
Chapter 1

Synplify/ModelSim Tutorial

This tutorial shows you how to use Synplicity’s Synplify (VHDL/
Verilog) for XC4000E/EX/XL/XV designs using MTI’s ModelSim for
simulation. It guides you through a typical FPGA HDL-based design
procedure using a design of a runner’s stopwatch called Watch. This
tutorial contains the following sections.

• “Design Description”

• “Before Beginning the Tutorial”

• “Tutorial Installation”

• “Creating the Tenths LogiBLOX Component”

• “RTL Simulation”

• “Synthesizing the Design Using Synplicity”

• “Implementing the Watch Design”

• “Timing Simulation”

Design Description
Throughout this tutorial, the design is referred to as Watch which is a
design for a runner’s stop watch. The tutorial assumes that you have
a working knowledge of VHDL and/or Verilog.

The Watch design is a counter that counts up from 0 to 59, then resets
to zero, and starts over. There are two external inputs and three
external outputs in the completed design. The system clock is an
internally generated signal produced by OSC4, the internal oscillator
in XC4000 devices.

The Watch design inputs, outputs, and macros are summarized
below.
Synplicity Tutorial 1-1

Synplicity Tutorial
Inputs

• STRTSTOP—The start/stop button of the stopwatch. This is an
active-low signal that must be depressed then released to start or
stop the counting.

• RESET—Forces the signals TENSOUT and ONESOUT to be “00”
after it has been stopped.

Outputs

• TENSOUT[6:0]—7-bit bus which represents the tens-digit of the
stopwatch value. This is viewable on the 7-segment LED display
of the Xilinx demo board.

• ONESOUT[6:0]—Similar to TENSOUT bus above, but represents
the one-digit of the stopwatch value.

• TENTHSOUT[9:0]—10-bit bus which represents the tenths-digit
of the stopwatch value. This bus is one-hot encoded. The output
is displayed to the LED bar.

Macros

The top level of the Watch design consists of the following functional
blocks.

• OSC4—Internal oscillator macro which is used to generate the
clock signal.

• STWATCH—A statemachine that controls starting, stopping,
and clearing the counters. (One-hot encoded)

• TENTHS—A LogiBLOX 10-bit one-hot counter macro which
outputs the Tenths digit as 10-bit one-hot value.

• CNT60—A Counter that outputs Ones and Tens digits as 4-bit
binary values. Counts 0 to 59 (decimal).

• HEX2LED—Converts 4-bit values of Ones and Tens to 7-segment
LED format.

• DEBUG_CKT—A Circuit that supports synchronous debugging
and readback using the Hardware Debugger.
1-2 Xilinx Development System

Synplify/ModelSim Tutorial
Before Beginning the Tutorial
Before you begin this tutorial, set up your system to use the
Synplicity, Model Technology, and Xilinx software as follows.

1. Install the following software.

• Xilinx Development System 1.5i

• Synplicity Synplify 5.0.7 or later

• Model Technology ModelSim EE 5.2 or later, or Model Tech-
nology ModelSim PE 4.7 or later

2. Verify that your system is properly configured. Consult the
release notes and installation notes that came with your software
package for more information.

Tutorial Installation
The Watch tutorial file is available for download from the Xilinx Web
site at http://www.xilinx.com/support/techsup/tutorials.

Tutorial Directory and Files
The tutorial directory and tutorial files needed to complete the design
are provided for you. Some files are not present since you will create
them in later steps. The following table lists the contents of the tuto-
rial directories.

Directory Description

synplify_tut/vhdl/src VHDL source and script files

synplify_tut/vhdl/watch_4ke VHDL solutions directory for
XC4003E-PC84

synplify_tut/vhdl/watch VHDL Tutorial Directory

synplify_tut/verilog/src Verilog source and script files

synplify_tut/verilog/watch_4ke Verilog solutions directory for
XC4003E-PC84

synplify_tut/verilog/watch Verilog Tutorial Directory
Synplicity Tutorial 1-3

Synplicity Tutorial
VHDL Design Files
Watch is the top level design. The tutorial uses the following VHDL
files.

