis is complete.

Selecting the View Estimated Performance after Optimization
box automatically opens the Optimized dialog box which
displays the results of the synthesis and optimization.

Figure 2-13 Synthesis/Implementation Window

In-Depth Tutorial — HDL-Based Design

Foundation Series 1.5a In-Depth Tutorials 2-27

6. Click Run. Express synthesizes the design and opens the Express
Constraints Editor.

Note: The Express Constraints Editor is not available to non-
registered users or with Base Express licenses. All the functionality
covered by the Express Constraints Editor can be achieved by
component instantiation (Pullups, Pulldowns, Clock Buffers, I/O Flip
Flops), UCF file (timing constraints, pin location constraints), or MAP
options (merging flip flops into IOBs). If you are a Base Express
customer, skip to the “In-Depth Tutorial — Functional Simulation”
chapter.

The Express Constraints Editor (Foundation
Express Only)

You control optimization options and pass timing specifications to
the Place and Route software through a GUI in the Express Synthesis
software. This editor is only available with the Foundation Express
product not Base Express. All timing specifications are passed in the
netlist directly to the place and route engine and are used in the
synthesis process for timing estimation purposes only.

• Clocks

The Default Frequency set in Synthesis → Options is applied
to all clocks in the design. To change the specification of a clock,
click inside the box to the right of the clock and select Define.
Enter the clock period or give the rise and fall times.

• Paths

All types of paths that can be covered by timing specifications are
listed here, with unique specifications given for each clock in the
design. To modify these specifications, enter a new delay in the
Req. Delay column.

To create a subpath within a path, right click the source or
destination and select New Subpath. Give the subpath a new
name and delay value, then select sources and destinations by
double clicking the instances. You can also use wildcards in the
selection filters to choose a group of elements.

Foundation Series 1.5a In-Depth Tutorials

2-28 Xilinx Development System

• Ports

With the Ports tab, you set input and out delay requirements,
assign clock buffers, insert pullup or pulldown resistors in the I/
O, set delay properties for input registers, set slew rate, disable
the use of I/O registers, and assign pin locations. For all but the
pin locations, click in the box to use the pulldown menu. For pin
locations, type the pin number in the box.

• Modules

With the Modules tab, you to keep or eliminate hierarchy and
disable resource sharing. You can also override the default
settings for effort and area versus speed at the module level.

• Xilinx Options

The Ignore unlinked cells during GSR mapping option directs
Express to infer a global reset signal (and, therefore, insert the
STARTUP module), even if black boxes have been instantiated.
Express cannot know the reset characteristics of any logic in black
boxes, so it will not insert STARTUP unless you check this option.

Using the Express Constraints Editor (Foundation
Express Only)

Xilinx recommends that you let the automatic placement and routing
program, PAR, define the pinout of your design. Pre-assigning
locations to the pins can sometimes degrade the performance of the
place-and-route tools. However, it is usually necessary, at some point,
to lock the pinout of a design so that it can be integrated into a PCB
(printed circuit board).

Define the initial pinout by running the place-and-route tools without
pin assignments, then locking down the pin placement so that it
reflects the locations chosen by the tools. Assign locations to the pins
in the Watch design so that the design can function in a Xilinx
demonstration board. Because the design is simple and timing is not
critical, these pin assignments do not adversely affect the ability of
PAR to place-and-route the design. For HDL-based designs, these pin
assignments can be done in a User Constraints File (.UCF) or with the
Express Constraints Editor. Although .UCF files are provided for this
tutorial, you will assign the pin location constraints in the Express
Constraints Editor.

In-Depth Tutorial — HDL-Based Design

Foundation Series 1.5a In-Depth Tutorials 2-29

1. In the Express Constraint Editor, click the Import Constraints
button. Select WATCHVHD.EXC or WATCHVER.EXC,
depending on the language you are using. These files are located
in the project directory.

This file has been created for you. The only difference you should
see between your initial constraints and the ones saved in the
.EXC file is the set of pin locations under the Ports tab.

You can save Constraint Editor settings for a design by selecting
File → Export Constraints . When this .EXC file is read in
for a later synthesis run, all constraints are re-established in the
GUI, as long as they can be matched to instances in the current
version.

2. Under the Paths tab, click in the box in Row 2 below the Req.
Delay header (from All Input Ports to RC-oscout). Change the
delay to 35. Under the Ports tab, the Input Delays for RESET and
STRTSTOP have changed to 35, as these represent all the Pad to
Setup delays.

You can change the values of individual Input or Output Delays
by clicking the value in the Ports tab and either editing the value
there or using the pulldown tab to select a value or define a new
one. Change the values on one of the output signals using one of
these methods.

Foundation Series 1.5a In-Depth Tutorials

2-30 Xilinx Development System

Figure 2-14 Ports Tab Display

3. Under the Paths tab, right click either RC-oscout or All
Output Ports in the sixth row and select New Subpath . The
Create/Edit Timing Subpath window opens.

Give this new subpath a name, Sub_flops_to_out, and a Delay
value, 30. On the left hand side, double click all four flip flops
that contain the name /stopwatch/sixty/lsbcount/qout*, to
determine the sources of this subpath. On the lower right hand
side, use the filter to select the destinations. Type ONE* in the
field and click the Select button. All the ports beginning with
ONESOUT will be highlighted. Click OK to see your new
subpath.

Note: Base Express users cannot access the Express Constraints
Editor. Pin location constraints must therefore be defined in a UCF
file, which Xilinx has provided. Select Implementation →
Implementation Options . Click the Browse button next to User
Constraints and select BASE.UCF.

In-Depth Tutorial — HDL-Based Design

Foundation Series 1.5a In-Depth Tutorials 2-31

Figure 2-15 Editing Subpath in the Express Constraints Editor

4. Under the Ports tab, add the two final pin location in the Pad Loc
column. Scroll to the right to see this column. RESET must be
assigned to P28, and STRTSTOP must be assigned to P18. To
reassign, click the box and enter the pin number (including the
P).

Note: The remaining I/Os have pin assignments. This information is
contained in the .exc file. which you imported in Step 1.

5. Click OK to continue synthesis. Express now optimizes the
design.

Foundation Series 1.5a In-Depth Tutorials

2-32 Xilinx Development System

Viewing Synthesis Results (Foundation Express
Only)

With the View Estimated Performance after Optimization box
checked, the Express Constraints Editor opens after the optimization
phase of synthesis with preliminary performance results. The delay
values are based on wireload models and, therefore, must be
considered preliminary. Consult the post-route timing reports for the
most accurate delay information.

1. Under the Clocks tab, examine the estimated delay value of the
clock. Delays greater than the specification appear in red.

2. Under the Paths tab, examine the estimated delays for the paths
and subpath. Click the source or destination of a path to see the
members of the path, and click a specific path to see the
individual segments of that path.

Figure 2-16 Estimated Timing Data Under Paths Tab

3. Examine the Ports tab to see that all of the settings and delays
have been assigned and met.

In-Depth Tutorial — HDL-Based Design

Foundation Series 1.5a In-Depth Tutorials 2-33

4. Under the Modules tab, you can examine the elements used to
synthesize this design. Click the box in the second row under
Area and select Details . This section summarizes all the design
elements used in the Stopwatch design that Express knows
about.
Since the Tenths module is a LogiBLOX component and has not
been synthesized by Express, it is UNLINKED and no summary
information is available.

Note: Black boxes (modules not read into the Express design
environment) are always noted as UNLINKED in the Express reports.
As long as the underlying netlist (.xnf, .ngo, .ngc or EDIF) for a black
box exists in the project directory, the Implementation tools merge the
netlist in during the Translate phase. Since the Tenths module was
built using LogiBLOX called from the project, the tenths NGC file will
be found.

5. Click OK to complete the Synthesis phase.

At this point, an XNF file exists for the Stopwatch design. See the “In-
Depth Tutorial — Functional Simulation” chapter to perform a post-
synthesis simulation of this design or refer to the “In-Depth Tutorial
— Design Implementation” chapter to place and route the design.

Foundation Series 1.5a In-Depth Tutorials

2-34 Xilinx Development System

Foundation Series 1.5a In-Depth Tutorials — September, 1998 3-1

Chapter 3

In-Depth Tutorial — Functional Simulation

You can perform functional simulation before design implementation
to verify that the logic that you have created is correct. Foundation
provides a Logic Simulator, which is a gate-level simulator. You can
perform functional simulation on a schematic-based design
immediately after the design is captured in the Schematic Capture
tool. In the case of an HDL-based design, you can perform functional
simulation immediately following synthesis. In a later section, you
can perform timing simulation, which takes place after the design is
implemented (placed and routed) with the Xilinx Implementation
Tools.

Note: A problem exists in the Foundation simulator that affects the
HDL version of this particular design. The problem exhibits itself
when the STARTUP module is instantiated in an HDL design AND
multiple reset signals exist. More detailed information on this issue
can be found within the Solutions Database on the Xilinx web site at
http://www.xilinx.com/techdocs/4557.htm.

This tutorial has been modified for both Functional and Timing Simu-
lations to deal with this issue. The steps regarding the GSRT signal
have been added to allow the HDL version of the Stopwatch design
to simulate properly.

This chapter contains the following sections.

• “Starting the Logic Simulator”

• “Performing Simulation”

• “Adding Signals”

• “Adding Stimulus”

• “Running the Simulation”

• “Saving the Simulation”

Foundation Series 1.5a In-Depth Tutorials

3-2 Xilinx Development System

Starting the Logic Simulator
Click the Functional Simulation phase button in the Project
Flowchart.

