
XSI Synopsys Interface/Tutorial Guide 1-1

Chapter 1

XSI Synopsys Interface/Tutorial Guide

The XSI Synopsys Interface/Tutorial Guide presents a series of smaller
tutorials for FPGA Compiler and FPGA Express that guide you
through VHDL and Verilog FPGA Compiler and FPGA Express
design processes for XC4000, Spartan, and Virtex designs. You pick
the tutorial that best suits your particular learning needs. Front-to-
back tutorials, all take you through the steps in the design process
including HDL design entry, design implementation, design simula-
tion, timing simulation, and downloading the design to a functioning
device.

The design used in these tutorials is called “stopwatch.” The simple
design example demonstrates many system features that you can
apply to more complex FPGA designs. The tutorials assume that you
have a working knowledge of Synopsys FPGA Compiler or FPGA
Express, as well as VHDL and Verilog. These tutorials are UNIX
based.

These tutorials include a design you can download to the demo
board. If you want to download to the demo board, select
XC4003EPC84-3 as a target device.

This tutorial document is divided into two unmarked parts.

• An introduction that addresses issues and preparatory tasks
common to all platforms

• Specific instructions for particular platforms and devices (for
example, the “Spartan/XC4000 Verilog Alliance FPGA Express
v2.1 Tutorial” section)

Before going on to your specific tutorial, you must first read the
“Using Common Setup Procedures” section to understand general
requirements and setup information. Specific setup information for
the different tutorials appear in those individual sections.

XSI Synopsys Interface/Tutorial Guide

1-2 Xilinx Development System

This tutorial document is divided into the following sections.

• “Using Common Setup Procedures” section

• “Spartan/XC4000 Verilog FPGA Compiler VSS Tutorial” section

• “Spartan/XC4000 Verilog Alliance FPGA Express v2.1 Tutorial”
section

• “Spartan/XC4000 VHDL FPGA Compiler VSS Tutorial” section

• “Spartan/XC4000 VHDL Alliance FPGA Express v2.1 Tutorial”
section

• “Virtex Verilog FPGA Compiler VerilogXL Tutorial” section

• “Virtex Verilog Alliance FPGA Express v2.1/VerilogXL v2.5 Tuto-
rial” section

• “Virtex VHDL FPGA Compiler VSS Tutorial” section

• “Virtex VHDL Alliance FPGA Express v2.1/VSS Tutorial” section

Throughout this document, a backslash (“\”) at the end of an
example line means you enter the example as one line on the
command line.

Using Common Setup Procedures
This section provides information common to the device groups
contained in this tutorial. Specific setup procedures appear at the
beginning of each section for particular devices. The setup proce-
dures in this section are common to all devices. With the exception of
the list of tutorial files, information for FPGA Compiler appears sepa-
rately from information for FPGA Express.

To use the tutorials you need A1.5i XSI and either Synopsys v1997.01
(FPGA Compiler and VSS) or better or FPGA Express v2.1 or better.
Additionally, you need Verilog XL v2.5 if you wish to create the tuto-
rial design in Verilog.

Checking the Common Tutorial Files
The following list of files is common to both FPGA Compiler and
FPGA Express. These files appear (after you uncompress and untar
the tutorial file) during the functional simulation process in the
WORK directory you create later in this tutorial.

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-3

• cnt60.vhd

• filesf.f

• filest.f

• hex2led.vhd

• smallcntr.vhd

• stmchine.vhd

• stopwatch.vhd

• testbenchf.vhd

• testbencht.vhd

• run.script

• pr.script

These are the design files for the tutorial, including a testbench for
timing simulation and a testbench for functional simulation. The top-
level file in this design is stopwatch.vhd.

The LogiBLOX component in this design is called “tenths.” The Logi-
BLOX component for place and route is called “tenths.ngc.” The
following are other LogiBLOX files

• logiblox.ini

• logiblox.log

• tenths.v

• tenths.vei

You can use LogiBLOX only with non-Virtex designs.

Using Libraries for FPGA Compiler
A1.5i XSI VHDL uses simulation libraries for functional simulation
(UNISIM), timing simulation (SIMPRIM), VITAL simulation (also
SIMPRIM), and additional functional simulation libraries for Logi-
BLOX and XDW simulation. You use the LogiBLOX library when
instantiating a LogiBLOX component into a design. You use the XDW
library in addition to the UNISIM library when performing post-
synthesis pre-M1 simulation with non-Virtex FPGA Compiler-based
flows.

XSI Synopsys Interface/Tutorial Guide

1-4 Xilinx Development System

Setting up for FPGA Compiler
Before you begin a tutorial for FPGA Compiler, in your home direc-
tory, create a directory to contain tutorial files. You later, in this empty
directory, copy the appropriate tutorial file (for example, spartanx-
sivhdl.tar.Z).

Next, create a .synopsys_vss.setup using the template provided in the
$XILINX/.synopsys/examples area.

1. In the $XILINX/synopsys/examples directory, copy the file
template.synopsys_vss.setup into the same directory that
contains the tutorial files.

2. Rename the file template.synospys_vss.setup to
.synopsys_vss.setup.

3. If you copied the $XILINX/synopsys/libraries directory locally,
modify the paths for the various simulation libraries as shown in
the following table.

This table assumes you copied the contents of $XILINX/
synopsys/ into the path /home/data.

If you use a version of Synopsys newer than v1997.01 and simulate
with VSS, you must recompile the XSI XDW and simulation libraries.
If you use a version of Synopsys newer than v1997.01 and use
Verilog, you need recompile only the XSI XDW synthesis libraries.

The A1.5i XSI XDW libraries are a collection of Synopsys DesignWare
libraries provided by Xilinx. There is a separate XSI XDW Design-
Ware library for each chip family in A1.5i. For example, there are
separate families for Spartan, 4000XL, 4000EX, and Virtex. You need
only recompile the libraries for the device family you target.

Make sure that the XC4000E XDW DesignWare libraries are
compiled.

Table 1-1 Simulation Libraries and Paths

Library Path

UNISIM /home/data/libraries/sim/lib/unisims

SIMPRIM /home/data/libraries/sim/lib/simprims

LOGIBLOX /home/data/libraries/sim/lib/logiblox

XC9000 /home/data/libraries/sim/lib/xc9000/ftgs

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-5

All A1.5i XSI libraries have compile scripts so you can compile these
libraries in the $XILINX area, provided you have write permissions
to the $XILINX area. If you lack write permissions, make a local copy
of the $XILINX/synopsys/libraries directory and follow the instruc-
tions below, but instead of changing directories to $XILINX/
synopsys/libraries, change to your local copy of that area.

1. Go to the $XILINX/synopsys/libraries/dw/src/xxnnnnx direc-
tory, where xxnnnnx is the target device name (such as XC4000E).

a) At the UNIX prompt, enter the following

dc_shell –f install_dw.dc

b) After copying, uncompressing, and untarring tutorial files in
the directory you previously created, in that same directory,
create a directory called WORK. Type the following at the
unix prompt to create WORK.

mkdir WORK

2. After creating the work directory, you must create a
.synospys_dc.setup file. You can find templates for these files in
the $XILINX/.synopsys/examples area.

In the $XILINX/synopsys/examples directory, copy the file
template.synopsys_dc.setup_fc into the same directory that
contains WORK. Rename template.synopsys_dc.setup_fc to
.synopsys_dc.setup, adding missing lines using the A1.5i XSI tool
synlibs. Synlibs displays the synthesis library information needed
for a given die-speed combination. For example, if you synthe-
size the design in a 4003Epc84-3 device, to add the correct infor-
mation into the .synopsys_dc.setup file for the 4000E you type
the following in the same directory as the .synopsys_dc.setup file.

synlibs –fc 4003E-3 >> .synopsys_dc.setup

This command appends the output of synlibs into the
.synopsys_dc.setup file. If you have compiled the 4000E XDW
libraries in the $XILINX tree, you can proceed to checking the
.synopsys_vss.setup file.

Note: This tutorial uses Spartan, 4000X, and Virtex devices. You must
use the appropriate device name in the previous example when
following tutorial instructions.

XSI Synopsys Interface/Tutorial Guide

1-6 Xilinx Development System

If you compiled the XDW libraries in the $XILINX area, you need not
modify the define_design_lib line in the .synopsys_dc.setup file. If
you copied locally the $XILINX/synopsys/libraries directory, change
the path in the .synopsys_dc.setup file to reflect the copied directory
path. For example, if you copied $XILINX/libraries to /home/data,
edit the define_design_lib setting made by synlibs for the 4003E-3
shown previously to reflect the /home/data location as shown in the
following example.

define_design_lib xdw_xc4000e /home/data/ \
libraries/dw/lib/xc4000e

A backslash (“\”) at the end of an example line means you enter the
example as one line on the command line.

Before starting the tutorial, in the directory where you created
.synopsys_dc.setup and the WORK directory, type the following
command.

ls –l

Make sure that directory has at least the following items.

• .synopsys_dc.setup

• .synopsys_vss.setup

• WORK

Setting Up for FPGA Express
To properly set your A1.5i environment for FPGA Express, follow the
instructions provided in the A1.5i Installation Guide, the FPGA
Express Installation Guide, and the VerilogXL installation guide.

Download the FPGA Express tutorial files from the Xilinx web site,
uncompressing and untarring these files into the directory of your
choice; you can create a new directory for the tutorial.

You can find more specific information about setting up your system
for FPGA Express in the Quick Start Guide for Alliance Series 1.5i
(referred to throughout this document as the Quick Start Guide).

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-7

Spartan/XC4000 Verilog FPGA Compiler VSS
Tutorial

This tutorial familiarizes you with the A1.5i FPGA Compiler/VSS
design flow and includes a VHDL design that you can optionally
download to the demo board, if you choose a XC4003EPC84-3 as a
target device.

This tutorial takes you from functional simulation to timing simula-
tion. The tutorial presents common design flow tasks, such as locking
pins and setting slew rate.

Getting Ready for this Tutorial
To use this tutorial, you need the software described in the “Using
Common Setup Procedures” section. If you use a version of Synopsys
newer than v1997.01, you must follow the additional steps in the
“Setting Up for the Spartan/XC4000 Verilog FPGA Compiler Tuto-
rial” section. By default, this tutorial uses the XC4000E family as a
target design, but you can use other FPGA families supported under
A1.5i XSI as well. If you want to target a device other than the
XC4000E, reference the directories that apply to that family (for
example, the XDW libraries have separate directories for XC4000XL,
Spartan, and Virtex). Use synlibs with the exact die-speed target
desired.

Setting Up for the Spartan/XC4000 Verilog FPGA
Compiler Tutorial

To use this tutorial, ensure installation of your Xilinx and Synopsys
software and know where the software resides on your system. If you
use a version of Synopsys newer than v1997.01, you must re-compile
the XSI XDW and simulation libraries. Refer to the setup instructions
in the “Setting up for FPGA Compiler” section.

For this tutorial, recompile only the libraries related to synthesizing a
XC4000E device (if using a version of Synopsys newer than v1997.01),
and ensure compilation of the XC4000E XDW DesignWare libraries.
To compile the XC4000E device libraries, complete the following
steps.

1. Change directories to the $XILINX/synopsys/libraries/dw/src/
xc4000e directory.

XSI Synopsys Interface/Tutorial Guide

1-8 Xilinx Development System

2. At the UNIX prompt type the following.

dc_shell –f install_dw.dc

3. Copy the file 4kxsiverilog.tar.Z into the empty directory you
competed in the “Setting up for FPGA Compiler” section.
Uncompress and untar this file.