• watch.vhd

• stmchine.vhd

• smallcntr.vhd

• cnt60.vhd

• hex2led.vhd

• debug_ckt.vhd

• tenths.vhd (functional RTL simulation only)

• testbench.vhd (VHDL testbench for simulation)

Note: The Tenths one-hot counter is a LogiBLOX macro.

Verilog Design Files
Watch is the top level design. The tutorial uses the following Verilog
files.

• watch.v

• stmchine.v

• smallcntr.v

• cnt60.v

• hex2led.v

• debug_ckt.v

• tenths.v (functional RTL simulation only)

• testfixture.v (Verilog test fixture for simulation)

Note: The Tenths one-hot counter is a LogiBLOX macro.

Script Files
The following script files are provided to automate the steps in this
tutorial.

• rtl_sim.do
1-4 Xilinx Development System

Synplify/ModelSim Tutorial
• stim_ee.do (ModelSim EE 5.2)

• stim_pe.do (ModelSim PE 4.7)

• synth.tcl

• time_sim.do

Simulation Models for MTI
To simulate Xilinx designs with ModelSim, you need the following
simulation libraries which you must compile.

• UNISIM Library—The Unisim library is used for behavioral
(RTL) simulation with instantiated components in the netlist, and
for post-synthesis (pre-M1) simulation. The VHDL library is
VITAL compliant, and it also adds new device start-up compo-
nents ROC, ROCBUF, TOC, TOCBUF, and STARTBUF, for simu-
lation. The Verilog library has separate libraries for each device
family: UNI3000, UNI4000E, UNI4000X, UNI5200, UNI9000.

• LogiBLOX Library—The LogiBLOX library is used for designs
containing LogiBLOX components, during pre-synthesis (RTL),
and post-synthesis (Pre-M1) simulation. VITAL VHDL simula-
tion only. Verilog uses SIMPRIM libraries.

• SIMPRIM Library—The SIMPRIM library is used for post
Ngdbuild (gate level functional), post-Map (partial timing), and
post-place-and-route (full timing) simulations. This library is
architecture independent, and supports VHDL and Verilog.

For detailed instructions on compiling these simulation libraries, see
the instructions in Xilinx Solution # 1923 which is available at http://
www.xilinx.com/techdocs/1923.htm.

After compiling the libraries, notice that ModelSim creates a file
called modelsim.ini. View this file and notice that the upper portion
defines the locations of the compiled libraries. When doing a simula-
tion, the modelsim.ini file must be provided either by copying the file
directly to the directory where the HDL files are to be compiled and
the simulation is to be run, or by setting the MODELSIM environ-
ment variable to the location of your master .ini file. You must set this
variable since the ModelSim installation does not initially declare the
path for you. For UNIX, type the following.

setenv MODELSIM /path/to/the/modelsim.ini
Synplicity Tutorial 1-5

Synplicity Tutorial
Copying the Tutorial Files
In this tutorial, “watch” is the name of the directory where the tuto-
rial will be performed. For the VHDL tutorial, copy all the files from
the /synplify_tut/vhdl/src directory to the /synplify_tut/
vhdl/watch directory. For the Verilog tutorial, copy all the files from
the /synplify_tut/verilog/src directory to the /
synplify_tut/verilog/watch directory.

Creating the Tenths LogiBLOX Component
Since the Watch design contains a LogiBLOX macro, you must create
it before performing RTL simulation or implementation. While
creating the LogiBLOX component, you will create a behavioral
simulation netlist for RTL simulation, as well as the implementation
netlist and an instantiation netlist. To create the LogiBLOX compo-
nent, follow these steps.

1. To invoke the LogiBLOX GUI, type lbgui at the UNIX prompt,
or if you are using a PC, click on the LogiBLOX icon in the Xilinx
Program group.

The LogiBLOX GUI and Setup dialog box open.

2. In the Vendor tab of the Setup dialog box, select B(I).

Normally at this point you would either select the bus notation
for parenthesis B(I) if your format is EDIF or select the bus nota-
tion for angle-brackets B<I> if your format is XNF. But for this
tutorial, select B(I) since Synplify 5.0 and above supports EDIF.