You may be prompted to update the schematic netlist if you modified
the schematic but did not write out a netlist. In this case, click Yes to
update the netlist.

The Logic Simulator is invoked, and the project netlist is
automatically loaded into the simulator.

Performing Simulation
There are three basic steps to simulate your design:

1. Adding signals

2. Adding stimulus

3. Running the simulation

There are several different ways to perform each of these steps. These
methods are discussed briefly in the following sections. In this
tutorial, you use the simulator in various ways, and then you can
decide what is best for you with your own designs.

Adding Signals
In order to view signals during the simulation, you must first add
them to the Waveform Viewer in the Simulator. The signals are then
listed in the Waveform Viewer. You can view and monitor the
waveforms next to the corresponding signal names, as well as
monitor the state of these signals in the schematic during the
simulation.

In-Depth Tutorial — Functional Simulation

Foundation Series 1.5a In-Depth Tutorials 3-3

There are two basic methods for adding signals to the Simulator
Waveform Viewer.

• Using Probes from the Schematic Capture tool

• Using the Component Selection window in the Simulator

Adding Signals Using Probes
Note: This section only applies to schematic-based design flows. If
you are using either the all-VHDL or all-Verilog versions of the watch
design, skip to the “Adding Signals Using the Component Selection
Window” section.

In order to add signals for the Watch design simulation, you can use
Probes from the Schematic Capture tool to identify signals that you
want to view in the Simulator.

1. Bring up the Schematic Capture tool from within the Simulator
by clicking the SC icon in the Simulator toolbar.

2. After the schematic has opened, click the Simulation Toolbox icon
in the Schematic Capture toolbar.

This opens the SC Probes toolbox which has several buttons you
can use to control the simulation from within the Schematic
Capture tool.

Note: You can view the results of the simulation either in the
Simulator Waveform Viewer or by looking at the annotated values
that appear directly on the schematic. These methods are examined
more closely later in the tutorial.

Foundation Series 1.5a In-Depth Tutorials

3-4 Xilinx Development System

When the SC Probes toolbox is open, the cursor is automatically
put into the Add Probes mode. You can see a probes icon
attached to the cursor as shown in the following figure and the
Add Probes button in the SC Probes toolbox is depressed. When
you are adding probes to the schematic, you must remain in this
Add Probes mode.

Figure 3-1 Cursor in Add Probes Mode

3. With the cursor in Add Probes mode, click once on the CLK
signal name on the schematic. A gray box appears to the left of
the CLK label. This gray box indicates that a probe has been
attached to this signal.

4. Repeat Step 3 to add probes to the RESET and STRTSTOP signals
and to the TENTHSOUT[9:0], ONESOUT[6:0] and
TENSOUT[6:0] buses.

5. Return to the Simulator Waveform Viewer by clicking the SIM
button in the SC Probes toolbox.

You should now see all of the signals you just probed listed in the
Simulator Waveform Viewer.

In-Depth Tutorial — Functional Simulation

Foundation Series 1.5a In-Depth Tutorials 3-5

Figure 3-2 Simulator Signals List

Adding Signals Using the Component Selection
Window

Follow these steps to add more signals using the Component
Selection window within the Simulator.

1. Click the Component Selection icon in the toolbar in the
Simulator or select Signal → Add Signals .

The Component Selection Window opens.

This window is divided into three panes. The left-most pane is
the Signals Selection pane. This pane displays a list of all of the
available signals for a given level of hierarchy. The middle pane,
Chip Selection, displays a list of all of the components for a given
level of hierarchy.

You can select a different level of hierarchy in the right-most pane
entitled Scan Hierarchy. For instance, click the OUTS1 macro in
the Scan Hierarchy pane. You are now looking at signals and
components from the OUTS1 macro in the Signals Selection and
Chip Selection panes, respectively.

Foundation Series 1.5a In-Depth Tutorials

3-6 Xilinx Development System

Note: Because Express flattens the design during synthesis, you will
only see this OUTS1 component with the schematic version of the
design.

Figure 3-3 Scan Hierarchy Signals Selector

Return to the Root level of hierarchy by clicking the Hierarchy
button and then selecting Root in the Scan Hierarchy pane to
again view the signals from the top-level of the Watch design.

2. This step is divided into two parts, a) and b), for schematic-based
design and HDL-based design, respectively.

a) Schematic-based design only

In the Signals Selection pane, several signals have red
checkmarks next to their names. These signals have already
been added to the Simulator, in this case by using probes in
the Schematic Capture tool. Now you add more signals to the
Waveform Viewer.

From the Signals Selection pane, you can either double click
signals to add them to the Waveform Viewer, or you can
single click and then press Add. Use whichever method you
prefer to add the following buses.

ONES3, ONES0

TENS3, TENS0

In-Depth Tutorial — Functional Simulation

Foundation Series 1.5a In-Depth Tutorials 3-7

Note: It is possible to add these signals using probes on the schematic
as you did for the other signals, but this process demonstrates the
various methods for adding signals.

b) HDL-based design only

You add signals from the Signals Selection pane to the
Waveform Viewer to view them during the simulation. From
the Signals Selection pane, you can either double click signals
to add them to the Waveform Viewer, or you may single click
and then press Add. Use whichever method you prefer to add
the following signals.

TENTHSOUT9, TENTHSOUT0

ONESOUT6, ONESOUT0

TENSOUT6, TENSOUT0

CLKINT

STRTSTOP

RESET

GSRT

If you mistakenly add any signals you do not want to add, you
double click them again in the Signals Selection pane to remove
them from the Waveform Viewer. The red checkmark should then
disappear.

3. Close the Component Selection window by clicking the Close
button.

All of the signals you added are in the Waveform Viewer.

Deleting a Signal
To delete any of the signals from the Waveform Viewer, first select the
signal in the signal list in the Waveform Viewer, right-click, and then
select Delete Signals → Selected . This operation removes the
highlighted signal from the Waveform Viewer.

Foundation Series 1.5a In-Depth Tutorials

3-8 Xilinx Development System

Adding Stimulus
To define the function of the input signals, you must add stimulus to
your simulation. There are many ways to define stimulus with the
Foundation Simulator. Some of these methods are listed below and
are discussed in more detail in the sections to follow.

• Keyboard stimulus

• Custom formulae

• Internal binary counter outputs

• Stimulator state selector

• Script file

• Waveform file

In this tutorial, you use the keyboard stimulus, custom formulae,
internal binary counter, and script file. The script file method is used
later in the tutorial when you are performing a timing simulation. All
of these stimulator methods may be used in both functional and
timing simulations.

Open the Stimulator Selection Window by clicking the Stimulator
icon in the toolbar or by selecting Signal → Add Stimulators...

The various components of this window are discussed in the
following sections.

Figure 3-4 Stimulator Selector

In-Depth Tutorial — Functional Simulation

Foundation Series 1.5a In-Depth Tutorials 3-9

Stimulating with the Internal Binary Counter
The Foundation Simulator includes an internal free-running 16-bit
binary counter. You can use each of the 16 output bits of the counter
as stimulators. These signals provide 50% duty cycle signals, each bit
having half the frequency of the next least significant bit. These are
useful when defining clock stimulus. You may define the frequency
of the LSB of the counter (B0) and can therefore derive the frequencies
of the other counter outputs.

These counter outputs are represented by the round yellow LEDs in
the Stimulator Selection window. The row of red round LEDs below
it represents the complement of the counter outputs. The B0 output
(LSB) of the counter is the farthest LED to the right, and B15 (MSB) is
all the way to the left.

In the Watch design, the system clock is generated by the internal
oscillator in the XC4000E device. This is represented by the OSC4
component on the schematic. The OSC4 does not have a simulation
model, and, thus, cannot be simulated. To simulate the system clock,
you assign stimulus to the CLK signal in the simulator. You use the
B0 stimulator signal to stimulate the CLK signal in the Watch design.

1. In the Waveform Viewer, select the CLK (CLKINT for HDL
designs) signal by clicking it.

2. In the Stimulator Selection Window, click the B0 stimulator (the
right-most yellow LED). You should now see a B0 next to the
CLK signal in the Waveform Viewer indicating that the B0
stimulator is assigned to CLK.

3. Select Options → Preferences from the Simulator window.
This opens the Preferences window. In the Simulation tab of this
window, you can set the frequency of the B0 counter output.

4. Set the B0 frequency to 10MHz. This is significantly faster than
the actual speed of the system clock used in this design (15Hz),
but this frequency is adequate for the purposes of this simulation.

Foundation Series 1.5a In-Depth Tutorials

3-10 Xilinx Development System

Figure 3-5 Simulator Preferences

5. Press OK to close the Preferences window.

Stimulating with Keyboard Stimulators
You assign keyboard keys as stimulus for signals in your design with
the keyboard in the Stimulator Selection window. After you assign
this stimulus, the signal’s value toggles between 1 and 0 whenever
you press the corresponding key on your PC’s keyboard.
Additionally, you can assign a constant 1 or 0 to a signal using the 1
and 0 keys on the Stimulator Selector’s keyboard.

Now assign the R keyboard stimulus to the RESET signal in the
Watch design.

1. Click and drag the R key on the keyboard in the Stimulator
Selector onto the RESET signal name in the Waveform Viewer.

You should now see an R next to the RESET signal in the Wave-
form Viewer, which indicates that this is the assigned stimulus.

2. Press the R key on your PC keyboard a few times to see the state
of the stimulus changing in the Waveform Viewer.

Stimulating with Custom Formulae
The 16 square LEDs in the Stimulator Selector represent Custom
Formulae. You have the option to define each of these 16 formulae to
any custom stimulus pattern you want.