4. Use synlibs to add the missing lines to the .synopsys_dc.setup file
you renamed earlier in the “Setting up for FPGA Compiler”
section. In this tutorial you synthesizing the design in a
4003Epc84-3 device, so to add the correct information into the
.synopsys_dc.setup file for the s05pc84-3, type the following in
the same directory as the .synopsys_dc.setup file.

synlibs -fc 4003E-3 >> .synopsys_dc.setup

This appends the output of synlibs into the .synopsys_dc.setup
file. If you compiled the Spartan XDW libraries in the $XILINX
tree, you can proceed to checking the .synopsys_vss.setup file. If
you compiled the XDW libraries in the $XILINX area, then you
need not modify the define_design_lib line in the
.synopsys_dc.setup file.

5. If you copied the $XILINX/synopsys/libraries directory locally,
change the path in the .synopsys_dc.setup file to reflect the
copied directory path. For example, if you copied $XILINX/
libraries to /home/data, edit the define_design_lib setting made
by synlibs for the 4003E-3 shown previously to reflect the /
home/data location.

define_design_lib xdw_xc4000e /home/data/ \
libraries/dw/lib/xc4000e

Conducting Functional Simulation
You finished most of the setup when you created the WORK direc-
tory and made the .synopsys_vss.setup file. Now you compile the
design files and testbench and run the VSS simulation tool.

In the A1.5i XSI VSS functional simulation flow you can simulate
instantiated XSI cells such as FDCE, or OSC4. Additionally, by using
the UNISIM simulation libraries, you can simulate and implement
the GSR without impact to the design or testbench.

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-9

1. Change to the /home/user/tutorial directory (where the
.synopsys_dc.setup, .synopsys_vss.setup file, and WORK direc-
tory reside).

2. Check to make sure the files listed in the “Checking the Common
Tutorial Files” section also reside in this directory.

3. Perform functional simulation by running the VerilogXL
command verilog with the data file filesf.f. At the UNIX prompt
enter the following.

verilog –f filesf.f

VerilogXL issues error messages when you attempt to simulate,
three of which appear in the following example.

Compiling source file “testbenchf.v”

Compiling source file “stopwatch.v”

Compiling source file “stmchine.v”

Compiling source file “hex2led.v”

Compiling source file “cnt60.v”

Compiling source file “smallcntr.v”

Compiling source file “tenths.v”

Error! Module or primitive (OSC4) not defined [Verilog-MOPND]

 “stopwatch.v”, 22: OSC4 OSCILLATOR(.F500K(oscout)

);

Error! Module or primitive (BUFG) not defined [Verilog-MOPND]

 “stopwatch.v”, 24: BUFG CLOCKBUF(.I(oscout), .O(

 clkint));

Error! Module or primitive (X_FF) not defined [Verilog-MOPND]

 “tenths.v”, 46: X_FF FLOP0(.IN(Q_OUT[9]), .CLK(

 CLOCK), .CE(CLK_EN), .SET(FLOP0_GSR_OR), .RST(

 GND), .OUT(Q_OUT[0]));

XSI Synopsys Interface/Tutorial Guide

1-10 Xilinx Development System

4. Place the ‘uselib directive in the top-level file of this design, stop-
watch.v by adding this line to the top of your stopwatch.v file.

`uselib dir=$XILINX/verilog/src/UNI4000E libext=.v

You do this because the Verilog code you tried to simulate
contains instantiations of LogiBLOX and instantiated XSI
synthesis library cells (such as OSC4, FDCE, and BUFG). You use
the ‘uselib directive to tell the Verilog simulator where to find the
models for these cells.

5. Replace the $XILINX text with the explicit path in your environ-
ment. If you set $XILINX to /home/software/xilinx, than place
the ‘uselib line in the top of the stopwatch.v file as follows.

`uselib dir=/home/software/xilinx/verilog/src/ \
UNI4000E libext=.v

6. Similarly, to the top of the .v file created for the LogiBLOX
module in this design, tenths.v, add the following ‘uselib line.

`uselib dir=$XILINX/verilog/data libext=.vmd

7. Replace $XILINX with the explicit path in your setup. So, using
the previous example of $XILINX set to /home/software/xilinx,
the ‘uselib line in the tenths.v file appears as follows.

`uselib dir=/home/software/xilinx/verilog/data \
libext=.vmd

8. After making these two changes, re-run Verilog.

verilog –f filesf.f

Synthesizing Your Design
In this section of the tutorial, you synthesize the design and create a
place and routed NCD file. After creating the place and routed NCD
file, you can optionally create a BIT file for downloading to the demo
board using bitgen and promgne, or the Hardware Debugger.

To synthesize a design with FPGA Compiler, you need to create a
compile script. You can find a default compile script for your modifi-
cation in the A1.5i software. Copy the file $XILINX/
template.fpga.script.4kex into your /home/user/tutorial directory,
which contains the .synopsys_dc.setup and .synopsys_vss.setup files
you created earlier.

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-11

1. Rename the file template.synopsys.dc.setup.4kes to run.script.

The file template.synopsys_dc.setup.4kex is a template for a
compile script for XC4000 families. Spartan can use this file as a
template for synthesizing with FPGA Express.

2. Open the file run.script in a text editor.

The file run.script is setup only to compile one VHDL file and
you must comment out several lines not relevant to the synthesis
of this particular design.

The following example shows an unmodified run.script file
(using the file template.synopsys_dc.setup.4kex).

/* ==*/

/* Sample Script for Synopsys to Xilinx Using */

/* FPGA Compiler */

/* */

/* Targets the Xilinx XC4028EX-3 and assumes a VHDL */

/* source file by way of an example. */

/* */

/* For general use with XC4000E/EX architectures. */

/* Not suitable for use with XC3000A/XC5200 */

/* architectures. */

/* ==*/

/* === */

/* Set the name of the design’s top-level module. */

/* (Makes the script more readable and portable.) */

/* Also set some useful variables to record the */

/* designer and company name. */

/* === */

 TOP = <design_name>

 /* ========================== */

 /* Note: Assumes design file- */

XSI Synopsys Interface/Tutorial Guide

1-12 Xilinx Development System

 /* name and entity name are */

 /* the same (minus extension) */

 /* ========================== */

 designer = “XSI Team”

 company = “Xilinx, Inc”

 part = “4028expg299-3”

/* === */

/* Analyze and Elaborate the design file and specify */

/* the design file format. */

/* === */

 analyze -format vhdl TOP + “.vhd”

 /* ============================ */

 /* You must analyze lower-level */

 /* hierarchy modules here */

 /* ============================ */

 elaborate TOP

/* === */

/* Set the current design to the top level. */

/* === */

 current_design TOP

/* === */

/* Set the synthesis design constraints. */

/* === */

 remove_constraint –all

/* Some example constraints */

 create_clock <clock_port_name> -period 50

 set_input_delay 5 -clock <clock_port_name> \

 { <a_list_of_input_ports> }

 set_output_delay 5 -clock <clock_port_name> \

 { <a_list_of_output_ports> }

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-13

 set_max_delay 100 -from <source> -to <destination>

 set_false_path -from <source> -to <destination>

/* === */

/* Indicate those ports on the top-level module that */

/* should become chip-level I/O pads. Assign any I/O */

/* attributes or parameters and perform the I/O */

/* synthesis. */

/* === */

 set_port_is_pad “*”

/* Some example I/O parameters */

 set_pad_type –pullup <port_name>

 set_pad_type –no_clock all_inputs()

 set_pad_type –clock <clock_port_name>

 set_pad_type –exact BUFGS_F <hi_fanout_port_name>

 set_pad_type –slewrate HIGH all_outputs()

 /* ============================= */

 /* Note: Synopsys slew-control= */

 /* HIGH is the same as Xilinx’s */

 /* slewrate=SLOW. Synopsys slew- */

 /* control=LOW is same as Xilinx */

 /* slewrate=FAST. */

 /* ============================= */

 insert_pads

/* === */

/* Synthesize and optimize the design */

/* === */

 compile –boundary_optimization

/* === */

/* Write the design report files. */

/* === */

XSI Synopsys Interface/Tutorial Guide

1-14 Xilinx Development System

 report_fpga > TOP + “.fpga”

 report_timing > TOP + “.timing”

/* === */

/* Write out the design to a DB file. (Post compile) */

/* === */

 write –format db –hierarchy –output TOP + “_compiled.db”

/* === */

/* Replace CLBs and IOBs with gates. */

/* === */

 replace_fpga

/* === */

/* Set the part type for the output netlist. */

/* === */

 set_attribute TOP “part” –type string part

/* === */

/* Optional attribute to remove the FPGA Compiler’s */

/* mapping structures from the design. This permits */

/* The Xilinx design implementation tools to map the */

/* design instead. */

/* === */

/* set_attribute find(design,”*”) “xnfout_write_map_symbols” \

 -type boolean FALSE */

/* === */

/* Add any I/O constraints to the design. */

/* === */

 set_attribute <port_name> “pad_location” \

 -type string “<pad_location>”

/* === */

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-15

/* Save design in XNF format as <design>.sxnf */

/* === */

 ungroup –all –flatten

 write –format xnf –hierarchy –output TOP + “.sxnf”

/* === */

/* Write out the design to a DB. (Post replace_fpga) */

/* === */

 write –format db –hierarchy –output TOP + “.db”

/* === */

/* Write-out the timing constraints that were */

/* applied earlier. (Note that any design hierarchy */

/* needs to be flattened before the constraints are */

/* written-out.) */

/* === */

 write_script > TOP + “.dc”

/* === */

/* Call the Synopsys-to-Xilinx constraints translator*/

/* utility DC2NCF to convert the Synopsys constraints*/

/* to a Xilinx NCF file. You may like to view */

/* dc2ncf.log to review the translation process. */

/* === */

 sh dc2ncf TOP + “.dc”

/* === */

/* Exit the Compiler. */

/* === */

 exit

/* === */

/* Now run the Xilinx design implementation tools. */

/* === */

XSI Synopsys Interface/Tutorial Guide

1-16 Xilinx Development System

The modified run.script file for the files in this tutorial (using the file
run.script) follows. Before using this script, notice the following
items.

• Compilation occurs from the bottom up.

• The VHDL file for the LogiBLOX counter tenths.vhd is not
compiled.

A file called “tenths.v” reads into the compile script (not the same file
as the ‘tenths.v’ file used in functional simulation). In this case,
tenths.v is just a place holder.

/* ==*/

/* Sample Script for Synopsys to Xilinx Using */

/* FPGA Compiler */

/* */

/* Targets the Xilinx XC4028EX-3 and assumes a VHDL */

/* source file by way of an example. */

/* */

/* For general use with XC4000E/EX architectures. */

/* Not suitable for use with XC3000A/XC5200 */

/* architectures. */

/* ==*/

/* === */

/* Set the name of the design’s top-level module. */

/* (Makes the script more readable and portable.) */

/* Also set some useful variables to record the */

/* designer and company name. */

/* === */

 TOP = stopwatch

 /* ========================== */

 /* Note: Assumes design file- */

 /* name and entity name are */

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-17

 /* the same (minus extension) */

 /* ========================== */

 designer = “XSI Team”

 company = “Xilinx, Inc”

 part = “4003Epc84-3”

/* === */

/* Analyze and Elaborate the design file and specify */

/* the design file format. */

/* === */

read -format verilog “tenths.v”

read -format verilog “smallcntr.v”

read -format verilog “cnt60.v”

read -format verilog “hex2led.v”

read -format verilog “stmchine.v”

read -format verilog TOP + “.v”

 /* ============================ */

 /* You must analyze lower-level */

 /* hierarchy modules here */

 /* ============================ */

set_dont_touch “OSCILLATOR”

 uniquify

/* === */

/* Set the current design to the top level. */

/* === */

 current_design TOP

/* === */

/* Set the synthesis design constraints. */

/* === */

 remove_constraint –all

/* Some example constraints */

XSI Synopsys Interface/Tutorial Guide

1-18 Xilinx Development System

/* create_clock <clock_port_name> -period 50

 set_input_delay 5 -clock <clock_port_name> \

 { <a_list_of_input_ports> }

 set_output_delay 5 -clock <clock_port_name> \

 { <a_list_of_output_ports> }

 set_max_delay 100 -from <source> -to <destination>

 set_false_path -from <source> -to <destination> */

/* === */

/* Indicate those ports on the top-level module that */

/* should become chip-level I/O pads. Assign any I/O */

/* attributes or parameters and perform the I/O */

/* synthesis. */

/* === */

 set_port_is_pad “*”