3. In the Project Directory tab, use the Browse button or type the
path to specify the project directory where you wish to write files.

4. In the Device Family tab, choose the xc4000e family since the
design is targeted for the Xilinx demoboard.

5. In the Options tab, set the following options.

VHDL tutorial settings.

• Simulation Netlist: Behavioral VHDL netlist

• Component Declaration: VHDL Template

• Implementation Netlist: NGC File

Verilog tutorial settings.
1-6 Xilinx Development System

Synplify/ModelSim Tutorial
• Simulation Netlist: Structural Verilog netlist

• Component Declaration: Verilog Template

• Implementation Netlist: NGC File

6. Click OK to close the Setup dialog box.

Note: If you are familiar with LogiBLOX, notice that the implementa-
tion netlist extension is now .ngc. This is new in the Xilinx Alliance
software 1.5. For more details, read Xilinx Solution # 3904 which is
available at http://www.xilinx.com/techdocs/3904.htm.

Figure 1-1 LogiBLOX Setup Dialog Box

7. In the LogiBLOX Module Selector dialog box, set the following
options.

• Module Type: Counters

• Module Name: tenths (Typed by the user)

• Bus Width: 10 (Optionally typed by the user)

• Operation = Up

• Deselect D_IN

• Select Async. Control and Terminal Count

• By default, the following is selected: Clock Enable, Q_OUT
Synplicity Tutorial 1-7

Synplicity Tutorial
• Style = Maximum Speed

• Encoding = One Hot

• Async. Val = 2#0000000001#

Figure 1-2 LogiBLOX Module Selector

8. Click OK.

LogiBLOX generates the following output Files.

• logblox.ini - shows the LogiBLOX options used

• logiblox.log - log file of the LogiBLOX GUI messages
window

• tenths.mod - LogiBLOX Modules options file

• tenths.ngc - implementation netlist
1-8 Xilinx Development System

Synplify/ModelSim Tutorial
• tenths.vhi - VHDL declaration/instantiation template

• tenths.vhd - VHDL behavioral simulation netlist

• tenths.vei - Verilog declaration/instantiation template

• tenths.v - Verilog structural simulation netlist

RTL Simulation
The Watch design contains an XC4000E library part, OSC4. This
component represents the on-chip oscillator that generates nominal
clock frequencies of 8 MHz, 500 KHz, 16 KHz, 490 Hz, and 15 Hz. The
Watch design uses the 15-Hz output from this component when
targeted for XC4000E family designs. The clock output from OSC4 is
buffered through a BUFG global clock buffer to minimize clock skew.

XC4000E family devices have eight on-chip clock buffers, one BUFGP
(primary global buffer), and one BUFGS (secondary global buffer) in
each corner of the device. Although it is possible to use them for
other purposes, BUFGPs are best used to route externally-generated
clock signals. BUFGSs have more flexibility, and can be used to route
any large fan-out net, even if it is internally sourced. A BUFG symbol
can represent either type of buffer, and allows the implementation
software to choose the type of global buffer that is best in each situa-
tion. BUFG also facilitates design retargeting to other Xilinx device
families, since it can represent any type of global buffer in any family.
The BUFG in the Watch design is substituted for a BUFGS during
design implementation, because the clock is generated internally by
the on-chip oscillator. See the Xilinx Libraries Guide and the Xilinx
Programmable Logic Data Book for more information on global clock
buffers for Xilinx devices.

For simulation purposes, it is not necessary to create a clock for the
Watch testbench, since the design already has the OSC4 component
generating a 15Hz signal. However, one problem with this is that the
OSC4 component also has a 8MHz pin, and therefore the OSC4 simu-
lation model has to simulate the toggling of the 8MHz pin. This
means that it takes an extraordinary amount of time for ModelSim to
simulate a 15Hz clock signal.