In-Depth Tutorial — Functional Simulation

Foundation Series 1.5a In-Depth Tutorials 3-11

Now create a custom formula and then assign that formula to the
STRTSTOP signal in the Watch design.

1. Click the Formula... button in the Stimulator Selection
Window to bring up the Set Formulas window.

Note: There are two sections of the Set Formulas window: Clocks and
Formulas. Any pattern that you specify for a Clock repeats forever.
Any pattern that you specify for a Formula executes just once, and
then holds the last specified value for the rest of the simulation.

2. Double click on F0 in the Formulas section. The Edit Formula
field at the bottom of the window should now be active.

3. Type the following formula into the Edit Formula field:

H200L100H2000L100H500L200H1000

This formula means “High for 200ns, then Low for 100ns, then
High for 2000ns, then Low for 100ns, etc...”. This defines the
stimulus pattern which you assign to STRTSTOP.

4. Click Accept . This assigns the formula you just entered to the F0
formula. You should now see it displayed next to the F0.

Figure 3-6 Creating Formulas

Foundation Series 1.5a In-Depth Tutorials

3-12 Xilinx Development System

5. Steps 5 through 7 apply only to the HDL versions of the Watch
design. Double click on F1 in the Formulas section. The Edit
Formula field at the bottom of the window should now be active.

6. Type the following formula into the Edit Formula field:

L50H5000

7. Click Accept . This assigns the formula you just entered to the F1
formula. You should now see it displayed next to the F1.

8. Click Close .

9. Assign the newly created F0 formula to the STRTSTOP signal.
Click the F0 LED in the Stimulator Selection box (the farthest
square LED to the right) and drag it onto the STRTSTOP signal in
the Waveform Viewer. You should now see an F0 next to the
STRTSTOP signal indicating that the F0 formula has been
assigned as stimulus for that signal. The F0 formula may now
also be used for any other signals you want within this same
project.

10. HDL designs only: Use the same process to assign the F1 formula
to the GSRT signal.

Other Sections of the Stimulator Selector
There are a few more sections of the Stimulator Selector that are not
used in this tutorial, but are discussed briefly here. For complete
documentation on these topics, refer to the Foundation Logic
Simulator online help.

The Clocks section contains four custom clock signals. These custom
clocks are defined in the Set Formulas window as mentioned above
in the Custom Formula section. These custom clocks are useful for
clocks with duty cycles other than 50%. You could not use the internal
binary counter outputs for those types of clocks or for other repeating
functions.

The EN, DS, CC, OV, and CS buttons pertain to the “mode” of the
signal and stimulus. These modes control options, such as whether
the stimulus is overridden by internally driven signals and whether
the stimulus is enabled or disabled at a given time.

In-Depth Tutorial — Functional Simulation

Foundation Series 1.5a In-Depth Tutorials 3-13

Finally, the Delete button deletes the stimulus from a selected signal.
This function does not delete the signal from the waveform viewer. It
merely deletes the stimulus associated with that signal.

Close the Stimulator Selection window by clicking Close .

Running the Simulation
Now you should see the three (four for HDL) inputs of the Watch
design, CLK, RESET, and STRTSTOP (and GSRT), listed in the Wave-
form Viewer, each having some type of stimulus associated with it.
You should also see the outputs TENTHSOUT, TENSOUT,
ONESOUT, ONES, and TENS listed (ONES and TENS will only be
visible for the schematic-based designs). You are now ready to run
the simulation.

Figure 3-7 Signals with Stimulus

Use the Step button in the Simulator toolbar to advance the
simulation for a set amount of time. You can define the size of the
Step using the pulldown menu next to the Step button, shown below.

Foundation Series 1.5a In-Depth Tutorials

3-14 Xilinx Development System

Figure 3-8 Simulator Step

1. Set the Step size to 100ns.

2. Press the r key on your PC keyboard until the RESET stimulus
state is low.

3. Click the Step button to advance the simulation.

The CLK signal is clocking based on the B0 frequency you set
earlier.

The STRTSTOP signal follows the formula created earlier.

4. Continue to click the Step button to advance the simulation.

Does the circuit appear to be working properly? Is the stopwatch
counting? Remember that the tenths digit is a one-hot encoded
value. To better see the results, you can change the radix of this
bus to binary by first clicking the TENTHSOUT bus, right-
clicking and selecting Bus → Display → Binary . You may also
change the scale of the Waveform Viewer by clicking on the
Scale buttons.

Recall that the ONESOUT and TENSOUT buses are in 7-segment
display format, so the value of the bus may not be readily clear.
Below is a diagram of the layout of the 7-segment display to help
with verification.

In-Depth Tutorial — Functional Simulation

Foundation Series 1.5a In-Depth Tutorials 3-15

Figure 3-9 7-Segment Display

If the design is schematic-based, you can view a model of the 7-
segment display on the schematic, as described below, for easier
debugging. With a schematic-based design, you are also viewing
the ONES and TENS bus in the Waveform viewer. These buses
are the 4-bit binary values of the ones and tens digits. To better
see these values, you can change the radix of the buses. by
clicking the ONES bus, right-clicking and selecting Bus →
Display → Decimal . Repeat this procedure for the TENS bus.

You can view the results of the simulation in the Waveform
Viewer or on the Schematic (for schematic-based design only). To
view the simulation on the Schematic, click the Schematic
Capture icon in the Simulator toolbar. This opens the Schematic
Capture tool. You can see simulation values annotated onto the
schematic. You can continue stepping the simulation from within
the Schematic Capture tool. Click the Simulation Toolbox icon in
the Schematic Capture tool to open the SC Probes window if it is
not already open. Then, click the Step button in the SC Probes
window to advance the simulation.

On the schematic, verify that the value is being displayed
properly on the model of the 7-segment display. Green LEDs
indicate that the LED is active; red LEDs indicate that it is
inactive.

5. Step the simulation until time = 4.6us. At this point in the
simulation, the stopwatch is stopped. Press the r key on the
keyboard to toggle the RESET signal and reset the stopwatch.

X8774

0

6

4 2

3

15

Decimal point

Foundation Series 1.5a In-Depth Tutorials

3-16 Xilinx Development System

Press r once so that it goes high, then step the simulation once,
then press r again to set RESET back to low. Continue stepping
the simulation.

6. As an alternative to manually clicking the Step button, you may
run an extended simulation. Select Options → Start Long
Simulation and set the Simulation Running Time to be 20 sec.

7. Click Start . The simulation runs for 20 seconds of simulation
time.

Figure 3-10 Start Long Simulation

8. Scroll back in the Waveform Viewer using the scroll bar on the
bottom of the window to inspect the results of the simulation.
Does it still appear to be working?

Saving the Simulation
After you run a simulation, you can save it for future use. You can
save the Waveforms you captured as test vectors, and then load them
into the simulator to use again later.

1. Select File → Save Waveform . In the dialog box that opens,
you can enter a name for the waveform file (.TVE). You can
choose any name and save the waveform file.

You can load this waveform file into the simulator using the
File → Load Waveform command.

2. Close the Simulator.

Foundation Series 1.5a In-Depth Tutorials — September, 1998 4-1

Chapter 4

In-Depth Tutorial — Design Implementation

Design Implementation is the process of translating, mapping,
placing, routing, and generating a BIT file for your design. The
Design Implementation tools are embedded into the Foundation
Project Manager for easy access and project management.

This chapter contains the following sections.

• “Project Management”

• “Starting Implementation”

• “Implementation Options”

• “Running Implementation — The Flow Engine”

• “Viewing Implementation Results”

• “Other Implementation Tools”

Project Management
Project management controls design versions and revisions. A
version represents an input design netlist. Each time a change is
made to the source design, such as logic being added to or removed
from the schematic or the HDL source being modified, a new version
is created. A revision represents an implementation on a given
version, usually with new implementation options, such as different
placement or router effort level.

Foundation maintains revision control, meaning that the resulting
files from each implementation revision are archived in the project
directory.

Foundation Series 1.5a In-Depth Tutorials

4-2 Xilinx Development System

Note: The source design for each version is not archived, only the
resulting netlists and files for each revision are archived. Therefore, if
you wish to save iterations of the source design (schematic or HDL
files, for example), you should use the archive wizard to create
backup copies of the project or back up individual files on your own.

Foundation manages and displays your design versions and
revisions graphically in the Versions tab of the Project Manager. Since
you have not yet implemented the design, the Versions tab is
currently empty.

Starting Implementation
This section describes how to begin implementation depending on
which tutorial you performed: HDL or schematic.

• If you performed the schematic tutorial, proceed to the
“Implementing the Schematic Design” section.

• If you performed the HDL tutorial, proceed to the
“Implementing the HDL Design” section.

Implementing the Schematic Design
To begin implementation of your schematic design, click the
Implementation phase button in the Project Flow diagram.

If you are asked if you wish to update the EDIF netlist because the
schematic is newer, say Yes to update the EDIF netlist. This EDIF
netlist is the actual input file to the Design Implementation tools.

Next you will see the Implement Design dialog box.

In-Depth Tutorial — Design Implementation

Foundation Series 1.5a In-Depth Tutorials 4-3

Figure 4-1 Implement Design Dialog Box

With this dialog box, you can select the target device and various
implementation options. The target device is already set to
XC4003EPC84-3 because that was the device selected when the
Foundation project was created. The Version and Revision fields have
been filled in automatically. You can also find these version and
revision names in the Project Manager Versions tab after
implementation.