/* Some example I/O parameters */

/* set_pad_type –pullup <port_name>

 set_pad_type –no_clock all_inputs()

 set_pad_type –clock <clock_port_name>

 set_pad_type –exact BUFGS_F <hi_fanout_port_name>

 set_pad_type –slewrate HIGH all_outputs() */

 /* ============================= */

 /* Note: Synopsys slew-control= */

 /* HIGH is the same as Xilinx’s */

 /* slewrate=SLOW. Synopsys slew- */

 /* control=LOW is same as Xilinx */

 /* slewrate=FAST. */

 /* ============================= */

 insert_pads

/* === */

/* Synthesize and optimize the design */

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-19

/* === */

 compile –boundary_optimization

/* === */

/* Write the design report files. */

/* === */

/* report_fpga > TOP + “.fpga”

 report_timing > TOP + “.timing” */

/* === */

/* Write out the design to a DB file. (Post compile) */

/* === */

 write –format db –hierarchy –output TOP + “_compiled.db”

/* === */

/* Replace CLBs and IOBs with gates. */

/* === */

 replace_fpga

/* === */

/* Set the part type for the output netlist. */

/* === */

 set_attribute TOP “part” –type string part

/* === */

/* Optional attribute to remove the FPGA Compiler’s */

/* mapping structures from the design. This permits */

/* The Xilinx design implementation tools to map the */

/* design instead. */

/* === */

/* set_attribute find(design,”*”) “xnfout_write_map_symbols” \

 -type boolean FALSE */

/* === */

/* Add any I/O constraints to the design. */

/* === */

XSI Synopsys Interface/Tutorial Guide

1-20 Xilinx Development System

/* set_attribute <port_name> “pad_location” \

 -type string “<pad_location>” */

/* === */

/* Save design in XNF format as <design>.sxnf */

/* === */

 ungroup –all –flatten

 remove_design “tenths”

 write –format xnf –hierarchy –output “watch.sxnf”

/* === */

/* Write out the design to a DB. (Post replace_fpga) */

/* === */

 write –format db –hierarchy –output TOP + “.db”

/* === */

/* Write-out the timing constraints that were */

/* applied earlier. (Note that any design hierarchy */

/* needs to be flattened before the constraints are */

/* written-out.) */

/* === */

/* write_script > TOP + “.dc” */

/* === */

/* Call the Synopsys-to-Xilinx constraints translator*/

/* utility DC2NCF to convert the Synopsys constraints*/

/* to a Xilinx NCF file. You may like to view */

/* dc2ncf.log to review the translation process. */

/* === */

/* sh dc2ncf TOP + “.dc” */

/* === */

/* Exit the Compiler. */

/* === */

/* exit */

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-21

/* === */

/* Now run the Xilinx design implementation tools. */

/* === */

You need a file which indicates the pin directions of the module when
instantiating a LogiBLOX component in FPGA Compiler. The
tenths.v file referenced in the run.script file was created by renaming
and editing the tenths.vei file. The new tenths.v file contains the
following.

module tenths(CLK_EN, CLOCK, ASYNC_CTRL, Q_OUT, TERM_CNT);

input CLK_EN;

input CLOCK;

input ASYNC_CTRL;

output [9:0] Q_OUT;

output TERM_CNT;

endmodule

You can create the same file by deleting the first 13 lines in the
tenths.vei file and renaming the tenths.vei file to tenths.v.

When compiling a XC4000 design in FPGA Compiler, the proper type
of output for place and route in A1.5i is an SXNF file.

Dont_touch commands appear in the script. Whenever you instan-
tiate a component from the XSI synthesis library, you must place a
Dont_touch on the instance to prevent Synopsys from deleting or
modifying the library cell.

Using Design Analyzer

Start Design Analyzer by typing the following command in the direc-
tory that contains the .synopsys_dc.setup file for this design.

design_analyzer &

This launches the Design Analyzer GUI. When the GUI appears, run
the script run.script by selecting Execute Script from the Setup pull-
down menu. A pop-up window appears where you can select
run.script.

If the script runs successfully, the script stops and a SXNF file gener-
ates. If an error occurs, check the following.

XSI Synopsys Interface/Tutorial Guide

1-22 Xilinx Development System

• Make sure that the .synopsys_dc.setup file is set up correctly.

• Make sure that the paths referenced in the .synopsys_dc.setup
file exist.

• Make sure that the XDW synthesis libraries are compiled for the
version of Synopsys you are using.

• Make sure you issue the Design_analyzer & command in the
directory that contains the .synopsys_dc.setup file when you start
Design Analyzer.

Placing and Routing the SXNF File

Use the SXNF file produced by Design Analyzer to place and route
the design for timing simulation using the following script.

#!/bin/csh -f

ngdbuild –p 4003EPC84-4 watch.sxnf

map watch.ngd

par watch.ncd stopwatch_r.ncd

ngdanno stopwatch_r.ncd

ngd2ver –ul stopwatch_r.nga

Optionally, you can place and route the SXNF files by using the A1.5i
GUI’s. Please refer to the Quick Start Guide Tutorial for more informa-
tion about using the GUI for place and route.

Conducting Timing Simulation
To perform timing simulation, you must create an SDF file and struc-
tural Verilog produced by NGD2VER, along with a testbench. The
following steps show how to conduct timing simulation.

Note: Run NGD2VER with the –ul option before running timing
simulation.

Run the following command at the command-line.

verilog –f filest.f

filest.f contains the names of the two files used in timing simulation.
By default, the Verilog file produced by NGD2VER uses the
$sdf_annotate directive which annotates the SDF file with the Verilog
file from NGD2VER.

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-23

Spartan/XC4000 Verilog Alliance FPGA Express v2.1
Tutorial

This tutorial familiarizes you with the A1.5i XSI Verilog FPGA
Express v2.1/VerilogXL v2.5 design flow and includes a VHDL
design that you can optionally download to the demo board, if you
choose a XC4003EPC84-3 as a target device.

This tutorial presents common tasks to accomplish in this design flow
such as locking pins and setting slew rate.

Getting Ready for This Tutorial
To use this tutorial, you need the software described in the “Using
Common Setup Procedures” section. By default, this tutorial uses the
XC4000E family as a target design, but you can use other FPGA fami-
lies supported under A1.5i XSI as well. If you want to target a device
other than the XC4000E, reference the directories that apply to that
family (for example, the XDW libraries have separate directories for
XC4000XL, Spartan, and Virtex). Use synlibs with the exact die-speed
target desired.

Setting Up for the Spartan/XC4000 Verilog Alliance
FPGA Express v2.1 Tutorial

To use this tutorial, ensure installation of your Xilinx and Synopsys
software and know where the software resides on your system.
Download the files for this tutorial, 4kxsiverexp.tar.Z, from the Xilinx
web site. Untar and uncompress this file in a directory of your
choosing, but this tutorial assumes that you place the files in the /
home/user/tutorial directory.

Conducting Functional Simulation
Compile the design files and testbench with VerilogXL. If you
untarred and uncompressed files in a directory other than /home/
user/tutorial, replace your path appropriately in the following
instructions. In the A1.5i XSI VerilogXL functional simulation flow
you can simulate instantiated XSI cells such as FDCE and OSC4.

1. Change directories to the /home/user/tutorial directory (or
where you installed the tutorial files). Make sure you previously

XSI Synopsys Interface/Tutorial Guide

1-24 Xilinx Development System

set up a .synopsys_dc.setup and .synopsys_vss.setup file in this
directory, along with a WORK directory, as described in the
“Using Common Setup Procedures” section.

2. Run the VerilogXL command verilog with the data file filesf.f to
perform functional simulation. At the UNIX prompt enter the
following.

verilog –f filesf.f

VerilogXL issues many error messages when you attempt to
simulate, including the following three.

Compiling source file “testbenchf.v”

Compiling source file “stopwatch.v”

Compiling source file “stmchine.v”

Compiling source file “hex2led.v”

Compiling source file “cnt60.v”

Compiling source file “smallcntr.v”

Compiling source file “tenths.v”

Error! Module or primitive (OSC4) not defined [Verilog-MOPND]

 “stopwatch.v”, 22: OSC4 OSCILLATOR(.F500K(oscout)

);

Error! Module or primitive (BUFG) not defined [Verilog-MOPND]

 “stopwatch.v”, 24: BUFG CLOCKBUF(.I(oscout), .O(

 clkint));

Error! Module or primitive (X_FF) not defined [Verilog-MOPND]

 “tenths.v”, 46: X_FF FLOP0(.IN(Q_OUT[9]), .CLK(

 CLOCK), .CE(CLK_EN), .SET(FLOP0_GSR_OR), .RST(

 GND), .OUT(Q_OUT[0]));

3. Because the Verilog code you tried to simulate contains instantia-
tions of LogiBLOX and instantiated XSI synthesis library cells

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-25

(such OSC4, FDCE, and BUFG, for example), you must tell the
Verilog simulator where to find the models for these cells. You do
this by placing the ‘uselib directive in the top-level file of this
design, stopwatch.v. Add the following line to the top of your
stopwatch.v file.

`uselib dir=$XILINX/verilog/src/UNI4000E libext=.v

4. Replace the $XILINX text with the explicit path in your environ-
ment. If you set $XILINX to /home/software/xilinx, enter the
following ‘uselib line in the top of the stopwatch.v file.

`uselib dir=/home/software/xilinx/verilog/ \
src/UNI4000E libext=.v

5. Similarly, to the top of the .v file created for the LogiBLOX
module in this design, tenths.v, add the following ‘uselib line.

`uselib dir=$XILINX/verilog/data libext=.vmd

6. Replace $XILINX with the explicit path in your setup. Using the
previous example of $XILINX set to /home/software/xilinx, you
find the following ‘uselib line in the tenths.v file.

`uselib dir=/home/software/xilinx/verilog \
/data libext=.vmd

7. After making these two changes, re-run functional simulation by
typing the following command.

verilog –f filesf.f

Synthesizing Your Design
In this section of the tutorial, you synthesize the design and create a
place and routed NCD file. After creating the place and routed NCD
file, you can optionally proceed to create a BIT file for downloading
to the demo board, using bitgen and promgne, or the Hardware
Debugger. For more information about using FPGA Express’s GUI,
please refer to the FPGA Express on-line help.

The following steps show you how to create and synthesize a project
in FPGA Express.

1. Create an FPGA Express Project, enter source files, and specify a
target device(4003EPC84-3), as shown in the following figure.

XSI Synopsys Interface/Tutorial Guide

1-26 Xilinx Development System

Figure 1-1 FPGA Express Create Project Window

2. Select the top level entity and select a target device, as shown in
the next figure.

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-27

Figure 1-2 FPGA Express Add Design Files Dialog

3. An implementation appears in the right-hand window. Select the
implementation and than clock on the Optimize button on the
tool bar, as shown in the following illustration.

XSI Synopsys Interface/Tutorial Guide

1-28 Xilinx Development System

Figure 1-3 FPGA Express Create Implementation Dialog

4. Select the optimized design and write out the netlist by clicking
on the Export Netlist button on the toolbar, as the next figure
shows.

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-29

Figure 1-4 FPGA Express Netlist

5. Take the SXNF file produced by Design Analyzer and place and
route the design for timing simulation using the following script.

#!/bin/csh -f

ngdbuild –p 4003EPC84-4 watch.sxnf

map watch.ngd

XSI Synopsys Interface/Tutorial Guide

1-30 Xilinx Development System

par watch.ncd stopwatch_r.ncd

ngdanno stopwatch_r.ncd

ngd2ver –ul stopwatch_r.nga

6. Optionally, you can place and route the SXNF files using the
A1.5i GUI, as shown in the following figure. Refer the Quick Start
Guide Tutorial for more information for using the GUI for place
and route.