Note: For Verilog simulation, the OSC4 model has a timescale preci-
sion of 100ps. The timescale value is set to 1 ps because that is the
basic unit used in the NCD and speed files. To make a transition to
the first edge of the 15Hz clock, which is at 3.33E10 ps (.0333
Synplicity Tutorial 1-9

Synplicity Tutorial
seconds), requires 3.33E10 / 100 = 333 million simulation events. The
OSC4.v UNISIM model is located at $XILINX/verilog/src/
UNI4000E .

Therefore, a clock is defined in the testbench/testfixture that clocks
much faster, and this clock is selected through a multiplexer to force
its values onto the CLK signal, bypassing the OSC4 F15 clock.

Note: Xilinx Solution # 3767 contains further information on the use of
the OSC4 with VHDL simulation for ModelSim. This is available at
http://www.xilinx.com/techdocs/3767.htm for review.

Copying Source Files to the Functional Simulation
Directory

VHDL

For the VHDL tutorial, copy the following files into the
/synplify_tut/vhdl/watch/func directory.

• smallcntr.vhd

• cnt60.vhd

• hex2led.vhd

• debug_ckt.vhd

• tenths.vhd

• watch.vhd

• stmchine.vhd

• testbench.vhd

• rtl_sim.do

Verilog

For the Verilog tutorial, copy the following files into the
/synplify_tut/verilog/watch/func directory.

• smallcntr.v

• cnt60.v

• hex2led.v
1-10 Xilinx Development System

Synplify/ModelSim Tutorial
• debug_ckt.v

• tenths.v

• watch.v

• stmchine.v

• testfixture.v

• rtl_sim.do

Starting ModelSim
If you are using the PC, invoke the simulator by selecting Programs
→ Model Tech → ModelSim from the Start menu. For UNIX work-
stations, type the following at the prompt.

vsim -i &

If you are using ModelSim EE, set the project directory using the
File → Change Directory menu command and select watch/
func . ModelSim PE users can set the project directory using the
File → Directory menu command and select watch\func .

Creating the Work Directory
Before compiling the VHDL/Verilog source files, you must create a
directory for use as a library. Type the following at the ModelSim
prompt.

vlib work

This action is echoed in the Transcript window as shown in the
following figure.
Synplicity Tutorial 1-11

Synplicity Tutorial
Figure 1-3 MTI Transcript Window

Compiling the Source Files

VHDL

Since Xilinx Unified library components are instantiated within the
VHDL source code, the UNISIM simulation models must be
provided for the OSC4, BUFG, MD0, MD1, IBUF, OBUF, RDBK, and
STARTUP components. The following lines must be added in the files
watch.vhd and debug_ckt.vhd.

library unisim;

use unisim.vcomponents.all;

As a key point, Synplify supports translate_off/translate_on direc-
tives. Translate_off instructs Synplify not to read in and synthesize
anything after the translate_off directive, until a translate_on direc-
tive is found. In this tutorial, these directives are used to declare the
simulation library without removing the declaration for synthesis.

You also need to comment out the following lines in watch.vhd and
debug_ckt.vhd (using “--” at the beginning of each line).

library xc4000;

use xc4000.components.all;
1-12 Xilinx Development System

Synplify/ModelSim Tutorial
The xc4000 library is used solely by Synplify. The library contains
pre-defined black boxes for Xilinx primitives so you can manually
instantiate them into your design.

The Vcom command compiles VHDL code for use with Vsim RTL
simulation. Also, to enhance simulation, both Synplify and ModelSim
support VHDL ‘93. The -93 switch is used to enable support for 1076-
93. Type the following at the ModelSim prompt.

vcom -93 -explicit smallcntr.vhd

vcom -93 cnt60.vhd tenths.vhd

vcom -93 debug_ckt.vhd hex2led.vhd stmchine.vhd

vcom -93 watch.vhd testbench.vhd

The -explicit is used to compile smallcntr.vhd since there is a defini-
tion of “=” in the std_logic_1164 and std_logic_unsigned libraries
that are declared for the entity. The option resolves resolution
conflicts in favor of explicit function.

Verilog

You need to comment out the following line in the watch.v file (using
“//” at the beginning of the line).