Proceed to the “Implementation Options” section.

Implementing the HDL Design
In the “In-Depth Tutorial — HDL-Based Design” chapter, you
analyzed, synthesized, and optimized your design. To implement the
design, perform the following steps.

1. Click the Implementation phase button in the Project Flow
diagram.

2. After the Synthesis/Implementation dialog box displays, click
Options to access the Implementation Options dialog box. To
set up your options, refer to the following “Implementation
Options” section.

Foundation Series 1.5a In-Depth Tutorials

4-4 Xilinx Development System

The Revision Name field is automatically filled in. If you want to
use a new name, enter it in the box.

Figure 4-2 Synthesis/Implementation Dialog Box

In-Depth Tutorial — Design Implementation

Foundation Series 1.5a In-Depth Tutorials 4-5

Implementation Options
Click the Options button. The Options dialog box opens. A
summary of the options provided in this box follows.

Figure 4-3 Implementation Options Dialog Box

• User Constraints File (.ucf). You can specify a UCF file to use in
implementation.

• Program Option Templates. You can access various implementa-
tion options. This template is discussed in more detail in the next
section.

• Optional Targets. You can specify whether you want to generate a
Timing Simulation netlist for back-annotated timing simulation,
as well as Configuration Data, which is the design’s .bit file suit-
able for device programming.

User Constraints File
By default, Foundation creates a blank UCF file in the project
directory. You can edit this UCF file from the Files view in the Project
Manager.

Foundation Series 1.5a In-Depth Tutorials

4-6 Xilinx Development System

Because the name of this UCF file is the same as the project name, it is
loaded by default. If you have other UCF files that you want to use
instead, browse to find and select them.

Program Option Templates
You enter and modify implementation options by using the Program
Option templates.

1. Click the Edit Template button for Implementation Program
Options. This opens the XC4000 Implementation Options dialog.

There are four tabs to control various aspects of the design
implementation.

2. Click the Timing Reports tab.

3. Click the checkbox next to Produce Logic Level Timing
Report .

Figure 4-4 Implementation Options Templates

The Logic Level Timing Report is generated after the design is
mapped, but before it is placed and routed.

In-Depth Tutorial — Design Implementation

Foundation Series 1.5a In-Depth Tutorials 4-7

It includes logical block delays and optimal routing delays.
Because no actual routing delay information is known at this
time, the routing delays used are the best possible case delays
based on an optimal placement.

The Post Layout Timing Report is generated after the design has
been placed and routed and includes all of the routing delays for
the design.

These reports are examined later.

4. If you want, examine the options available in the other tabs. For
complete documentation on these options, refer to the online
DynaText document, Design Manager Flow Engine/Reference/User
Guide.

5. Click OK on the Implementation Options dialog box.

Optional Targets
You control which output files are created by using the Optional
Targets section. For this design, choose both Timing Simulation Data
(since you will be doing a Timing Simulation) and Configuration
Data (since you are downloading the BIT file to the device on the
Demonstration Board).

1. Check the two checkboxes next to Produce Timing Simula-
tion Data and Produce Configuration Data .

Figure 4-5 Optional Targets

2. Click OK on the Options dialog box.

Foundation Series 1.5a In-Depth Tutorials

4-8 Xilinx Development System

Running Implementation — The Flow Engine
After setting the implementation options that you want, you are
ready to implement the design.

1. Click Run in the Schematic Implement Design or click Run in the
Synthesis/Implementation dialog box.

The Flow Engine displays and implementation begins. The Flow
Engine is the tool which performs the design implementation.
The design flow and its status are represented graphically, and a
log of the processes is shown in the console at the bottom of the
Flow Engine.

Figure 4-6 Flow Engine

2. When the implementation is complete, the Flow Engine closes
automatically, and the Foundation Project Manager is fully
visible.

In-Depth Tutorial — Design Implementation

Foundation Series 1.5a In-Depth Tutorials 4-9

A dialog box opens indicating if the implementation completed
successfully. You can also view the implementation log.

If you encountered any errors in the implementation, refer to the
Implementation Log file for details on the error.

Viewing Implementation Results
As mentioned earlier, the Foundation Project Manager maintains
control over all of your design implementation versions and
revisions. You can directly view and analyze these implementations
from the Project Manager.

1. Click the Versions tab on the left-hand side of the Project
Manager. You should see a hierarchical display of the
implementation you just ran. The revision that is most current is
displayed in bold.

Figure 4-7 Versions Tab (Schematic Design)

Figure 4-8 Versions Tab (HDL Design)

2. With the current revision selected, click the Reports tab in the
right-hand side of the Project Manager. The Reports tab displays
reports and logs for the selected revision of the design.

Foundation Series 1.5a In-Depth Tutorials

4-10 Xilinx Development System

3. Double click the report entitled Implementation Report Files.
This displays the Xilinx Report Browser, which contains all of the
implementation reports. You have the option to browse through
any of these reports at this time.

4. From within the Xilinx Report Browser, double click the Logic
Level Timing Report. Inspect this report to find the maximum
system frequency specified. Remember this frequency.

5. Again, from within the Xilinx Report Browser, double click the
Post-Layout Timing Report. Inspect this report to find what the
maximum frequency is. Compare this with the delay you found
in the Logic Level Timing Report.

The difference in the two reports’ delays can be accounted for by
the actual routing delays. The routing delays which are assumed
in the Logic Level Timing Report are best-case, which is why they
are generally smaller than the actual delays after placement and
routing. Logic Level timing is useful because it gives you a
preliminary look at how realistic your timing goals are, given the
design’s current mapped state.

A rough guideline (known as the 50/50 rule) is that the logical
block delays in any particular path will make up about 50% of the
total path delay once the design is routed. This is, of course, just a
guideline, and designs vary from case to case. But, this gives you
some estimate to determine whether the design’s timing is even
close to your goals before the design is completely placed and
routed.

6. After you have perused the timing reports, close the reports and
close the Report Browser.

7. Return to the Flow tab on the right-hand side of the Project
Manager by clicking on it.

In-Depth Tutorial — Design Implementation

Foundation Series 1.5a In-Depth Tutorials 4-11

Other Implementation Tools
The Foundation Project Manager also gives you access to the other
implementation tools, including the Timing Analyzer, EPIC Design
Editor, Floorplanner, JTAG Programmer, Prom File Formatter and
Hardware Debugger. These tools can be invoked from the Tools →
Implementation and Tools → Device Programming menus.
The Timing Analyzer and Device Programming tools are also avail-
able from the Flow diagram.

These implementation tools are sensitive to the implementation
revision. In other words, depending on which Revision you have
selected in the Versions tab when you invoke the tool, it will load the
tool with data from that implementation revision.

Now you can invoke any of these tools to see what they look like. For
more information on using these tools, refer to the appropriate online
documentation for each tool.

Foundation Series 1.5a In-Depth Tutorials

4-12 Xilinx Development System

Foundation Series 1.5a In-Depth Tutorials — September, 1998 5-1

Chapter 5

In-Depth Tutorial — Timing Simulation

Timing simulation uses the block and routing delay information from
the routed design to give a more accurate assessment of the behavior
of the circuit under worst-case conditions. For this reason, timing
simulation is performed after the design has been placed and routed.

This chapter includes the following sections.

• “Invoking Timing Simulation”

• “Simulating with Script Files”

Invoking Timing Simulation
To invoke the timing simulator, click the Timing Simulation icon in
the Verification phase button in the Project Manager Flow diagram.

The simulator used for timing simulation is the same one used for
functional simulation. The only difference is that the design which is
loaded into the simulator for timing simulation contains worst-case
routing delays based on the actual placed and routed design.

Foundation Series 1.5a In-Depth Tutorials

5-2 Xilinx Development System

The simulator is now loaded and ready to simulate. For this
simulation, you use script files.

Simulating with Script Files
In the “In-Depth Tutorial — Functional Simulation” chapter, you
simulated by applying various types of stimulus including keyboard
stimulus, formulae, and by using the internal binary counter. In this
chapter, you use a script file to simulate the design.

Script files contain commands to stimulate inputs, display signals,
and advance the simulation. You enter your commands in the script
file and then press one button to run the entire simulation. Script files
in Foundation support Viewlogic-style commands, as well as other
Foundation-specific commands. The Simulator Online Help provides
a full list and description of all the supported commands.

Creating Script Files — Script Wizard and Script
Editor

The Script Editor is a text editor that you use to enter, edit, and view
script files, as well as actually run the simulation. You may either
create a script file from scratch, use an existing one, or create one with
the help of the Script Wizard, an interactive tool which helps you
create script files for simulation. In this section, you use the Script
Wizard to create a complete script file to simulate the Watch design
and then view the script file and run the simulation from the Script
Editor.

1. To invoke the Script Editor, select Tools → Script Editor
from the pulldown menus within the Simulator. A dialog box
prompts you to select a script file.

2. Choose Use Script Wizard to invoke the Script Wizard.

3. Follow the instructions in the Wizard to advance to the
Initialization page.

4. On the Initialization page, select the following options.

In-Depth Tutorial — Timing Simulation

Foundation Series 1.5a In-Depth Tutorials 5-3

• Delete Existing Signals — clears all the waveforms at the
start of each simulation.

• Restart (Power On) — forces the simulator to perform a
global reset at the start of the simulation to initialize all of the
registers.

• Simulation Mode: Timing

• Step Size: 10 ns — determines the size of the simulation step.

• Generate additional comments — inserts comments into the
script file to aid you in further editing of the script file.