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-31

Figure 1-5 Placing and Routing SXNF Files

Conducting Timing Simulation
To perform timing simulation, you must create an SDF file and struc-
tural Verilog file using NGD2VER, along with a testbench.

To perform timing simulation, enter the following command at the
command line.

XSI Synopsys Interface/Tutorial Guide

1-32 Xilinx Development System

verilog –f filest.f

filest.f contains the names of the two files used in timing simulation.
By default, the Verilog file produced by NGD2VER uses the
$sdf_annotate directive, which annotates the SDF file with the Verilog
file from NGD2VER.

Note: Run NGD2VER with the –ul option before conducting timing
simulation.

Spartan/XC4000 VHDL FPGA Compiler VSS Tutorial
This tutorial familiarizes you with the A1.5i FPGA Compiler/VSS
design flow and includes a VHDL design you can optionally down-
loaded to the demo board, if you choose a XC4003EPC84-3 as a target
device.

This tutorial takes you from functional simulation to timing simula-
tion, presenting common tasks such as locking pins and setting slew
rate. The tutorial has three major parts, functional simulation,
synthesis, and timing simulation.

The functional simulation flow with FPGA Compiler and VSS has
four possible flows, including the traditional pre-synthesis flow
known as functional simulation. This tutorial uses the pre-synthesis
simulation.

This tutorial assumes you copied the $XILINX/synopsys/libraries
directory to /home/data, which the path used as an example in the
“Using Common Setup Procedures” section.

Getting Ready for this Tutorial
To use this tutorial, you need the software described in the “Using
Common Setup Procedures” section. If you use a version of Synopsys
newer than v1997.01, you must follow the additional steps in the
“Setting Up for the Spartan/XC4000 Verilog FPGA Compiler Tuto-
rial” section. By default, this tutorial uses the XC4000E family as a
target design, but you can use other FPGA families supported under
A1.5i XSI as well. If you want to target a device other than the
XC4000E, reference the directories that apply to that family (for
example, the XDW libraries have separate directories for XC4000XL,
Spartan, and Virtex). Use synlibs with the exact die-speed target
desired.

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-33

Setting Up for the Spartan/XC4000 VHDL FPGA
Compiler VSS Tutorial

To use this tutorial, ensure installation of your Xilinx and Synopsys
software and know where the software resides on your system. If you
use a version of Synopsys newer than v1997.01, you must re-compile
the XSI XDW and simulation libraries. Refer to the setup instructions
in the “Setting up for FPGA Compiler” section.

The A1.5i simulation libraries come in two parts, a functional simula-
tion part and a timing simulation part. The A1.5i XSI VHDL func-
tional simulation libraries are called UNISIM and the A1.5i XSI
VHDL timing simulation libraries are called SIMPRIM libraries. The
SIMPRIM library is a VITAL simulation library.

Additionally, A1.5i XSI provides two other functional simulation
libraries, the LOGIBLOX and XDW simulation libraries. You use the
LOGIBLOX when a design uses instantiated LogiBLOX components,
such as a RAM. You use the XDW simulation library in addition to
the UNISIM library when performing post-synthesis pre-M1 simula-
tion.

For this tutorial, recompile only the libraries related to synthesizing a
XC4000E device (if using a version of Synopsys newer than v1997.01),
and ensure compilation of the XC4000E XDW DesignWare libraries.

Make sure you compile the Spartan XDW DesignWare libraries, XDW
simulation libraries, LogiBLOX simulation libraries, UNISIM simula-
tion libraries, and SIMPRIM libraries. All of these libraries contain
compile scripts which let you compile these libraries in the $XILINX
area. However, you need write permission to the $XILINX area to use
these scripts.

If you do not have write permissions, make a local copy of the
$XILINX/synopsys/libraries directory and use the following instruc-
tions. Instead of changing directories to $XILINX/synopsys/
libraries, however, change directories to your local copy of that area.

1. Compile the libraries.

a) Change directories to the $XILINX/synopsys/libraries/dw/
src/spartan directory.

b) Type the following command at the UNIX prompt.

dc_shell –f install_dw.dc

XSI Synopsys Interface/Tutorial Guide

1-34 Xilinx Development System

c) Change directories to the $XILINX/synopsys/libraries/sim/
src/logiblox directory.

d) Type the following command at the UNIX prompt.

./analyze.csh

e) Change directories to the $XILINX/synopsys/libraries/sim/
src/simprims directory.

f) Type the following command at the UNIX prompt.

./analyze.csh

g) Change directories to the $XILINX/synopsys/libraries/sim/
src/unisims directory.

h) Type the following command at the UNIX prompt.

./analyze.csh

i) Change directories to the $XILINX/synopsys/libraries/sim/
src/xdw directory.

j) Type the following command at the UNIX prompt.

./analyze.csh

After compiling the libraries, you must create a directory where
you run the tutorial. This directory contains the tutorial HDL
files, along with the .synopsys_dc.setup and .synopsys_vss.setup
you created in the “Setting up for FPGA Compiler” section.

2. In this empty directory, copy the file spartanxsivhdl.tar.Z.
Uncompress and untar this file.

3. Before starting on the tutorial, in the directory where you created
your .synopsys_dc.setup, .synopsys_vss.setup, and where you
uncompressed and untarred the file spartanxsivhdl.tar.Z file,
type the following command.

ls –l

Make sure that directory has the following items.

• .synopsys_dc.setup

• .synopsys_vss.setup

• WORK

• func

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-35

• synth

• time

The func directory contains all files and scripts needed for func-
tional simulation. The synth directory contains all files and
scripts needed for synthesis. The time directory contains files.

Conducting Functional Simulation
You finished most of the setup when you created the WORK direc-
tory and made the .synopsys_vss.setup file. Now, you need to
compile the design files and testbench and run the VSS simulation
tool. This tutorial assumes that you uncompressed and untarred the
tutorial files and placed your setup files in /home/user/tutorial. If
you did not, replace your path appropriately in the following instruc-
tions.

In the A1.5i XSI VSS functional simulation flow you can simulate
instantiated XSI cells such as FDCE and OSC4. Additionally, by using
the UNISIM simulation libraries, you can simulate and implement
the GSR without impact to the design or testbench.

To conduct functional simulation, use the following steps.

1. Change directories to the /home/user/tutorial directory. and
ensure all the appropriate tutorial files listed in the “Checking the
Common Tutorial Files” section reside there.

2. You perform functional simulation by running the script
func.script. But before running the script, open the file func.script
in a text editor and note the following items in this file.

• Simulation files read in from the bottom up.

• The testbench reads in last.

• vhdlan uses the –i option. Always use vhdlan with the –i
option. By default, vhdlan uses the –c option, which only
works if your system uses a certain type of C compiler. If you
want to use the –c option with vhdlan, refer to the Synopsys
web site for the proper setup.

• The contents of the func.sim file.

#!/bin/csh -f

rm –r WORK

XSI Synopsys Interface/Tutorial Guide

1-36 Xilinx Development System

mkdir WORK

vhdlan –i tenths.vhd

vhdlan –i smallcntr.vhd

vhdlan –i cnt60.vhd

vhdlan –i hex2led.vhd

vhdlan –i stmchine.vhd

vhdlan –i stopwatch.vhd

vhdlan –i testbenchf.vhd

vhdlsim –e commandf.txt overall

Close the file after examining it.

3. Also open the file tenths.vhd, created by the LogiBLOX tool, in a
text editor, and examine it. This file is a VHDL simulation model
for the LogiBLOX counter called “tenths.”

Close the file after examining it.

4. Run the functional simulation by typing the following at the
UNIX prompt.

./func.sim

This starts the functional simulation process.

The functional simulation process ends with errors because the
VHDL code contains an instantiated component (OSC4) that
does not have an underlying RTL behavioral description. You
must create an RTL model for functional simulation. For more
information about OSC4, refer to the Libraries Guide and the
Databook.

The UNISIM libraries allow functional simulation of library cells
instantiated from the XSI libraries. The VHDL code that instanti-
ates any XSI library cell must contain the following two lines.

library UNISIM;

use UNISIM.all;

In general, place these two lines only in the files that contain
instantiated XSI library cells (for example, FDCE, RAM32X1S,
and BUFG), but you can also place the above two lines in every
VHDL file in your design.

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-37

5. Open a text editor and correct the stopwatch.vhd file as shown in
the following example.

library IEEE;

use IEEE.std_logic_1164.all;

library UNISIM;

use UNISIM.all;

entity stopwatch is

 port (RESET : in STD_LOGIC;

 STRTSTOP : in STD_LOGIC;

 TENTHSOUT : out STD_LOGIC_VECTOR(9 downto 0);

 ONESOUT : out STD_LOGIC_VECTOR(6 downto 0);

 TENSOUT : out STD_LOGIC_VECTOR(6 downto 0)

);

end stopwatch;

architecture inside of stopwatch is

component OSC4

 port (F500K : out STD_LOGIC);

end component;

component BUFG

 port (I : in STD_LOGIC;

 O : out STD_LOGIC);

end component;

component stmchine

 port (CLK : in STD_LOGIC;

XSI Synopsys Interface/Tutorial Guide

1-38 Xilinx Development System

 RESET : in STD_LOGIC;

 STRTSTOP : in STD_LOGIC;

 CLKEN : out STD_LOGIC;

 RST : out STD_LOGIC

);

end component;

component tenths

 port (CLOCK : in STD_LOGIC;

 CLK_EN : in STD_LOGIC;

 ASYNC_CTRL : in STD_LOGIC;

 TERM_CNT : out STD_LOGIC;

 Q_OUT : out STD_LOGIC_VECTOR(9 downto 0));

end component;

component cnt60

 port (CE : in STD_LOGIC;

 CLK : in STD_LOGIC;

 CLR : in STD_LOGIC;

 LSBSEC : out STD_LOGIC_VECTOR(3 downto 0);

 MSBSEC : out STD_LOGIC_VECTOR(3 downto 0));

end component;

component hex2led

 port (HEX : in STD_LOGIC_VECTOR(3 downto 0);

 LED : out STD_LOGIC_VECTOR(6 downto 0));

end component;

signal strtstopinv : STD_LOGIC;

signal oscout : STD_LOGIC;

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-39

signal clkint : STD_LOGIC;

signal clkenable : STD_LOGIC;

signal rstint : STD_LOGIC;

signal xcountout : STD_LOGIC_VECTOR(9 downto 0);

signal xtermcnt : STD_LOGIC;

signal cnt60enable : STD_LOGIC;

signal lsbcnt : STD_LOGIC_VECTOR(3 downto 0);

signal msbcnt : STD_LOGIC_VECTOR(3 downto 0);

begin

OSCILLATOR:OSC4 port map(F500K=>oscout);

CLOCKBUF:BUFG port map(I=>oscout,O=>clkint);

MACHINE:stmchine port map(CLK=>clkint,

 RESET=>RESET,

 STRTSTOP=>strtstopinv,

 CLKEN=>clkenable,

 RST=>rstint

);

XCOUNTER:tenths port map(CLOCK=>clkint,

 CLK_EN=>clkenable,

 ASYNC_CTRL=>rstint,

 TERM_CNT=>xtermcnt,

 Q_OUT=>xcountout

);

sixty: cnt60 port map(CE=>cnt60enable,

XSI Synopsys Interface/Tutorial Guide

1-40 Xilinx Development System

 CLK=>clkint,

 CLR=>rstint,

 LSBSEC=>lsbcnt,

 MSBSEC=>msbcnt

);

lsbled:hex2led port map(HEX=>lsbcnt,

LED=>ONESOUT

);

msbled:hex2led port map(HEX=>msbcnt,

LED=>TENSOUT

);

cnt60enable<=xtermcnt and clkenable;

TENTHSOUT<=not(xcountout);

strtstopinv<=not(STRTSTOP);

end inside;

6. Recompile the func.sim file after you have corrected the stop-
watch.vhd file. Simulation starts and displays the waveform
viewer; the UNIX shell displays the vhdlsim prompt.