‘include “/path/to/synplify/lib/xilinx/xc4000.v”

The xc4000 library is used solely by Synplify. The library contains
pre-defined black boxes for Xilinx primitives so you can manually
instantiate them into your design.

Also, comment out the Tenths module declaration within watch.v
since the simulation model for this component is provided in later
steps.

module tenths (CLK_EN, CLOCK, ASYNC_CTRL, Q_OUT,
TERM_CNT)

/* synthesis black_box */;

input CLK_EN, CLOCK, ASYNC_CTRL;

output [9:0] Q_OUT;

output TERM_CNT;

endmodule
Synplicity Tutorial 1-13

Synplicity Tutorial
The Vlog command compiles Verilog code for use with Vsim RTL
simulation. Type the following at the ModelSim prompt.

vlog testfixture.v watch.v stmchine.v hex2led.v
debug_ckt.v cnt60.v smallcntr.v tenths.v

Invoke the Simulator
For the VHDL tutorial, type the following at the ModelSim prompt to
invoke the ModelSim simulator.

vsim overall

For the Verilog tutorial, type the following at the ModelSim prompt
to invoke the ModelSim simulator.

vsim -L simprim_ver -L UNI4000E test

Since Xilinx Unified library components are instantiated within the
Verilog source code, the UNISIM simulation models must be
provided for the OSC4, BUFG, MD0, MD1, IBUF, OBUF, RDBK, and
STARTUP components. Also, notice that the library, simprim_ver, is
listed as well. For LogiBLOX generated components, Ngd2ver is used
to generate a structural Verilog netlists to facilitate functional simula-
tion. The structural netlist contains SIMPRIM library components
which are mapped to the simprim_ver library.

Note: The file, rtl_sim_xilinx.do, runs the above commands; you can
run it instead of executing each command. The file is located in the
src directory and you can copy it into the watch/func directory. To
execute the file, type the following at the ModelSim prompt.

do rtl_sim.do

ModelSim EE users, optionally, may launch the macro via the Macro
→ Execute Macro menu command. ModelSim PE users select
File → Execute Macro .

Running the Simulation
To perform simulation using ModelSim, follow these steps.

1. To view all the ModelSim debug windows, type the following.

view *
1-14 Xilinx Development System

Synplify/ModelSim Tutorial
2. Add the signals from the selected region in the Structure window
to the Wave and List windows by issuing the following
commands at the ModelSim prompt.

add wave * (ModelSim EE 5.2)

add list *

wave * (ModelSim PE 4.7)

list *

3. In the Structure window, notice that VHDL design units are indi-
cated by squares and Verilog modules are indicated by circles.
You can expand and collapse regions of hierarchy by clicking on
the (+) and (-) notations.

4. To run the simulation for a specified amount of time at the
ModelSim prompt, type the following.

run 100000 ns

The simulation output is displayed in the Wave window. You
may have to zoom in/out to view the waveforms.

5. In the Wave window, try adding or removing cursors with the
Cursor → Add | Remove menu command. When multiple
cursors are drawn, ModelSim adds a delta measurement
showing the time difference between the cursors. The selected
cursor is drawn as a solid line and the values at the cursor loca-
tion are shown to the right of the signal name. All other cursors
are drawn as dotted lines. If you cannot see the signal value next
to the signal name, select the bar separating the signal names
from the waveforms and drag it to the right.

Note: The above commands have been combined into a macro file
called stim_ee.do for ModelSim EE or stim_pe.do for ModelSim PE.
You can execute them at the ModelSim prompt.
Synplicity Tutorial 1-15

Synplicity Tutorial
Figure 1-4 Simulation Output in Wave Window

Synthesizing the Design Using Synplicity
In this section, you synthesize the design using two methods,
Synplify GUI and Synplify batch mode.

Synthesizing the Design Using the Synplify GUI
1. Invoke the Synplify Graphical User Interface as follows.

• UNIX users, type synplify & at the prompt.

• Windows NT users, double-click on the Synplify icon in the
Synplicity program group.

• Windows 95 users, Choose Programs → Synplicity →
Synplify from the Start button.