• Script File Description — type “Simulation Script File for
Watch Tutorial.” Whatever you type here will be placed as a
comment at the top of the script file.

Figure 5-1 Script Wizard -- Initialization

Note: For more information on any of the options in the Wizard, refer
to the Help topic for the appropriate page, by clicking the Help
button.

Foundation Series 1.5a In-Depth Tutorials

5-4 Xilinx Development System

5. Click Next to advance to the Vectors page.

Vectors provide a more convenient way to use buses in the script
file. By defining vectors, you can more easily refer to these buses
in the rest of the script file. You can also create vectors out of any
group of signals, regardless of whether they are a bus in the
original design.

In this step, you define vectors for the three output buses,
ONESOUT[6:0], TENSOUT[6:0], and TENTHSOUT[9:0]. For
simplicity, name these vectors ONES, TENS and TENTHS,
respectively.

6. Click the New button. This adds a new vector to the vector list
entitled Vector_Name_1 by default. Type TENS in the place of
Vector_Name_1 to rename it.

7. Click the Browse... button. This displays a Component
Selection window which contains all of the signals in the design.
On the right-hand side, scroll down to find the TENOUTS6..0 7-
bit bus. Select this bus, and then click OK. By doing this, you have
assigned the seven bits of the TENSOUT bus to the newly created
TENS vector.

Figure 5-2 Script Wizard Component Selection

The seven bits of the TENSOUT bus are listed as components in
the newly created TENS vector.

In-Depth Tutorial — Timing Simulation

Foundation Series 1.5a In-Depth Tutorials 5-5

8. With the TENS vector selected, click the Radix pulldown menu
to change the radix of the vector to Binary. This determines how
the vector is displayed in the simulator.

9. Repeat Steps 6 through 8 to create vectors called ONES and
TENTHS for both the ONESOUT[6:0] and TENTHSOUT[9:0]
buses, respectively.

Figure 5-3 Script Wizard Vectors

10. Click the Next button to advance to the Stimulators page.

Stimulators define the action of the inputs in the design. There
are several different commands that can be used to define input
stimulus. You will use three different methods in this tutorial. For
a complete description of all available commands, refer to the
online help.

11. To select the first signal to stimulate, click the Browse... button.

Foundation Series 1.5a In-Depth Tutorials

5-6 Xilinx Development System

12. In the Component Selection window, scroll down the signal list
on the right-hand side, and locate the CLK signal if using the
schematic design or CLKINT if using the HDL design. Select it
and click OK.

13. See the CLK (or CLKINT) signal listed in the Simulators and
Watched Signals list. Click the CLK signal and the Stimulator
Type field now becomes active. Use the pulldown menu in the
Stimulator Type field to select Clock.

14. In the Value field, set the pattern of the clock. By typing 0 1
(delimited by a space) in the value field, you define the clock as
having a pattern of low for one simulation step (previously
defined as 10ns), then high for one simulation step. This pattern
repeats indefinitely to produce the clock signal.

Figure 5-4 Clock Stimulus

15. Repeat Steps 12 and 13 to add the STRTSTOP signal to the
Stimulated signals list.

In-Depth Tutorial — Timing Simulation

Foundation Series 1.5a In-Depth Tutorials 5-7

16. With the STRTSTOP signal selected in the Stimulated Signals list,
set the Stimulator Type to Aldec Waveform.

17. In the Value field, type the following:

H50L30H500L30H500L30H3000

Similar to the Custom Formula you created in the Functional
Simulation section, this waveform means high for 50ns, then low
for 30ns, then high for 500ns, and so on. This waveform will
define a stimulus pattern for the STRTSTOP input signal.

18. Repeat Steps 12 through 13 to add the RESET signal to the
Stimulated Signals list.

19. With the RESET signal selected in the Stimulated Signals list, set
the Stimulator Type to be Waveform.

20. In the value field type the following.

@0=0 6500=1 400=0

This means “at 0ns the signal is 0, 650ns later the signal is high,
40ns later the signal is low.” Note that the units of this
measurement are tenths of nanoseconds. This waveform
provides a reset pulse to reset the stopwatch during the
simulation.

21. Steps 21 through 23 are for the HDL design only: First, repeat
Steps 12 and 13 to add the GSRT signal to the Stimulated Signals
list.

22. With the GSRT signal selected in the Stimulated Signals list, set
the Stimulator Type to be Waveform.

23. In the value field type the following.

@0=1 50=0

This will manually toggle the active-low global reset signal
connected to the instantiated STARTUP module.

24. The Stimulators page also allows you to select signals which you
wish to “watch” in a printed output file. Since you will be setting
a printed output file in the next section of the Wizard, you will
add more signals to this list so that they may be watched.

Foundation Series 1.5a In-Depth Tutorials

5-8 Xilinx Development System

Repeat Steps 12 and 13 to add the TENS, ONES, and TENTHS
vectors to the Stimulated and Watched Signals list. Be sure that
you add the vectors and not the buses.

Figure 5-5 Selecting Vectors to Watch

25. Because the TENS, ONES, and TENTHS vectors are outputs, they
should not have stimulus assigned to them. Select each of these
vectors individually and set the Stimulator Type to be None.

26. You should now see six (seven for HDL) signals listed in the
window.

In-Depth Tutorial — Timing Simulation

Foundation Series 1.5a In-Depth Tutorials 5-9

Figure 5-6 Signals’ Stimulus

27. Click Next to advance to the Breakpoints and Simulation page.

28. Breakpoints allow you to monitor the simulation for some output
response. You can specify how the simulator will notify you
when the output response is detected.

On the Breakpoints and Simulation page, click the Browse...
button to choose the first signal to set a breakpoint on.

29. In the Component Selection window, choose the ONES vector
from the signal list and click OK.

30. You should now see the ONES vector listed in the Defined
Breakpoints list. Highlight ONES, and then from the Condition
pulldown menu, select Low State . This defines the condition
which must be present on the ONES vector for the breakpoint to
occur.

31. In the Action field, type the following:

print > tim_out.txt

Foundation Series 1.5a In-Depth Tutorials

5-10 Xilinx Development System

This tells the simulator to write out an output report called
tim_out.txt whenever the breakpoint condition is met.

32. Set the Simulation Command to Cycle, and the Simulation Value
to 400. This tells the simulator to run for 400 clock cycles.

Figure 5-7 Breakpoints and Simulation

33. Click Finish . You can now view your completed script file in
the Script Editor.

Viewing the Script File with the Script Editor
The Script Editor is very similar to the HDL Editor. Commands are
color-coded, with simulation command keywords highlighted in red
and comments in green for easy reading and debugging.

The Script Editor also provides a Macro Assistant that is very similar
to the Language Assistant which you saw earlier in the HDL Editor.

1. From within the Script Editor, select Tools → Macro Assis-
tant to invoke the Macro Assistant.

In-Depth Tutorial — Timing Simulation

Foundation Series 1.5a In-Depth Tutorials 5-11

The Macro Assistant provides templates and help for the various
script file commands. Browse through the various templates to
see what is available.

Figure 5-8 Macro Assistant

2. Close the Macro Assistant by clicking the X in the upper-right
corner of the window.

3. Save the script file that was created by the Script Wizard by
selecting File → Save . Be sure that the file is being saved into
the current Foundation project directory (that is,
C:\FNDTN\ACTIVE\PROJECTS\watch_proj_name). Name the
script file watchtim.cmd.

4. Look through the script file to see what the Script Wizard created.

Running the Simulation from the Script Editor
1. You can execute the simulation directly from the Script Editor. To

do this, select Execute → Go.

A log of the executed commands appears at the bottom of the
Script Editor, including messages indicating when breakpoints
were encountered.

Foundation Series 1.5a In-Depth Tutorials

5-12 Xilinx Development System

2. To view the simulation results in the Waveform Viewer, move the
Script Editor window and bring the Waveform Viewer window
to the front of your view. Inspect the simulation results to make
sure they are accurate.

You should now see that this is indeed performing a timing simula-
tion based on actual delays in the placed and routed design. If you
zoom in to get a closer view of the waveforms, you will see that there
is a delay from the rising edge of the clock to the transitions or the
counter outputs.

Figure 5-9 Timing Simulation Waveforms

Note: For the HDL design, the Tenths output bus will be inverted:
1110111111 instead of 0001000000. You are looking at the signals after
the inverters in the HDL design instead of before the inverters as in
the schematic.

For more detailed information related to actual path delays and
system performance requirements, you can use the Xilinx Timing
Analyzer to do Static Timing Analysis. Refer to the DynaText docu-
ment Timing Analyzer Reference/User Guide for details.

In-Depth Tutorial — Timing Simulation

Foundation Series 1.5a In-Depth Tutorials 5-13

Viewing the Printed Output File
As previously mentioned, you set a breakpoint action to write to a
printed output file called tim_out.txt. This file is a text file that is
viewable in any text editor. You can use the Script Editor or any other
text editor to view this file.

To view this file from the Script Editor, select File → Open from the
Script Editor and set the File Type filter to *.* . Locate the file
tim_out.txt, and click Open.

This file is a printed output file in the form of a state table, showing
the states of all the “watched” signals at the times at which
breakpoints were encountered. The times of the five breakpoints
should match the times listed in the log console area of the Script
Editor when the simulation was originally run. You should still be
able to see the console messages to verify this.

Closing the Simulator
When you are satisfied with the results of the simulation, you may
close the Script Editor and the Simulator.