Synthesizing Your Design
You conduct functional simulation to make sure that the desired RTL
behavior implements. After confirming the desired RTL behavior,
you can synthesize the design.To synthesize a design with FPGA
Compiler, you need to create a compile script. A default compile
script is provided for your modification in the A1.5i software.

In this section of the tutorial, you synthesize the design and create a
place and routed NCD file using the following instructions. After
creating the place and routed NCD file, you can optionally proceed to
create a BIT file for downloading to the demo board, using bitgen and
promgne, or the Hardware Debugger.

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-41

1. Copy the file $XILINX/template.fpga.script.4kex into your /
home/user/tutorial directory, which contains the
.synopsys_dc.setup and .synopsys_vss.setup files you created
earlier.

2. Rename the file template.synopsys.dc.setup.4kex to run.script.

The file template.synopsys_dc.setup.4kex is a template for a
compile script you can use for XC4000 families. Spartan can use
this file as a template for synthesizing with FPGA Express.

3. Open the file run.script in a text editor. The unmodified file
run.script compiles only one VHDL file and you need to
comment out several lines not relevant to the synthesis of this
particular design.

The unmodified run.script file appears in the following example
(using the file template.synopsys_dc.setup.4kex).

/* ==*/

/* Sample Script for Synopsys to Xilinx Using */

/* FPGA Compiler */

/* */

/* Targets the Xilinx XC4028EX-3 and assumes a VHDL */

/* source file by way of an example. */

/* */

/* For general use with XC4000E/EX architectures. */

/* Not suitable for use with XC3000A/XC5200 */

/* architectures. */

/* ==*/

/* === */

/* Set the name of the design’s top-level module. */

/* (Makes the script more readable and portable.) */

/* Also set some useful variables to record the */

/* designer and company name. */

/* === */

XSI Synopsys Interface/Tutorial Guide

1-42 Xilinx Development System

 TOP = <design_name>

 /* ========================== */

 /* Note: Assumes design file- */

 /* name and entity name are */

 /* the same (minus extension) */

 /* ========================== */

 designer = “XSI Team”

 company = “Xilinx, Inc”

 part = “4028expg299-3”

/* === */

/* Analyze and Elaborate the design file and specify */

/* the design file format. */

/* === */

 analyze -format vhdl TOP + “.vhd”

 /* ============================ */

 /* You must analyze lower-level */

 /* hierarchy modules here */

 /* ============================ */

 elaborate TOP

/* === */

/* Set the current design to the top level. */

/* === */

 current_design TOP

/* === */

/* Set the synthesis design constraints. */

/* === */

 remove_constraint -all

 /* Some example constraints */

 create_clock <clock_port_name> -period 50

 set_input_delay 5 -clock <clock_port_name> \

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-43

 { <a_list_of_input_ports> }

 set_output_delay 5 -clock <clock_port_name> \

 { <a_list_of_output_ports> }

 set_max_delay 100 -from <source> -to <destination>

 set_false_path -from <source> -to <destination>

/* === */

/* Indicate those ports on the top-level module that */

/* should become chip-level I/O pads. Assign any I/O */

/* attributes or parameters and perform the I/O */

/* synthesis. */

/* === */

 set_port_is_pad “*”

 /* Some example I/O parameters */

 set_pad_type -pullup <port_name>

 set_pad_type -no_clock all_inputs()

 set_pad_type -clock <clock_port_name>

 set_pad_type -exact BUFGS_F <hi_fanout_port_name>

 set_pad_type -slewrate HIGH all_outputs()

 /* ============================= */

 /* Note: Synopsys slew-control= */

 /* HIGH is the same as Xilinx’s */

 /* slewrate=SLOW. Synopsys slew- */

 /* control=LOW is same as Xilinx */

 /* slewrate=FAST. */

 /* ============================= */

 insert_pads

/* === */

/* Synthesize and optimize the design */

/* === */

 compile -boundary_optimization

XSI Synopsys Interface/Tutorial Guide

1-44 Xilinx Development System

/* === */

/* Write the design report files. */

/* === */

 report_fpga > TOP + “.fpga”

 report_timing > TOP + “.timing”

/* === */

/* Write out the design to a DB file. (Post compile) */

/* === */

 write -format db -hierarchy -output TOP + “_compiled.db”

/* === */

/* Replace CLBs and IOBs with gates. */

/* === */

 replace_fpga

/* === */

/* Set the part type for the output netlist. */

/* === */

 set_attribute TOP “part” -type string part

/* === */

/* Optional attribute to remove the FPGA Compiler’s */

/* mapping structures from the design. This permits */

/* The Xilinx design implementation tools to map the */

/* design instead. */

/* === */

/* set_attribute find(design,”*”) “xnfout_write_map_symbols” \

 -type boolean FALSE */

/* === */

/* Add any I/O constraints to the design. */

/* === */

 set_attribute <port_name> “pad_location” \

 -type string “<pad_location>”

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-45

/* === */

/* Save design in XNF format as <design>.sxnf */

/* === */

 ungroup -all -flatten

 write -format xnf -hierarchy -output TOP + “.sxnf”

/* === */

/* Write out the design to a DB. (Post replace_fpga) */

/* === */

 write -format db -hierarchy -output TOP + “.db”

/* === */

/* Write-out the timing constraints that were */

/* applied earlier. (Note that any design hierarchy */

/* needs to be flattened before the constraints are */

/* written-out.) */

/* === */

 write_script > TOP + “.dc”

/* === */

/* Call the Synopsys-to-Xilinx constraints translator*/

/* utility DC2NCF to convert the Synopsys constraints*/

/* to a Xilinx NCF file. You may like to view */

/* dc2ncf.log to review the translation process. */

/* === */

 sh dc2ncf TOP + “.dc”

/* === */

/* Exit the Compiler. */

/* === */

 exit

/* === */

/* Now run the Xilinx design implementation tools. */

/* === */

XSI Synopsys Interface/Tutorial Guide

1-46 Xilinx Development System

4. Modify the run.script file for the files in this tutorial as shown in
the following example.

Before using this script, notice the following items.

• The design compiles from the bottom up.

• The VHDL file for the LogiBLOX counter tenths.vhd is not
compiled. The VHDL file from the LogiBLOX tools is a simu-
lation model.

• The proper type of output for place and route in A1.5i is an
SXNF file when compiling a XC4000 design in FPGA
Compiler.

Note the Dont_touch commands added to the script. Whenever
you instantiate a component from the XSI synthesis library, you
must place a Dont_touch on the instance to prevent Synopsys
from deleting or modifying the library cell.

/* ==*/

/* Sample Script for Synopsys to Xilinx Using */

/* FPGA Compiler */

/* */

/* Targets the Xilinx XC4028EX-3 and assumes a VHDL */

/* source file by way of an example. */

/* */

/* For general use with XC4000E/EX architectures. */

/* Not suitable for use with XC3000A/XC5200 */

/* architectures. */

/* ==*/

/* === */

/* Set the name of the design’s top-level module. */

/* (Makes the script more readable and portable.) */

/* Also set some useful variables to record the */

/* designer and company name. */

/* === */

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-47

 TOP = stopwatch

 /* ========================== */

 /* Note: Assumes design file- */

 /* name and entity name are */

 /* the same (minus extension) */

 /* ========================== */

 designer = “XSI Team”

 company = “Xilinx, Inc”

 part = “s05pc84-3”

/* === */

/* Analyze and Elaborate the design file and specify */

/* the design file format. */

/* === */

analyze -format vhdl “smallcntr.vhd”

analyze -format vhdl “cnt60.vhd”

analyze -format vhdl “hex2led.vhd”

analyze -format vhdl “stmchine.vhd”

 analyze -format vhdl TOP + “.vhd”

 /* ============================ */

 /* You must analyze lower-level */

 /* hierarchy modules here */

 /* ============================ */

 elaborate TOP

 set_dont_touch “OSCILLATOR”

 uniquify

/* === */

/* Set the current design to the top level. */

/* === */

 current_design TOP

/* === */

XSI Synopsys Interface/Tutorial Guide

1-48 Xilinx Development System

/* Set the synthesis design constraints. */

/* === */

 remove_constraint -all

 /* Some example constraints */

/* create_clock <clock_port_name> -period 50

 set_input_delay 5 -clock <clock_port_name> \

 { <a_list_of_input_ports> }

 set_output_delay 5 -clock <clock_port_name> \

 { <a_list_of_output_ports> }

 set_max_delay 100 -from <source> -to <destination>

 set_false_path -from <source> -to <destination> */

/* === */

/* Indicate those ports on the top-level module that */

/* should become chip-level I/O pads. Assign any I/O */

/* attributes or parameters and perform the I/O */

/* synthesis. */

/* === */

 set_port_is_pad “*”

 /* Some example I/O parameters */

/* set_pad_type -pullup <port_name>

 set_pad_type -no_clock all_inputs()

 set_pad_type -clock <clock_port_name>

 set_pad_type -exact BUFGS_F <hi_fanout_port_name>

 set_pad_type -slewrate HIGH all_outputs() */

 /* ============================= */

 /* Note: Synopsys slew-control= */

 /* HIGH is the same as Xilinx’s */

 /* slewrate=SLOW. Synopsys slew- */

 /* control=LOW is same as Xilinx */

 /* slewrate=FAST. */

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-49

 /* ============================= */

 insert_pads

/* === */

/* Synthesize and optimize the design */

/* === */

 compile -boundary_optimization

/* === */

/* Write the design report files. */

/* === */

/* report_fpga > TOP + “.fpga”

 report_timing > TOP + “.timing” */

/* === */

/* Write out the design to a DB file. (Post compile) */

/* === */

 write -format db -hierarchy -output TOP + “_compiled.db”

/* === */

/* Replace CLBs and IOBs with gates. */

/* === */

 replace_fpga

/* === */

/* Set the part type for the output netlist. */

/* === */

 set_attribute TOP “part” -type string part

/* === */

/* Optional attribute to remove the FPGA Compiler’s */

/* mapping structures from the design. This permits */

/* The Xilinx design implementation tools to map the */

/* design instead. */

/* === */

XSI Synopsys Interface/Tutorial Guide

1-50 Xilinx Development System

/* set_attribute find(design,”*”) “xnfout_write_map_symbols” \

 -type boolean FALSE */

/* === */

/* Add any I/O constraints to the design. */

/* === */

/* set_attribute <port_name> “pad_location” \

 -type string “<pad_location>” */

/* === */

/* Save design in XNF format as <design>.sxnf */

/* === */

 ungroup -all -flatten

 write -format xnf -hierarchy -output TOP + “.sxnf”

/* === */

/* Write out the design to a DB. (Post replace_fpga) */

/* === */

 write -format db -hierarchy -output TOP + “.db”

/* === */

/* Write-out the timing constraints that were */

/* applied earlier. (Note that any design hierarchy */

/* needs to be flattened before the constraints are */

/* written-out.) */

/* === */

/* write_script > TOP + “.dc” */

/* === */

/* Call the Synopsys-to-Xilinx constraints translator*/

/* utility DC2NCF to convert the Synopsys constraints*/

/* to a Xilinx NCF file. You may like to view */

/* dc2ncf.log to review the translation process. */

/* === */

/* sh dc2ncf TOP + “.dc” */

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-51

/* === */

/* Exit the Compiler. */

/* === */

/* exit */

/* === */

/* Now run the Xilinx design implementation tools. */

/* === */

5. Synthesize the design, starting Design Analyzer by typing the
following command in the directory that contains the
.synopsys_dc.setup file for this design.

design_analyzer &

This launches the Design Analyzer GUI.

6. When the GUI appears, run the script run.script by selecting
Execute Script from the Setup menu. A pop-up window appears
where you can select the script ‘run.script’ to run.