This launches the Synplicity Synplify main window. Projects are
typically set up interactively from the Project Window, which is
the main window in Synplify. The Project window lists your
source files, result file, and target information. You can open a
new project with the File → New menu, or by clicking the P
button on the Synplify button bar.
1-16 Xilinx Development System

Synplify/ModelSim Tutorial
2. To specify the target technology from the menu, select Target →
Set Device Options .

3. If you are going to download this design to the demoboard,
choose the following settings.

• Technology: Xilinx 4000E

• Part: XC4003E

• Package: PC84

Leave all other synthesis options at their default settings.

Figure 1-5 Set Device Options Dialog Box

4. The Source Files portion of the Synplify main window is where
you specify input design files. To specify your input files, press
the right mouse button in the Source Files list box, and select Add
Source Files . You can also add files to the Project Window by
dragging and dropping files from File Manager or Explorer.

5. For the VHDL tutorial, change the order of the VHDL input
source files to the following order.

smallcntr.vhd cnt60.vhd hex2led.vhd stmchine.vhd
debug_ckt.vhd watch.vhd
Synplicity Tutorial 1-17

Synplicity Tutorial
For the Verilog tutorial, change the order of the Verilog input
source files to the following order.

smallcntr.v cnt60.v hex2led.v stmchine.v debug_ckt.v watch.v

You need to modify the following line in watch.v to the correct
location of xc4000 library from Synplify.

‘include “/path/to/synplify/lib/xilinx/xc4000.v”

By default, Synplify scans the input source files from top to
bottom of the Source File list box. For Verilog, the top level
module is the last module it finds that is not instantiated some-
where in the design. For VHDL, it is the last architecture of the
last entity that is compiled. Therefore, the recommendation for
both languages is to put your top level as the last object in the last
design file in your list of input source files. To specify a different
top-level design block, simply move a different file to the bottom
of the Source Files list box (select and drag with the left mouse
button). In a Tcl script, you can also choose a different top level
design by using the set_option -top_module command.

6. Define the pinout using a SDC file.

It is highly recommended that you let the automatic placement
and routing program, Par, define the pinout. Pre-assigning loca-
tions to the I/Os can sometimes degrade the performance of the
place and route tools. However, it is usually necessary, at some
point, to lock the pinout of a design so that it can be integrated
into a board design. The initial pinout should be defined by
running the place and route tools without pin assignments, then
locking down the I/O placement so that it reflects the locations
chosen by the tools. As a general rule, inputs should be placed on
the left side of the die, and outputs on the right. I/O in the tuto-
rial must be assigned pin locations so that the Watch design can
function in the Xilinx demonstration boards. Since the design is
fairly simple, these pin assignments do not adversely affect the
ability of Par to place and route the design completely.

You will use a constraints file to lock down selected signals to
designated pins. A constraints file (.sdc file) is used for user
timing constraints and vendor specific attribute constraints. For
ease of use and saving time, all other pins have been locked in the
SDC file.
1-18 Xilinx Development System

Synplify/ModelSim Tutorial
Note: Pin assignments can also made directly into the HDL. Please
read Xilinx Solution # 2379 which is available at http://
www.xilinx.com/techdocs/2379.htm for instructions.

7. To lock the RESET signal to pin 28 and STRTSTOP signal to pin
18, edit the partially completed SDC file, watch.sdc, that is
provided for you. Add the following lines.

define_attribute RESET xc_loc “P28”

define_attribute STRTSTOP xc_loc “P18”

8. Save and add the constraints file to the Source Files list box in the
Synplify Project Window.

9. Click the Add button, and follow the menu List Files of
Type → Constraint Files (.sdc) .

10. Highlight watch.sdc and click the OK button.

Note: VHDL is case-insensitive but Tcl is case-sensitive. You must
match signal names as they appear in the HDL source code.

11. Enable the Symbolic FSM Compiler checkbox on the Synplify
Project Window.

The Symbolic FSM Compiler can be enabled for your entire
design by clicking the Symbolic FSM Compiler checkbox on the
Synplify Project Window. If this check box is set, then no changes
of any kind need to be made to the source code. Set this option
since Synplify automatically recognizes and extracts the state
machines in the design, and performs the Symbolic FSM
Compiler optimizations.