Foundation Series 1.5a In-Depth Tutorials

5-14 Xilinx Development System

Foundation Series 1.5a In-Depth Tutorials — September, 1998 6-1

Chapter 6

In-Depth Tutorial — Hardware Verification

This chapter demonstrates how to use the Hardware Debugger to
download, verify, and debug a single design using a Xilinx
demonstration board as your target device. This chapter contains the
following sections.

• “Preparing for the Tutorial”

• “Testing the Design Using a Demonstration Board”

• “Downloading and Verifying the Bitstream”

• “Testing the Design”

• “Synchronous Debugging”

• “Asynchronous Debugging”

• “Further Reading”

Preparing for the Tutorial
This tutorial uses an XC4003E design and is targeted at the FPGA
demonstration board. This board is not supplied with Foundation.
The part number of the board is HW-FPGABOARD. In addition to
the demonstration board, you also need the XChecker cable to
perform synchronous and asynchronous debugging. Although other
cables are available from Xilinx, the XChecker cable is currently the
only cable that supports readback capabilities. This cable is not
supplied in Foundation packages. Contact your Xilinx distributor or
sales representative for information on how to obtain the board and
the XChecker cable.

Foundation Series 1.5a In-Depth Tutorials

6-2 Xilinx Development System

Note: For information on downloading and hardware verification for
CPLDs, refer to the following chapters in the Hardware User Guide.

• “CPLD Design Demonstration Board” chapter

• “Cable Hardware” chapter

Testing the Design Using a Demonstration Board
The FPGA demonstration board includes both an XC3000 family
socket and an XC4000 family socket. This tutorial only targets the
XC4000 family.

Figure 6-1 FPGA Demonstration Board Components

Preparing the Design for Readback
If you are verifying the schematic design, be sure that you have
placed the DEBUG_CKT macro in your design as explained in the
“Hardware Verification -- Startup and Readback (Optional)” section
of the “In-Depth Tutorial — Schematic-Based Design” chapter of this
tutorial in order to enable the Readback functionality. (The HDL
design already contains the DEBUG_CKT macro.) This step is not
necessary if you intend only to perform design download and not
readback verification.

R

FPGA DEMO BOARD

XC4003E
PC84

XC3020A
PC68

RN4
RN3

GND

R5
C5

C6SW3

59 60

R4
R1
R2

44

4327
28

C8C7

D17

ASSY 0430822

RESET
SW4

SPARE
SW5

PROG
SW6

Y1

26

C4
11 10

R3

1
2
3
4
5
6
7
8

RN8

R
N

9

C9LO HI
RN13

RN10
RN11 RN14

RN15 RN16
RN18
RN19

RN17 D1

D9

RN12

U2

U3 C2

U1

U4

J1

J3

J5

C1RN1

S
W

1

R
N

5
R

N
6

R
N

7

M
0

M
1

M
2

IN
P

M
P

E
S

P
E

M
C

LK
D

O
U

T M
1

M
2

R
S

T

M
P

E
S

P
E

M
0

IN
IT

C3 RN2

SW2

PWR

11

33 53

54

73

J2
J12

J10

J7

D8

D16

J9 5V

U6 U7 U8

74

32

34

10
U5

1312

X6640

SW3 Switch Block
SWITCHES Group

7-Segment Display
ALU Group Digital Display

STACK Group

In-Depth Tutorial — Hardware Verification

Foundation Series 1.5a In-Depth Tutorials 6-3

.

Figure 6-2 DEBUG_CKT Symbol Connections

The DEBUG_CKT macro provides three functions used in debugging
the Watch design: Readback, Startup, and clock Mux. These are not
all necessary but are offered as examples for accommodating in-
circuit testing.

• The READBACK Symbol

The following figure shows a detailed view of the READBACK
symbol and its connections.

Figure 6-3 Readback Symbol Connections

The READBACK symbol is the only necessary component for
enabling readback verifying and capturing features. While the
TRIG and DATA signals could be routed to any user I/Os, the
MD0 and MD1 signals are used, respectively. These two signals
(MD0 and MD1) are connected to the J2 header pins on the
demonstration board to simplify the XChecker cable connections
to the RT and RD Flying Leads, respectively.

Foundation Series 1.5a In-Depth Tutorials

6-4 Xilinx Development System

• The STARTUP symbol

Figure 6-4 STARTUP Symbol Connections

The STARTUP symbol provides access to the GSR (Global Set
Reset) net which when asserted re-initializes all the flip-flops in
the FPGA. For debugging purposes, this will be connected to the
RST Flying Lead so that the Hardware Debugger can assert a
global reset. In this design, the connection to the GSR is inverted
because the GSR pin is active HIGH while the RST pin of the
XChecker cable is active LOW. The GRST input signal is
constrained to P56 so that the RESET button of the demonstration
board may also be used to assert the GSR.

• Clock MUXing network

Figure 6-5 Clock Muxing Circuitry

In-Depth Tutorial — Hardware Verification

Foundation Series 1.5a In-Depth Tutorials 6-5

The Watch design uses the internal FPGA oscillator (OSC4) as the
system clock. Synchronous debugging requires interrupting this
connection so that the clock input may be driven by the cable and
thus controlled by the Hardware Debugger. This demonstrates
good design practice when multiplexing clock signals in an
FPGA.

Though the Watch design is a low speed application that would
not be critically affected by clock “glitching”, it is generally
considered poor design practice to “gate” clocks. Therefore, a
flip-flop registers the output of the MUX2 to remove glitching
and restore the clock phase. The select (S0) of the MUX2 is
registered for switch debouncing. There are many other clock
multiplexing methods that may be better for other applications.

The CLK_SELECT input is constrained to Pin 27 of the XC4003E.
This site can be controlled by the SW3-7 switch on the
demonstration board. Placing this switch in the open position
will select the internal oscillator for the system clock. Closing this
switch selects an external clock located at P13. This external clock
input can then be driven by the CLKO flying lead of the
XChecker cable and thus controlled by the Hardware Debugger.

Generating a Bitstream
You have already created the bitstream for this design when you
implemented the design in the “In-Depth Tutorial — Design
Implementation” chapter. You will use this bitstream file to configure
the FPGA on the Xilinx demonstration board.

Connecting the Cable
To load the configuration bitstream to the demonstration board, you
need one of the three available hardware cables: an XChecker cable, a
parallel cable, or a serial cable. All three cables work with any of the
Xilinx demonstration boards; however, the XChecker cable is the only
cable that supports readback verification and debugging.

Before physically downloading the design into the FPGA on a Xilinx
demonstration board, you must correctly hook up the board to your
computer.

Foundation Series 1.5a In-Depth Tutorials

6-6 Xilinx Development System

You must also connect several control and power pins between the
board and the cable. The bundles of leads supplied with the cables
are labeled to help you connect the board to the cable.

Finally, you must connect a pair of power and ground pins to a
regulated 5 volt power supply to provide power to the board and
cable.

1. Plug one end of the cable into the back of your computer.

If you are using a parallel cable, attach the cable to a parallel port.
If you are using a serial cable or the XChecker cable, connect the
cable to a serial port.

2. Connect the other end of the cable to your demonstration board.
If using the XChecker cable, you should have two different sets of
jumpers available.

“Flying Leads” are bound and keyed at one end, and separate
and labeled at the other. Flying Leads are shipped with each cable
type.

“XChecker Jumpers” are bound and keyed at both ends. They are
shorter than the flying leads and are not labeled. XChecker
Jumpers are only shipped with the demonstration board.

To download the Watch Tutorial, Xilinx recommends using the
Flying Leads since using the XChecker Jumpers requires some
additional jumpers not supplied. However, in general to down-
load to the demonstration board, the XChecker Jumpers are a fast
and easy method for attaching the XChecker Cable.

Cable connections to download to the demonstration board are
shown in the following table.

In-Depth Tutorial — Hardware Verification

Foundation Series 1.5a In-Depth Tutorials 6-7

Note: The RST connection is not necessary for downloading XC4000
designs. This connection is used by the Hardware Debugger for
resetting the FPGA design after configuration. If you are using the
Flying Lead connectors, then connect the RST lead to Pin 56 of the
XC4003E. To make this connection if you are using the XChecker
Jumpers, you must close the J7 jumpers on the demonstration board.

The “FPGA Design Demonstration Board” chapter of the Hard-
ware User Guide discusses in detail the demonstration board and
how to hook it up.

3. Connect the RT and RD pins, which are used for triggering and
capturing readback data. Refer to the following table for pin loca-
tion information.

Table 6-1 Cable Connections (Downloading)

Cable Label FPGA Board (XC4000E)

VCC J2-1

GND J2-3

No Connection J2-5

CCLK J2-7

D/P J2-9

DIN J2-11

XChecker and Serial Download Cable

PROG J2-13

XChecker Cable Only

INIT J2-15

RST J2-17 (Pin 56)

Foundation Series 1.5a In-Depth Tutorials

6-8 Xilinx Development System

4. Connect the CLKO lead to Pin 13 of the XC4003E. The CLKI and
TRIG lead can be left unconnected.

Note: For synchronous debugging, if you are using the XChecker
Jumpers, then another jumper connection must be made from J10 Pin
3 to Pin 13.

5. Ensure that the power supply is connected to the demonstration
board at J9 and is turned on.

The power connections for the demonstration board are shown in
the following table.

Make sure the FPGA demonstration board is set up for slave mode
configuration. The configuration mode for the XC4000E family part is
controlled by the SW2 bank of switches. Set the switches as shown in
the following table.