If the script runs successfully, the script stops and creates a SXNF
file. If an error occurs, check the following.

• Make sure you set up the .synopsys_dc.setup file correctly.

• Make sure you compiled the XDW synthesis libraries for the
version of Synopsys you use.

• Make sure that the paths referenced in the
.synopsys_dc.setup file exist. Refer to the “Using Common
Setup Procedures” section for more information.

• Make sure you run the command ‘design_analyzer &’ in the
directory that contains the .synopsys_dc.setup file when you
start Design Analyzer.

7. Take the SXNF file produced by Design Analyzer and place and
route the design for timing simulation using the following script.

#!/bin/csh –f

ngdbuild –p 4003EPC84-4 stopwatch.sxnf

map stopwatch.ngd

par stopwatch.ncd stopwatch_r.ncd

XSI Synopsys Interface/Tutorial Guide

1-52 Xilinx Development System

ngdanno stopwatch_r.ncd

ngd2vhdl stopwatch_r.nga

Optionally, you can place and route the SXNF files using the
A1.5i GUI. Please refer to the Quick Start Guide Tutorial for more
information for using the GUI for place and route.

Conducting Timing Simulation
To perform timing simulation, you must create an SDF file and struc-
tural VHDL file using NGD2VHDL, along with a testbench. The
script file timing.sim performs the timing simulation.

Run timing.sim in the directory that contains the .synopsys_vss.setup
file you created.

Before conducting timing simulation, open the script file timing.sim
in a text editor and notice that vhdlan uses the –i option. Always use
vhdlan with the –i option. By default, vhdlan uses the –c option,
which only works if your system is setup to use a certain type of C
compiler. If you want to use the –c option with vhdlan, please refer to
the Synopsys web site for the proper setup.

Because you perform a timing simulation, when invoking vhdldbx or
vhdlsim, specify the –sdf_top option first.

Use the file timing.sim shown in the following example.

#!/bin/csh -f

rm –r WORK

mkdir WORK

vhdlan –i stopwatch_r.vhd

vhdlan –i testbencht.vhd

vhdlsim –sdf_top /testbenchf/uut \
–sdf stopwatch_r.sdf –e commandt.txt overall

Close the timing.sim file in the text editor. Run the timing simulation,
which produces a waveform view like the functional simulation, by
typing the following at the UNIX prompt.

./timing.sim

If you get error or warning messages about “Bad Regions” or unde-
fined libraries when the script runs, make sure you set up the simula-

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-53

tion libraries for A1.5i XSI VSS. Make sure the paths in the
.synopsys_vss.setup file point to paths which exist in your setup. For
further information on setup, refer to the “Using Common Setup
Procedures” section.

Spartan/XC4000 VHDL Alliance FPGA Express v2.1
Tutorial

This tutorial familiarizes you with the A1.5i with Alliance FPGA
Express v2.1 flow, presenting common tasks such as locking pins and
setting slew rate.

Getting Ready for This Tutorial
To use this tutorial, you need the software described in the “Using
Common Setup Procedures” section. By default, this tutorial uses the
XC4000E family as a target design, but you can use other FPGA fami-
lies supported under A1.5i XSI as well. If you want to target a device
other than the XC4000E, reference the directories that apply to that
family (for example, the XDW libraries have separate directories for
XC4000XL, Spartan, and Virtex). Use synlibs with the exact die-speed
target desired.

Setting Up for the Spartan/XC4000 VHDL Alliance
FPGA Express v2.1 Tutorial

To use this tutorial, ensure installation of your Xilinx and Synopsys
software and know where the software resides on your system.
Download the files for this tutorial, spartanxsivhdl.tar.Z, from the
Xilinx web site. Untar and uncompress this file in a directory of your
choosing, but this tutorial assumes that you place the files in the /
home/user/tutorial directory.

You must set up the VSS simulation libraries for this tutorial. The
A1.5i simulation libraries come in two parts, a functional simulation
part and a timing simulation part. The A1.5i XSI VHDL functional
simulation libraries are called UNISIM. The A1.5i XSI VHDL timing
simulation libraries are called SIMPRIM libraries. The SIMPRIM
library is a VITAL simulation library.

Additionally, there is another functional simulation library called
LOGIBLOX, used for simulating simulation models created by Logi-

XSI Synopsys Interface/Tutorial Guide

1-54 Xilinx Development System

BLOX. You use the LOGIBLOX library when your design contains an
instantiated LOGIBLOX component such as a RAM.

For this tutorial, compile only the libraries related to simulating, the
LogiBLOX simulation libraries, UNISIM simulation libraries, and
SIMPRIM libraries. All of these libraries have compile scripts which
let you compile these libraries in the $XILINX area, if you have write
permissions to the $XILINX area.

If you do not have write permissions, make a local copy of the
$XILINX/synopsys/libraries directory and use the following instruc-
tions. But instead of changing directories to $XILINX/synopsys/
libraries, change directories to your local copy of that area where
appropriate.

To compile the libraries, use the following steps.

1. Change directories to the $XILINX/synopsys/libraries/dw/src/
xc4000e directory.

2. Type the following command at the UNIX prompt.

dc_shell –f install_dw.dc

3. Change directories to the $XILINX/synopsys/libraries/sim/src/
logiblox directory.

4. (4) Type the following command at the UNIX prompt.

./analyze.csh

5. Change directories to the $XILINX/synopsys/libraries/sim/src/
simprims directory.

6. Type the following command at the UNIX prompt.

./analyze.csh

7. Change directories to the $XILINX/synopsys/libraries/sim/src/
unisims directory

8. Type the following command at the UNIX prompt.

./analyze.csh

9. Change directories to the $XILINX/synopsys/libraries/sim/src/
xdw directory.

10. Type the following command at the UNIX prompt.

./analyze.csh

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-55

After compiling the libraries, you must create a directory where you
run the tutorial, as described in the “Using Common Setup Proce-
dures” section. This directory contains the tutorial HDL files. If you
copied the $XILINX/synopsys/libraries directory locally, then
modify the paths for the various simulation libraries as you use the
instructions in this tutorial.

The functional simulation flow with FPGA Express and VSS has four
possible flows, including the traditional pre-synthesis flow known as
functional simulation. This tutorial uses pre-synthesis simulation as
the functional simulation flow.

Conducting Functional Simulation
In this part of the tutorial you compile the design files and testbench,
and run the VSS simulation tool. This tutorial assumes that you
uncompressed, untarred, and placed your setup files in /home/
user/tutorial. If you used a different location, replace your path
appropriately in the instructions in this tutorial.

A feature of the A1.5i XSI VSS functional simulation flow allows you
to simulate instantiated XSI cells such as FDCE and OSC4. Addition-
ally, by using the UNISIM simulation libraries, you can simulate and
implement the GSR without impact to the design or testbench.

Use the following instructions to conduct functional simulation.

1. Change directories to the /home/user/tutorial directory. and
ensure all the appropriate tutorial files listed in the “Checking the
Common Tutorial Files” section reside there.

2. You perform functional simulation by running the script
func.script. But before running the script, open the file func.script
in a text editor and note the following items in this file.

• Simulation files read in from the bottom up.

• The testbench reads in last.

• vhdlan uses the –i option. Always use vhdlan with the –i
option. By default, vhdlan uses the –c option, which only
works if your system uses a certain type of C compiler. If you
want to use the –c option with vhdlan, refer to the Synopsys
web site for the proper setup.

• The contents of the func.sim file.

XSI Synopsys Interface/Tutorial Guide

1-56 Xilinx Development System

#!/bin/csh -f

rm –r WORK

mkdir WORK

vhdlan –i tenths.vhd

vhdlan –i smallcntr.vhd

vhdlan –i cnt60.vhd

vhdlan –i hex2led.vhd

vhdlan –i stmchine.vhd

vhdlan –i stopwatch.vhd

vhdlan –i testbenchf.vhd

vhdlsim –e commandf.txt overall

Close the file after examining it.

3. Also open the file tenths.vhd, created by the LogiBLOX tool, in a
text editor, and examine it. This file is a VHDL simulation model
for the LogiBLOX counter called “tenths.”

Close the file after examining it.

4. Run the functional simulation by typing the following at the
UNIX prompt.

./func.sim

This starts the functional simulation process.

You receive error messages because the VHDL code contains an
instantiated component (OSC4) that does not have an underlying
RTL behavioral description. You must make an RTL model for
functional simulation. For more information on the OSC4, refer to
the Libraries Guide and the Databook.

The UNISIM libraries allow functional simulation of library cells
instantiated from the XSI libraries. The VHDL code that instanti-
ates any XSI library cell must contain the following two lines.

library UNISIM;

use UNISIM.all;

In general, you need to add these lines only in the files that
contain instantiated XSI library cells (such as FDCE, RAM32X1S

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-57

and BUFG, for example). You can also place the above two lines
in every VHDL file in your design.

Add the two lines of code in the stopwatch.vhd file, as shown in
the following example.

library IEEE;

use IEEE.std_logic_1164.all;

library UNISIM;

use UNISIM.all;

entity stopwatch is

 port (RESET : in STD_LOGIC;

 STRTSTOP : in STD_LOGIC;

 TENTHSOUT : out STD_LOGIC_VECTOR(9 downto 0);

 ONESOUT : out STD_LOGIC_VECTOR(6 downto 0);

 TENSOUT : out STD_LOGIC_VECTOR(6 downto 0)

);

end stopwatch;

architecture inside of stopwatch is

component OSC4

 port (F500K : out STD_LOGIC);

end component;

component BUFG

 port (I : in STD_LOGIC;

 O : out STD_LOGIC);

end component;

XSI Synopsys Interface/Tutorial Guide

1-58 Xilinx Development System

component stmchine

 port (CLK : in STD_LOGIC;

 RESET : in STD_LOGIC;

 STRTSTOP : in STD_LOGIC;

 CLKEN : out STD_LOGIC;

 RST : out STD_LOGIC

);

end component;

component tenths

 port (CLOCK : in STD_LOGIC;

 CLK_EN : in STD_LOGIC;

 ASYNC_CTRL : in STD_LOGIC;

 TERM_CNT : out STD_LOGIC;

 Q_OUT : out STD_LOGIC_VECTOR(9 downto 0));

end component;

component cnt60

 port (CE : in STD_LOGIC;

 CLK : in STD_LOGIC;

 CLR : in STD_LOGIC;

 LSBSEC : out STD_LOGIC_VECTOR(3 downto 0);

 MSBSEC : out STD_LOGIC_VECTOR(3 downto 0));

end component;

component hex2led

 port (HEX : in STD_LOGIC_VECTOR(3 downto 0);

 LED : out STD_LOGIC_VECTOR(6 downto 0));

end component;

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-59

signal strtstopinv : STD_LOGIC;

signal oscout : STD_LOGIC;

signal clkint : STD_LOGIC;

signal clkenable : STD_LOGIC;

signal rstint : STD_LOGIC;

signal xcountout : STD_LOGIC_VECTOR(9 downto 0);

signal xtermcnt : STD_LOGIC;

signal cnt60enable : STD_LOGIC;

signal lsbcnt : STD_LOGIC_VECTOR(3 downto 0);

signal msbcnt : STD_LOGIC_VECTOR(3 downto 0);

begin

OSCILLATOR:OSC4 port map(F500K=>oscout);

CLOCKBUF:BUFG port map(I=>oscout,O=>clkint);

MACHINE:stmchine port map(CLK=>clkint,

 RESET=>RESET,

 STRTSTOP=>strtstopinv,

 CLKEN=>clkenable,

 RST=>rstint

);

XCOUNTER:tenths port map(CLOCK=>clkint,

 CLK_EN=>clkenable,

 ASYNC_CTRL=>rstint,

 TERM_CNT=>xtermcnt,

 Q_OUT=>xcountout

);

XSI Synopsys Interface/Tutorial Guide

1-60 Xilinx Development System

sixty: cnt60 port map(CE=>cnt60enable,

 CLK=>clkint,

 CLR=>rstint,

 LSBSEC=>lsbcnt,

 MSBSEC=>msbcnt

);

lsbled:hex2led port map(HEX=>lsbcnt,

LED=>ONESOUT

);

msbled:hex2led port map(HEX=>msbcnt,

LED=>TENSOUT

);

cnt60enable<=xtermcnt and clkenable;

TENTHSOUT<=not(xcountout);

strtstopinv<=not(STRTSTOP);

end inside;

5. Restart functional simulation after you correct the stopwatch.vhd
file. The simulation starts and displays the waveform viewer. The
UNIX shell displays the vhdlsim prompt.