12. At this point, all the options are set and you are ready to synthe-
size the design. Click the RUN button.

Synplify displays DONE! when synthesis is complete. Synplify
displays ERRORS! if there are user errors in your source file. If
there are warnings (but no errors), Synplify will display
DONE(warnings).

If Synplify reports only warnings, and no errors, it does complete
the mapping to your target device. Nevertheless, it is important
to investigate any warnings messages from Synplify, before
continuing your design process.
Synplicity Tutorial 1-19

Synplicity Tutorial
When synthesis is done, Synplify creates the result file with the
filename specified in the user interface.

13. Double-click the left mouse button on the result filename to see it
displayed in the Synplify Editing Window.

14. Click the View Log button to see the log file, including Resource
Usage Reports.

Figure 1-6 Synplify Window

15. If you wish to view how the design was synthesized, select HDL
Analyst → RTL View .
1-20 Xilinx Development System

Synplify/ModelSim Tutorial
Synthesizing the Design Using the Synplify Batch
Mode

Synplicity has extended the Tcl language with some synthesis
commands so Tcl can be used as a scripting language to run Synplify.
Tcl scripts have a .tcl extension and are executed in Synplify from the
File → Run Tcl Script menu command. As part of the 5.0
release, batch mode operation is standard with a floating license.
Please contact Synplicity to request this feature. The script file,
synthesis.tcl, has been created for you to illustrate this feature. To run
Synplify in batch mode, type the following.

synplify -batch synth.tcl

This executes the Tcl script file and exits when finished. The files
watch.edf and watch.srr file are created. The flow through Synplify is
fully defined by the commands in the script. The script can use any
Synplify command including all Tcl and shell commands that can be
found in the path.

Implementing the Watch Design
To implement the Watch design, refer to the Xilinx Design Manager
Tutorial. You need the following files for implementation.

• watch.edf

• tenths.ngc

When you implement the Watch design with the Xilinx Design
Manager, you need to set the Implementation Options Timing
Template to ModelSim VHDL for the VHDL tutorial to produce the
time_sim.vhd file, or ModelSim Verilog for the Verilog tutorial to
produce the time_sim.v file, and time_sim.sdf for timing simulation.
To set these options, follow these steps.

1. In the Design Manger’s Implement window, select the Options
button, to open the Options dialog box.

2. In the Program Option Template, set Simulation to ModelSim
VHDL for the VHDL tutorial or ModelSim Verilog for the Verilog
tutorial.
Synplicity Tutorial 1-21

Synplicity Tutorial
Figure 1-7 Design Manager Implement Dialog Box
1-22 Xilinx Development System

Synplify/ModelSim Tutorial
Figure 1-8 XC4000 Simulation Options Dialog Box

3. Select the option to Produce Timing Simulation Data in the
Options dialog box.

4. Proceed with the Design Manager Tutorial.

Note: Although not included in this tutorial, it is possible to run a
post-Ngdbuild and post-Map simulation, which may be helpful for
debugging the design.

Timing Simulation

VHDL
For VHDL tutorial, you need two files from the Xilinx core tools.
Synplicity Tutorial 1-23

Synplicity Tutorial
• time_sim.vhd

• time_sim.sdf

Now that the HDL netlist has been resolved into primitives, you need
to modify the testbench configuration. The Unisim library was refer-
enced since the pre-synthesis netlist contained instantiated Xilinx
macros.

To perform timing simulation, follow these steps.

1. Copy time_sim.vhd, time_sim.sdf, and testbench.vhd to the
following directory.

/synplify_tut/vhdl/watch/time

2. Launch ModelSim, and navigate to the following directory.

/synplify_tut/vhdl/watch/time

3. Create the work directory.

vlib work

4. View the testbench.vhd file and notice that there are two sections
at the bottom.

The first section is for RTL functional simulation and is already
being used. Comment this out by using the “--” at the beginning
of each line starting with the line “configuration overall of
TBX_WATCH is” and ending with the line “end overall,” in the
RTL simulation section.