Table 6-2 Cable Connections (Verification and Debugging)

XChecker Cable Label FPGA Board (XC4000E)

CCLK J2-7

RT J2-2

RD J2-4

TRIG J2-6

CLKI J2-16

CLKO J2-18 (Pin 13)

Table 6-3 Demonstration Board Power Connections

FPGA Board

J9-1 +5 volts

J9-2 Gnd

In-Depth Tutorial — Hardware Verification

Foundation Series 1.5a In-Depth Tutorials 6-9

Note: The RST switch SW2-7 must be Open in order to configure the
XC4000E device without disturbing the XC3000 if it has already been
configured. However, this tutorial utilizes only the XC4000E, and the
Watch design requires this connection to be Closed so that the RESET
button is connected to the GSR input at Pin 56.

Downloading and Verifying the Bitstream
After the cable is connected to your computer, you can download the
bitstream. If you are using an XChecker cable, you can also verify the
design. You will use the Hardware Debugger tool to perform design
download and verification.

1. To invoke the Hardware Debugger, click the Programming phase
button in the Flow tab of the Foundation Project Manager.

Table 6-4 SW2 Switch Settings for XC4000E Configuration

Switch Label Setting

SW2-1 PWR Don’t Care

SW2-2 MPE Open

SW2-3 SPE Open

SW2-4 M0 Closed

SW2-5 M1 Closed

SW2-6 M2 Closed

SW2-7 RST Closed

SW2-8 INIT Open

Foundation Series 1.5a In-Depth Tutorials

6-10 Xilinx Development System

2. When the Select Program dialog box opens, select Hardware
Debugger and click OK.

The Communications dialog box opens.

3. Click a cable type in the Cable Type field. Select the auto detect
option or the correct port from the port drop-down list box and
the appropriate baud rate from the Baud Rate drop-down list
box. Click OK.

In-Depth Tutorial — Hardware Verification

Foundation Series 1.5a In-Depth Tutorials 6-11

After you have used a certain kind of cable and set the correct
port, the information is saved in a file called design_name.xck in
your design directory, so you do not have to specify it each time.

4. Select Download → Download Design or click the following
toolbar button.

If you are using an XChecker cable, select Download →
Download and Verify or click the following toolbar button if
you want to verify the design. You must also connect the RT and
RD pins for readback to be available.

If the FPGA is successfully configured, the following message
appears.

Figure 6-6 Pop-up Message Box

If the DONE signal does not go High, check the connections
between the cable and the demonstration board, power the board
off and on, and try downloading again. Also, ensure that the
bitstream is targeted for an XC4003E device.

If the Hardware Debugger informs you in a message that the
current design does not include the READBACK block
connected, check your schematic to ensure that the DEBUG_CKT
symbol is connected as shown in the “DEBUG_CKT Symbol
Connections” figure.

Foundation Series 1.5a In-Depth Tutorials

6-12 Xilinx Development System

Note: The serial download cable has limited functionality when used
with XC4000 family parts and may report that DONE went High
even if you do not press the PROG button as in Step 6. If this occurs,
the part is not re-configured. Download the bitstream again, this time
pressing the PROG button prior to configuration. Cycling the power
off and on before starting the download has the same effect.

If you chose the Download and Verify command, the software
initiates a design verification after downloading. The output of
the design verification is displayed in a message box.

Figure 6-7 Pop-up Message Box

Testing the Design
After configuring the XC4003E with the Watch design, the
functionality can be manually tested and observed on the LED
Displays. The Watch design implements the functionality of a
stopwatch.

The stopwatch counts up to 1 minute and starts over displaying tens
of seconds, seconds, and tenths of a second. The stopwatch waits for
a start command, counts until a stop command, holds the value that
it was stopped at, and can either start again from that value or be
reset.

The FPGA demonstration board has a row of eight rocker switches
(SW3) and two buttons (RESET and SPARE) that provide input to the
design.

In-Depth Tutorial — Hardware Verification

Foundation Series 1.5a In-Depth Tutorials 6-13

In the Watch design, the SW3-7 selects the clock source, SW3-8 is a
synchronous state machine reset, the RESET button is a global
asynchronous reset, and the SPARE button starts and stops the
stopwatch.

To operate the stopwatch function, follow these steps.

1. Open switches SW3-7 and SW3-8.

This selects the internal oscillator as the system clock and de-
asserts the state machine synchronous reset.

2. Press the RESET button to reset the stopwatch to 00.

3. Press the SPARE button to start the count.

The tenths of a second are displayed on the lower row of eight
LEDs starting from D16 to D9. D16 represents 0.2 and D9
represents 0.9 seconds.

The seconds are displayed on the right-hand side seven segment
LED display U8.

The tens of seconds are displayed on the middle seven segment
LED display U7.

4. Press the SPARE button again to stop the count.

The LED displays hold the value at which the count was stopped
at.

5. Press either the SPARE button again to resume count or the
RESET button to reset the count to 00.

Table 6-5 Schematic Labels vs. Demo Board Switches

Watch Design Signal Demo Board Switch/Button

CLK_SELECT SW3-8

RESET SW3-7

GRST RESET

STRTSTOP SPARE

Foundation Series 1.5a In-Depth Tutorials

6-14 Xilinx Development System

Synchronous Debugging
Debugging offers a means for capturing the internal CLB output
states and displaying them in waveforms like a simulator. The
Hardware Debugger offers two types of debugging modes:
Synchronous and Asynchronous.

This section describes the synchronous debugging mode. In the
synchronous debugging mode, the Hardware Debugger gives you
control over the system clock, allowing for a specified number of
clocks between snapshots of the internal FPGA states. For a
description on triggering snapshots asynchronously, see the
“Asynchronous Debugging” section.

Before you can begin debugging your design, you must make sure
that the cable is properly connected for synchronous debugging. This
was not needed for the downloading and verifying section so it was
skipped.

1. Connect the CLKO to P13 of the XC4003E.

2. Close switch SW3-7. This selects the external clock connection at
P13.

To debug your design, you must setup the debugging mode, set the
Trigger type, set the clock type, and include signals and signal groups
in your display list.

Setting up the Synchronous Debugging Mode
To set the debugging mode, follow these steps.

1. Select the Debug → Synchronous Mode or click the following
toolbar button.

2. Select View → Control Panel to activate the Debug Control
Panel.

The appropriate options are enabled in the Debug Control Panel
as shown in the following figure.

In-Depth Tutorial — Hardware Verification

Foundation Series 1.5a In-Depth Tutorials 6-15

Figure 6-8 Debug Control Panel

3. In the Debug Control Panel, click the Clocks button to display
the CLKO Clock Settings dialog box.

Figure 6-9 Clock Settings Dialog Box

The Use Xchecker Clock option should already be set. If not, then
select it. Use the default clock speed setting of 0.921 MHz for this
example.

4. In the Debug Control Panel, click the Triggers button to
display the Synchronous Trigger Settings dialog box.

Figure 6-10 Trigger Settings Dialog Box

Foundation Series 1.5a In-Depth Tutorials

6-16 Xilinx Development System

5. Select Immediately from the Trigger On pulldown menu.

6. Click OK.

Specifying Signal Groups
The Watch design has two internal buses that represent the value of
the seconds counter prior the HEX2LED conversion: ONES[3:0] and
TENS[3:0]. These signals are divided or separated into their indi-
vidual bits during the implementation phase.

Note: For HDL designs, the ONES and TENS signals may have been
renamed by the compiler. In this case, use the ONESOUT and
TENSOUT signals instead. These signals will have undergone
HEX2LED conversion to encode the seconds counter values for the
seven segment display. For these binary conversions, see the
following table.

Table 6-6 HEX2LED Conversion

HEX [3:0] (Binary) LED [6:0] Binary

0 (0000) 40 (100 0000)

1 (0001) 79 (111 1001)

2 (0010) 24 (010 0100)

3 (0011) 30 (011 0000)

4 (0100) 19 (001 1001)

5 (0101) 12 (001 0010)

6 (0110) 02 (00 0010)

7 (0111) 78 (111 1000)

8 (1000) 00 (000 0000)

9 (1001) 18 (001 1000)

A (1010) 08 (000 1000)

B (1011) 03 (000 0011)

C (1100) 46 (100 0110)

D (1101) 21 (010 0001)

E (1110) 06 (000 0110)

F (1111) 0E (000 1110)

In-Depth Tutorial — Hardware Verification

Foundation Series 1.5a In-Depth Tutorials 6-17

For example, HEX [3:0] would be ONES[3:0] and LED[6:0] would be
ONESOUT [6:0]. The counters only count up to 9 since they are desig-
nated to count in powers of ten. With this encoding, the seven-
segment display LEDs are active low. In other words, for the output
of HEX2LED, a ‘0’ is “On”.

In the Hardware Debugger, these signals can be recombined into a
bus format for a more convenient display.

To specify which signals to view, follow these steps to add signals to
the list of signals to display.

1. In the Debug Control Panel, click the Groups button to display
the Signal Groups dialog box from which you can group signals
into a bus for easy viewing.

The Signal Groups dialog box appears as shown in the following
figure.

Figure 6-11 Signal Groups Dialog Box

2. To create a new group, click New in the Groups group box. The
Group Name box appears, as shown in the following figure.

Foundation Series 1.5a In-Depth Tutorials

6-18 Xilinx Development System

Figure 6-12 Group Name Dialog Box

3. Type the name ones in the Group Name dialog box and click OK.
The new group name appears in the Groups field of the Signal
Groups dialog box.

4. In the Available Signals field, scroll until you see the signal names
ONES<0> through ONES<3>. Select these signals and move
them into the Grouped Signals field with the > button.