Synthesizing Your Design
In this section of the tutorial, you synthesize the design and create a
place and routed NCD file. After creating the place and routed NCD
file, you can optionally create a BIT file for downloading to the demo
board, using bitgen and promgne, or the Hardware Debugger. For
more information on using the FPGA Express GUI, please refer to the
FPGA Express on-line help.

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-61

Create an FPGA Express Project, enter source files, and Specify a
Target device(4003EPC84-3), as shown in the following illustration.

Figure 1-6 Creating an FPGA Express Project

Add the design files to the project, as shown in the next figure.

XSI Synopsys Interface/Tutorial Guide

1-62 Xilinx Development System

Figure 1-7 Adding Design Files to an FPGA Express Project

Select the top level entity and select a target device, as shown in the
following figure.

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-63

Figure 1-8 Selecting a Top Entity and Target Device

An implementation appears in the right-hand window. Select the
implementation and press the Optimize button on the tool bar as
shown in the next illustration.

XSI Synopsys Interface/Tutorial Guide

1-64 Xilinx Development System

Figure 1-9 Optimizing an Implementation

Select the optimized design and write out the netlist by pressing the
Export Netlist button on the toolbar, as shown in the following illus-
tration.

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-65

Figure 1-10 Writing Out the Netlist

Take the XNF file produced by FPGA Express and place and route the
design for timing simulation using the following script.

#!/bin/csh –f

ngdbuild –p 4003EPC84-4 stopwatch.xnf

map stopwatch.ngd

XSI Synopsys Interface/Tutorial Guide

1-66 Xilinx Development System

par stopwatch.ncd stopwatch_r.ncd

ngdanno stopwatch_r.ncd

ngd2vhdl stopwatch_r.nga

Optionally, you can place and route the XNF file using the A1.5i GUI.
Refer to the Quick Start Guide Tutorial for more information about
using the GUI for place and route.

Conducting Timing Simulation
To perform timing simulation, use NGD2VHDL to create an SDF file
and structural VHDL file, along with a testbench. The script file
timing.sim performs the timing simulation.

Run timing.sim in the directory that contains the .synopsys_vss.setup
file you created.

Open the script file timing.sim in a text editor and note the following.

• vhdlan uses the –i option. Always use vhdlan with the –i option.
By default, vhdlan uses the –c option, which only works if your
system uses a certain type of C compiler. If you want to use the –c
option with vhdlan, please refer to the Synopsys web site for
more information.

• Specify the –sdf_top option first when invoking vhdldbx or
vhdlsim for a timing simulation.

• The file timing.sim contents

#!/bin/csh –f

rm –r WORK

mkdir WORK

vhdlan –i stopwatch_r.vhd

vhdlan –i testbencht.vhd

vhdlsim –sdf_top /testbenchf/uut –sdf \
stopwatch_r.sdf –e commandt.txt overall

Close the timing.sim file in the text editor. Run the timing simulation,
which produces a waveform view of the functional simulation, by
typing the following command at the UNIX prompt.

./timing.sim

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-67

When the script runs, if you get errors and warning messages about
“Bad Regions” or undefined libraries, make sure you set up the simu-
lation libraries for A1.5i XSI VSS correctly. Make sure the paths in the
.synopsys_vss.setup file point to paths which exist in your setup. For
further information on setup, refer to the “Using Common Setup
Procedures” section.

Virtex Verilog FPGA Compiler VerilogXL Tutorial
This tutorial familiarizes you with the A1.5i FPGA Compiler/
VerilogXL design flow and includes a VHDL design you can option-
ally download to the demo board. This tutorial presents common
tasks such as locking pins and setting slew rate.

Getting Ready for this Tutorial
To use this tutorial, you need the software described in the “Using
Common Setup Procedures” section. If you use a version of Synopsys
newer than v1997.01, you must follow the additional steps in the
“Setting Up for the Spartan/XC4000 Verilog FPGA Compiler Tuto-
rial” section. If you want to target a device other than that specified in
the tutorial, reference the directories that apply to that family (for
example, the XDW libraries have separate directories for XC4000XL,
Spartan, and Virtex). Use synlibs with the exact die-speed target
desired.

Setting Up for the Virtex FPGA Compiler VerilogXL
Tutorial

To use this tutorial, ensure installation of your Xilinx and Synopsys
software and know where the software resides on your system. If you
use a version of Synopsys newer than v1997.01, you must re-compile
the XSI XDW and simulation libraries. Refer to the setup instructions
in the “Setting up for FPGA Compiler” section.

For this tutorial, recompile only the libraries related to synthesizing a
Virtex device (if using a version of Synopsys newer than v1997.01),
and ensure compilation of the Virtex XDW DesignWare libraries.

All A1.5i XSI of these libraries contain compile scripts which let you
compile these libraries in the $XILINX area. However, to use these
scripts, you need write permissions to the $XILINX area. If you do
not have write permissions, make a local copy of the $XILINX/

XSI Synopsys Interface/Tutorial Guide

1-68 Xilinx Development System

synopsys/libraries directory and follow the instructions below, but
instead of changing directories to $XILINX/synopsys/libraries,
change directories to your local copy of that area.

To compile the Virtex device libraries, complete the following steps.

1. Change directories to the $XILINX/synopsys/libraries/dw/src/
virtex directory.

2. Type the following command at the UNIX prompt.

dc_shell –f install_dw.dc

Make sure you have completed the instructions in the “Using
Common Setup Procedures” section before continuing.

3. Because you synthesize a Virtex device in this tutorial, use
synlibs to add the correct information into the
.synopsys_dc.setup file. Type the following command at the
UNIX prompt.

synlibs –fc v50pq240-4 >> .synopsys_dc.setup

This appends the output of synlibs into the .synopsys_dc.setup
file. If you compiled the Spartan XDW libraries in the $XILINX
tree, you can proceed to checking the .synopsys_vss.setup file. If
you compiled the XDW libraries in the $XILINX area, you need
not modification of the define_design_lib line in the
.synopsys_dc.setup file. If you copied the $XILINX/synopsys/
libraries directory locally, you must change the path in the
.synopsys_dc.setup file to reflect the copied directory path. For
example, if you copied the $XILINX/libraries to /home/data,
edit the `define_design_lib’ setting made by synlibs for the v50-4
above to reflect the /home/data location.

define_design_lib xdw_virtex /home/data/libraries \
/dw/lib/virtex

4. In the directory where you created your .synopsys_dc.setup, and
where you uncompressed and untarred the file spartanx-
sivhdl.tar.Z file, type the following command at the UNIX
prompt.

ls -l

5. Make sure that directory contains at a minimum the following
items.

• .synopsys_dc.setup

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-69

• WORK

Conducting Functional Simulation
In this section of the tutorial you compile the design files and test-
bench, and run the VSS simulation tool. This tutorial assumes that
you uncompressed, untarred, and placed your setup files in /home/
user/tutorial. If you placed these files elsewhere, replace your path
appropriately in the following instructions.

Make sure you follow the directions provided in the “Using Common
Setup Procedures” section before conducting functional simulation.

The A1.5i XSI VSS functional simulation flow allows you to simulate
instantiated XSI cells such as FDCE and OSC4. Additionally, by using
the UNISIM simulation libraries, the you can simulate and imple-
ment the GSR without impact to the design or testbench.

Use the following steps to conduct functional simulation.

1. Change directories to the /home/user/tutorial directory.

2. Conduct functional simulation is performed by running the
VerilogXL command verilog with the data file filesf.f. Enter the
following at the UNIX prompt

verilog –f filesf.f

Running this command produces errors, including the following.

Compiling source file “testbenchf.v”

Compiling source file “stopwatch.v”

Compiling source file “stmchine.v”

Compiling source file “hex2led.v”

Compiling source file “cnt60.v”

Compiling source file “smallcntr.v”

Compiling source file “tenths.v”

Error! Module or primitive (BUFG) not defined [Verilog-MOPND]

 “stopwatch.v”, 24: BUFG CLOCKBUF(.I(oscout), .O(

 clkint));

XSI Synopsys Interface/Tutorial Guide

1-70 Xilinx Development System

3. You get error messages because the tutorial design contains
instantiations of LogiBLOX and instantiated XSI synthesis library
cells (such as OSC4, FDCE, and BUFG, for example). You need to
tell the Verilog simulator where to find the models for these cells
by placing the ‘uselib directive in the top-level file of this design,
stopwatch.v. Add the following line to the top of your stop-
watch.v file.

`uselib dir=$XILINX/verilog/src/UNIVIRTEX libext=.v

4. Replace the $XILINX text with the explicit path in your environ-
ment. If you set $XILINX to /home/software/xilinx, put the
following ‘uselib line in the top of the stopwatch.v file.

`uselib dir=/home/software/xilinx/verilog \
/src/UNIVIRTEX libext=.v

5. After making the changes, re-run the simulation command.

verilog –f filesf.f

Synthesizing Your Design
In this section of the tutorial, you synthesize the design and create a
place and routed NCD file. After creating the place and routed NCD
file, you can optionally create a BIT file for downloading to the demo
board, using bitgen and promgne, or the Hardware Debugger.

You conduct functional simulation to make sure that the design
implements the desired RTL behavior. To synthesize a design with
FPGA Compiler after achieving the desired RTL behavior, you need
to create a compile script. This tutorial provides a default compile
script you can modify in the A1.5i software. Use the following
instructions to copy and modify this compile script.

1. Copy the file $XILINX/template.fpga.script.4kex into your /
home/user/tutorial directory, which contains the
.synopsys_dc.setup and .synopsys_vss.setup files you created
earlier in the “Using Common Setup Procedures” section.

2. Rename the file template.fpga.script.virtex to run.script.

3. Open the file run.script in a text editor.

The file run.script compiles only one VHDL file. You need to
comment out lines not relevant to the synthesis of this particular

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-71

design. The following example shows the unmodified run.script
(using the file template.fpga.script.virtex).

/* ==*/

/* Sample Script for Synopsys to Xilinx Using */

/* FPGA Compiler */

/* */

/* Targets the Xilinx XCV150PQ240-3 and assumes a */

/* VHDL source file by way of an example. */

/* */

/* For general use with VIRTEX architectures. */

/* ==*/

/* === */

/* Set the name of the design’s top-level module. */

/* (Makes the script more readable and portable.) */

/* Also set some useful variables to record the */

/* designer and company name. */

/* === */

 TOP = <design_name>

 /* ========================== */

 /* Note: Assumes design file- */

 /* name and entity name are */

 /* the same (minus extension) */

 /* ========================== */

 designer = “XSI Team”

 company = “Xilinx, Inc”

 part = “XCV150PQ240-3”

/* === */

/* Analyze and Elaborate the design file and specify */

/* the design file format. */

XSI Synopsys Interface/Tutorial Guide

1-72 Xilinx Development System

/* === */

 analyze -format vhdl TOP + “.vhd”

 /* ============================ */

 /* You must analyze lower-level */

 /* hierarchy modules here */

 /* ============================ */

 elaborate TOP

/* === */

/* Set the current design to the top level. */

/* === */

 current_design TOP

/* === */

/* Set the synthesis design constraints. */

/* === */

 remove_constraint –all

/* If setting timing constraints, do it here.