5. In the Post P&R simulation section, uncomment the lines by
removing the “--” symbols. Again for the line beginning with
“configuration overall of TBX_WATCH is” and ending with “end
overall.”

6. After editing the testbench.vhd, save the changes and exit.

7. Compile the VHDL source files and the testbench.

vcom time_sim.vhd testbench.vhd

8. Read in the SDF file for timing simulation.

vsim -sdftyp uut=time_sim.sdf overall

Alternatively for ModelSim EE users, select File → Load New
Design . ModelSim PE users, select File → Simulate . High-
light “overall” in the Design Unit window. Click the Add button.
1-24 Xilinx Development System

Synplify/ModelSim Tutorial
To apply the timing data, click on the SDF tab on the Load Design
window. Click the Add button. Browse and select for the
time_sim.sdf file. Type uut in the Apply to Region field and click
the Load button.

9. View the necessary debugging windows by typing the following
command at the ModelSim prompt.

view wave signals source

10. View and add the signals of the design to the waveform window.

11. At the ModelSim prompt type.

run 100000 ns

12. Right click in the waveform window and zoom in. Another way
to zoom in, press and hold the middle mouse button and draw a
square around the area to zoom in on. After simulating, you can
then zoom in and view the delay from the clock edge to the
TENSOUT, ONESOUT, and TENTHSOUT output change.

Note: The above commands have been combined into a macro file,
time_sim.do, and can be executed at the ModelSim prompt.

Verilog
For Verilog tutorial, you need two files from the Xilinx core tools.

• time_sim.v

• time_sim.sdf

To perform timing simulation, follow these steps.

1. Copy time_sim.v, time_sim.sdf, and testfixture.v to the following
directory.

/synplify_tut/verilog/watch/time

2. Launch ModelSim, and navigate to the following directory.

/synplify_tut/verilog/watch/time

3. Create the work directory.

vlib work

4. Compile the Verilog file and the testfixture.

vlog testfixture.v time_sim.v
Synplicity Tutorial 1-25

Synplicity Tutorial
5. Read in the SDF file for timing simulation. Ngd2ver automati-
cally writes out a directive, $sdf_annotate, within the time_sim.v
file. This directive specifies the appropriate SDF file to use in
conjunction with the produced netlist. So, it unnecessary for the
user to specify an option for ModelSim to read the SDF.

vsim -L simprim_ver test

Now that the HDL netlist has been resolved into primitives, we
must provide the simulation models to the SIMPRIM library.

6. View the necessary debugging windows by typing the following
command at the ModelSim prompt.

view wave signals source

7. View and add the signals of the design to the waveform window.

8. At the ModelSim prompt type.

run 100000 ns

9. Right click in the waveform window and zoom in. Another way
to zoom in, press and hold the middle mouse button and draw a
square around the area to zoom in on. After simulating, you can
then zoom in and view the delay from the clock edge to the
TENSOUT, ONESOUT, and TENTHSOUT output change.

Note: The above commands have been combined into a macro file,
time_sim.do, and can be executed at the ModelSim prompt.

The Synplicity/MTI/Xilinx Tutorial is now completed!
1-26 Xilinx Development System

	Synplify/ModelSim Tutorial
	Design Description
	Before Beginning the Tutorial
	Tutorial Installation
	Tutorial Directory and Files
	VHDL Design Files
	Verilog Design Files
	Script Files
	Simulation Models for MTI
	Copying the Tutorial Files

	Creating the Tenths LogiBLOX Component
	RTL Simulation
	Copying Source Files to the Functional Simulation ...
	VHDL
	Verilog

	Starting ModelSim
	Creating the Work Directory
	Compiling the Source Files
	VHDL
	Verilog

	Invoke the Simulator
	Running the Simulation

	Synthesizing the Design Using Synplicity
	Synthesizing the Design Using the Synplify GUI
	Synthesizing the Design Using the Synplify Batch M...

	Implementing the Watch Design
	Timing Simulation
	VHDL
	Verilog