Note: If you are verifying the HDL design, select the ONESOUT<0>
through ONESOUT<3> instead of ONES<0> through ONES<3>.

Figure 6-13 Signal Groups Dialog Box (Schematic Design)

In-Depth Tutorial — Hardware Verification

Foundation Series 1.5a In-Depth Tutorials 6-19

Figure 6-14 Signal Groups Dialog Box (HDL Design)

Note: You can globally define the signals to display in the selection
list box by typing the first characters of the signals followed by a
wildcard character (*) in the Filter For Signals box and clicking
Apply .

The MSB (ONES<3>) needs to be at the top of the list with the
rest descending sequentially. Select the signals as needed and use
the Up and Down buttons to adjust their order in the list.

5. When you are done specifying the group, click Save .

6. Make another group for the TENS and add TENS3 through
TENS0.

Note: If you are verifying the HDL design, select the TENSOUT<0>
through TENSOUT<3> instead of TENS<0> through TENS<3>.

7. Click Close when you are done adding groups.

Foundation Series 1.5a In-Depth Tutorials

6-20 Xilinx Development System

Adding Signal Groups to Your Display List
In this section, you use the Display Signals dialog box to select the
signals to view and debug. To add signals and the groups you just
defined to your display list, follow these steps.

1. In the Debug Control Panel, click Display to invoke the Display
Signals dialog box.

2. Use the Display Signals dialog box, shown in the following
figure, to include the Signals TENTHSOUT<0> through
TENTHSOUT<9> in the Displayed Signals field.

Figure 6-15 Display Signals Dialog Box

3. Click the Groups radio button in the Display group box to show
the available signal groups that you just defined.

4. Click the >> button to move the Available Signals to the
Displayed Signals list.

5. Click OK.

A new Waveform window appears with the selected signals for
display.

In-Depth Tutorial — Hardware Verification

Foundation Series 1.5a In-Depth Tutorials 6-21

Figure 6-16 Waveform Window

Reading the Device States
Now you can begin reading snapshots of the internal device states.
You will adjust the number of clock cycles before each snapshot so
that you can see the three buses independently transition
appropriately.

1. Initialize the counters so that they can begin counting. In the
Debug Control Panel under Readback Control, click the Pulse/
RESET button.

2. In the Debug Control Panel, set the Number of Clocks to 1. Hold
down the SPARE button on the demonstration board and click
the Apply button once.

3. In the Readback Control of the Debug Control Panel, set the
Number of Snapshots to 10.

4. Click the Read button.

The Hardware Debugger now takes ten snapshots of the selected
signal states incrementing the clock once between each snapshot.

Foundation Series 1.5a In-Depth Tutorials

6-22 Xilinx Development System

Figure 6-17 Waveform Window

5. In the Synchronous Trigger Settings, increase the Number of
Clock Cycles Before First Snapshot and Between Snapshots both
to 10. Click OK.

6. In the Readback Control of the Debug Control Panel, reduce the
Number of snapshots to 9.

7. Click the Read button.

You now see the ONES bus cycling through its range of values in
the waveform window.

In-Depth Tutorial — Hardware Verification

Foundation Series 1.5a In-Depth Tutorials 6-23

Figure 6-18 Waveform Window (Schematic Design)

Figure 6-19 Waveform Window (HDL Design)

Foundation Series 1.5a In-Depth Tutorials

6-24 Xilinx Development System

8. In the Synchronous Trigger Settings, decrease the Number of
Clock Cycles Before First Snapshot to 0 and between Snapshots to
1. Click OK.

9. Decrease the Number of Snapshots in the Readback Control to 1.

10. Increase the Number of Clocks in the Clock Control to 100. You
can explicitly type in the desired number instead of scrolling for
it.

11. Click Apply .

12. Click Read.

The TENS bus now transitions. Repeat Steps 11 and 12 several
times to observe the full values range of the TENS bus.

Figure 6-20 Waveform Window (Schematic Design)

In-Depth Tutorial — Hardware Verification

Foundation Series 1.5a In-Depth Tutorials 6-25

Figure 6-21 Waveform Window (HDL Design)

The logical value of the displayed signals are shown in numerical
form in the Cycle column. Click the portion of the waveform that you
would like to see the numerical listing for, and the Cycle column
automatically updates itself.

Note: To start fresh with the same waveform, click the right mouse
button once. From the pop-up menu, select Clear All Waveforms .
You will lose all unsaved data.

Changing the Signals Groups Radix
You may choose which radix you prefer your signals and groups to
display in. The groups should have defaulted to HEX. To change to
binary follow these steps.

1. In the Waveform window, click the TENS groups.

2. Select View → Group Radix → Binary .

You may need to expand the Cycle column in order to view the
value.

Foundation Series 1.5a In-Depth Tutorials

6-26 Xilinx Development System

Saving and Closing the Waveform Window
When you are done with a debugging session and before exiting the
waveform window, you can save it for future reference.

1. Select File → Close .

2. Click Yes in the following pop-up box.

Figure 6-22 Pop-up Dialog Box

3. Select a name for the file and click Save .

Asynchronous Debugging
In the previous section you used synchronous debugging to verify
the operation of the counters in the Watch design. When the System
clock connection for an application cannot be broken or otherwise
interrupted, as you did in the Watch design with the Clock
multiplexing, Asynchronous Debugging may be used in the absence
of controlling the clock with the XChecker cable.

This section describes how to perform Asynchronous Debugging by
setting up an external trigger to control snapshot timing.

Objective for this Section
The objective is to determine the encoding method used for the
internal stopwatch state machine in the Watch design. Since this
tutorial may be used with multiple design entry tutorials, including
both schematic capture and HDL compilers, encoding schemes may
vary.

In-Depth Tutorial — Hardware Verification

Foundation Series 1.5a In-Depth Tutorials 6-27

The stopwatch state machine has six states shown in the following
table.

The Binary Code has been left blank for you to fill in.

Setting up the Demonstration Board
Before getting started, you must return the Watch design to use the
internal oscillator and change some cable connections.

1. Open SW3-7.

2. Connect the TRIG flying (J10-1) lead to Pin 14 on the XC4003E
device. There are two rows of pins adjacent to the left side of the
XC4000E device. The row closest to the device contains the even
number pins (12 through 32). Pin 14 is the second pin from the
top in this row.

Pin 14 of the FPGA conveniently provides an output of the
internal clock. You can use this as a trigger. Any signal may be
used for triggering as long as it represents a transition that you
are interested in capturing. In this exercise, you want to capture
the next state transition after changing an input logic level from
the buttons and switches.

Table 6-7 Stopwatch State Table

STATE Description
Binary
Code

CLEAR Power-on initialization.

ZERO Reset counters to 0.

START Begin counting.

COUNT Keep counting.

STOP Stop counting.

STOPPED Hold count value.

Foundation Series 1.5a In-Depth Tutorials

6-28 Xilinx Development System

Setting up the Asynchronous Debugging Mode
To set the debugging mode, follow these steps.

1. Select the Debug → Asynchronous Mode or click the following
toolbar button.

Note: The Clock Control section of the Debug Control Panel is now
disabled.

2. Click the Triggers button in the Debug Control Panel.

Now the Asynchronous Trigger Settings dialog box appears.

3. Select Trigger On External. Click OK.

4. Make a new Signal Group for the STOPWTCH state machine
outputs. For a detailed description on making signal groups,
return to the “Specifying Signal Groups” section.

The name of the signals should be $$/STOPWTCH<0> and so on
for bits <1> and <2>. The $$/ represents some arbitrary
hierarchical name. Since this state machine exists below a macro
in the design, randomly generated instance names for the macro
may be placed by an HDL compiler into the total signal name.

Do not be concerned about this. The STOPWTCH name should
be unique; therefore select the closest match from the Available
Signal list.

5. Add the stopwtch signal group that you just made along with the
RST_INT signal.

6. Set the Number of Snapshots in the Readback Control to 2.
Capturing two readbacks per state transition will tell you if you
have captured an erroneous value caused by a timing glitch.

In-Depth Tutorial — Hardware Verification

Foundation Series 1.5a In-Depth Tutorials 6-29

Capturing the State Machine
Follow these steps to capture and display the six states of the
stopwatch state machine.

1. Press the RESET button.

2. Click Read in the Readback control.

3. Click the STOPWATCH waveform itself inside the waveform
window and note the value. This state is the CLEAR state.

4. Press and hold the SPARE button. While still holding the SPARE
button down, click Read.

5. Click the new segment of the STOPWATCH waveform and note
the value. This is the START state.

6. Release the SPARE button and click Read again. Note the value of
the new section of the waveform. This is the COUNT state.

7. Again press and hold the SPARE button. Click Read while
holding down the SPARE button. This is the STOP state.

8. Release the SPARE button and Read again. This is the STOPPED
state.

9. Close switch SW3-8 and Read again. This is the ZERO state.

Now you have the encoding scheme for the internal state machine.
Your waveform should look something like that shown in the
following figure.

Foundation Series 1.5a In-Depth Tutorials

6-30 Xilinx Development System

Figure 6-23 Asynchronous Debugging Waveform

For more information on using the Hardware Debugger, refer to the
online DynaText document, Hardware Debugger Reference/User Guide.

Further Reading
This tutorial has given you the information necessary to complete a
typical design cycle using the 1.5 version of Foundation. There are
many commands and options available within both the design entry
tools and the design implementation tools that are not covered in this
tutorial. Refer to the online help files and the online manuals
(viewable with the DynaText browser) for complete documentation
of all the features in this release.