 For example: */

/*

 create_clock <clock_pad_name> –period 50

*/

/* === */

/* Indicate those ports on the top-level module that */

/* should become chip-level I/O pads. Assign any I/O */

/* attributes or parameters and perform the I/O */

/* synthesis. */

/* === */

 set_port_is_pad “*”

 set_pad_type –slewrate HIGH all_outputs()

 insert_pads

/* +++ */

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-73

/* Compile the design */

/* +++ */

 compile –map_effort med

/* === */

/* Write the design report files. */

/* === */

 report_fpga > TOP + “.fpga”

 report_timing > TOP + “.timing”

/* === */

/* Set the part type for the output netlist. */

/* === */

 set_attribute TOP “part” –type string part

/* === */

/* Save design in EDIF format as <design>.sedif */

/* === */

 write -format edif –hierarchy –output TOP + “.sedif”

/* === */

/* Write out the design to a DB. */

/* === */

 write -format db –hierarchy –output TOP + “.db”

/* === */

/* Write-out the timing constraints that were */

/* applied earlier. (Note that any design hierarchy */

/* needs to be flattened before the constraints are */

/* written-out.) */

/* === */

 write_script > TOP + “.dc”

/* === */

/* Call the Synopsys-to-Xilinx constraints translator*/

/* utility DC2NCF to convert the Synopsys constraints*/

XSI Synopsys Interface/Tutorial Guide

1-74 Xilinx Development System

/* to a Xilinx NCF file. You may like to view */

/* dc2ncf.log to review the translation process. */

/* === */

 sh dc2ncf -w TOP + “.dc”

/* === */

/* Exit the Compiler. */

/* === */

 exit

/* === */

/* Now run the Xilinx design implementation tools. */

/* === */

The next example shows the modified run.script file (using the
file run.script). Before using this script, notice the following
items.

• The design compiles from the bottom up.

• The proper type of output for place and route in A1.5i is an
SEDIF file when compiling a Virtex design in FPGA
Compiler.

• Dont_touch commands appear in the script. Whenever you
instantiate a component from the XSI synthesis library, you
must place a Dont_touch on the instance to prevent Synopsys
from deleting or modifying the library cell.

/* ==*/

/* Sample Script for Synopsys to Xilinx Using */

/* FPGA Compiler */

/* */

/* Targets the Xilinx XCV150PQ240-3 and assumes a */

/* VHDL source file by way of an example. */

/* */

/* For general use with VIRTEX architectures. */

/* ==*/

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-75

/* === */

/* Set the name of the design’s top-level module. */

/* (Makes the script more readable and portable.) */

/* Also set some useful variables to record the */

/* designer and company name. */

/* === */

 TOP = stopwatch

 /* ========================== */

 /* Note: Assumes design file- */

 /* name and entity name are */

 /* the same (minus extension) */

 /* ========================== */

 designer = “XSI Team”

 company = “Xilinx, Inc”

 part = “XCV150PQ240-3”

/* === */

/* Analyze and Elaborate the design file and specify */

/* the design file format. */

/* === */

read –format verilog “smallcntr.v”

compile

read –format verilog “hex2led.v”

compile

read –format verilog “cnt60.v”

read –format verilog “stmchine.v”

read –format verilog “tenths.v”

read –format verilog TOP + “.v”

 /* ============================ */

 /* You must analyze lower-level */

XSI Synopsys Interface/Tutorial Guide

1-76 Xilinx Development System

 /* hierarchy modules here */

 /* ============================ */

 elaborate TOP

/* === */

/* Set the current design to the top level. */

/* === */

 current_design TOP

 set_dont_touch “DLL”

/* === */

/* Set the synthesis design constraints. */

/* === */

 remove_constraint –all

/* If setting timing constraints, do it here.

 For example: */

/*

 create_clock <clock_pad_name> –period 50

*/

/* === */

/* Indicate those ports on the top-level module that */

/* should become chip-level I/O pads. Assign any I/O */

/* attributes or parameters and perform the I/O */

/* synthesis. */

/* === */

 set_port_is_pad “*”

 set_pad_type –slewrate HIGH all_outputs()

 insert_pads

/* +++ */

/* Compile the design */

/* +++ */

 compile –map_effort med

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-77

/* === */

/* Write the design report files. */

/* === */

/* report_fpga > TOP + “.fpga”

 report_timing > TOP + “.timing” */

/* === */

/* Set the part type for the output netlist. */

/* === */

 set_attribute TOP “part” –type string part

/* === */

/* Save design in EDIF format as <design>.sedif */

/* === */

 write –format edif –hierarchy –output TOP + “.sedif”

/* === */

/* Write out the design to a DB. */

/* === */

/* write –format db –hierarchy –output TOP + “.db” */

/* === */

/* Write-out the timing constraints that were */

/* applied earlier. (Note that any design hierarchy */

/* needs to be flattened before the constraints are */

/* written-out.) */

/* === */

/* write_script > TOP + “.dc” */

/* === */

/* Call the Synopsys-to-Xilinx constraints translator*/

/* utility DC2NCF to convert the Synopsys constraints*/

/* to a Xilinx NCF file. You may like to view */

/* dc2ncf.log to review the translation process. */

/* === */

XSI Synopsys Interface/Tutorial Guide

1-78 Xilinx Development System

/* sh dc2ncf -w TOP + “.dc” */

/* === */

/* Exit the Compiler. */

/* === */

/* exit */

/* === */

/* Now run the Xilinx design implementation tools. */

/* === */

4. Synthesize the design by first starting Design Analyzer. Type the
following command in the directory that contains the
.synopsys_dc.setup file for this design.

design_analyzer &

This brings up the Design Analyzer GUI.

5. When the GUI appears, run the script run.script by selecting
Execute Script from the Setup pull-down menu. A pop-up
window appears where you can select the script ‘run.script’ to
run.

If the script runs successfully, the script stops and creates an
SXNF file. If you get errors, check the following.

• Make sure you set up the .synopsys_dc.setup file correctly.
Refer to the “Using Common Setup Procedures” section for
more information.

• Make sure you compiled the XDW synthesis libraries for the
version of Synopsys you use. Refer to the “Using Common
Setup Procedures” section for more information.

• Make sure that the paths referenced in the
.synopsys_dc.setup file exist. Refer to the “Using Common
Setup Procedures” section for more information.

• Make sure you run the design_analyzer & command in the
directory that contains the .synopsys_dc.setup file when you
start Design Analyzer.

6. Take the SXNF file produced by Design Analyzer and place and
route the design for timing simulation using the following script.

#!/bin/csh –f

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-79

ngdbuild –p v50PC84-4 watch.sxnf

map watch.ngd

par watch.ncd stopwatch_r.ncd

ngdanno stopwatch_r.ncd

ngd2ver –ul stopwatch_r.nga

Optionally, you can place and route the SXNF files using the
A1.5i GUI. Refer to the Quick Start Guide Tutorial for more infor-
mation about using the GUI for place and route.

Conducting Timing Simulation
To conduct timing simulation, use NGD2VER to create an SDF file
and structural Verilog file, along with a testbench. Run the following
command at the command-line.

verilog –f filest.f

filest.f contains the names of the two files used in timing simulation.
By default, the Verilog file produced by NGD2VER uses the
$sdf_annotate directive, which annotates the SDF file with the Verilog
file from NGD2VER.

Note: Before running timing simulation make sure you run
NGD2VER with the –ul option.

Virtex Verilog Alliance FPGA Express v2.1/VerilogXL
v2.5 Tutorial

This tutorial familiarizes you with the A1.5i XSI Verilog FPGA
Express v2.1/VerilogXL v2.5 design flow, presenting common tasks
such as locking pins and setting slew rate.

Getting Ready for this Tutorial
To use this A1.5i XSI tutorial, you must be using A1.5i XSI, FPGA
Express v2.1 or better, and VerilogXL v2.5 or better. Refer to the
instructions listed in the “Using Common Setup Procedures” section
for detailed information. This design uses Virtex features.

Download the file 4vrtxsiverexp.tar.Z from the Xilinx web site. Untar
and uncompress this file in the directory of your choice, but this tuto-
rial assumes you use the /home/user/tutorial directory.

XSI Synopsys Interface/Tutorial Guide

1-80 Xilinx Development System

Conducting Functional Simulation
To run a functional simulation, you need to compile the design files
and testbench with VerilogXL. This tutorial assumes that you uncom-
pressed, untarred, and placed your setup files in /home/user/tuto-
rial. If you placed the files elsewhere, replace your path appropriately
in the following instructions.

The A1.5i XSI VerilogXL functional simulation flow allows you to
simulate instantiated XSI cells such as FDCE and OSC4.

To conduct functional simulation, use the following steps.

1. Change directories to the /home/user/tutorial directory.

2. You perform functional simulation by running the VerilogXL
command verilog with the data file filesf.f. Type the following
command at the UNIX prompt.

verilog –f filesf.f

VerilogXL issues error messages when you attempt to simulate,
including the following.

Compiling source file “testbenchf.v”

Compiling source file “stopwatch.v”

Compiling source file “stmchine.v”

Compiling source file “hex2led.v”

Compiling source file “cnt60.v”

Compiling source file “smallcntr.v”

Compiling source file “tenths.v”

Error! Module or primitive (BUFG) not defined [Verilog-MOPND]

 “stopwatch.v”, 24: BUFG CLOCKBUF(.I(oscout), .O(

 clkint));

3. You get the error messages because the tutorial design contains
instantiations of LogiBLOX and instantiated XSI synthesis library
cells (such as OSC4, FDCE, and BUFG for example). You must tell
the Verilog simulator where to find the models for these cells by
placing the ‘uselib directive in the top-level file of this design,

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-81

stopwatch.v. Add the following line to the top of your stop-
watch.v file.

`uselib dir=$XILINX/verilog/src/UNIVIRTEX libext=.v

4. Replace the $XILINX text with the explicit path in your environ-
ment. If you set $XILINX to /home/software/xilinx, the ‘uselib
line appears in the top of the stopwatch.v file as the following.

`uselib dir=/home/software/xilinx/ \
verilog/src/UNIVIRTEX libext=.v

5. After making the change, re-run the functional simulation
command.

verilog –f filesf.f

Synthesizing Your Design
In this section of the tutorial, you synthesize the design and create a
place and routed NCD file. After creating the place and routed NCD
file, you can optionally proceed to create a BIT file for downloading
to the demo board, using bitgen and promgne, or the Hardware
Debugger. For more information about using the FPGA Express GUI,
refer to the FPGA Express on-line help.

Create an FPGA Express project, enter source files, and specify a
target device(4003EPC84-3) as shown in the following figure.

XSI Synopsys Interface/Tutorial Guide

1-82 Xilinx Development System

Figure 1-11 Creating an FPGA Express Verilog Project File

Add the design files, as shown in the following figure.

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-83

Figure 1-12 Adding Design Files for an FPGA Express Design

Select the top level entity and select a target device as shown in the
following illustration.

XSI Synopsys Interface/Tutorial Guide

1-84 Xilinx Development System

Figure 1-13 Selecting the Target Device (Virtex)

An implementation appears in the right-hand window. Select the
implementation and press the Optimize button on the tool bar, as the
following figure shows.

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-85

Figure 1-14 Optimizing an Implementation (Virtex)

Select the optimized design and write out the netlist by pressing the
Export Netlist button on the toolbar, illustrated in the following
figure.

XSI Synopsys Interface/Tutorial Guide

1-86 Xilinx Development System

Figure 1-15 Writing Out an Optimized Netlist (Virtex)

Take the EDIF file produced by FPGA Express and place and route
the design for timing simulation using the following script.

#!/bin/csh –f

ngdbuild –p v50pq240-4 watch.edf

map watch.ngd

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-87

par watch.ncd stopwatch_r.ncd

ngdanno stopwatch_r.ncd

ngd2ver –ul stopwatch_r.nga

Optionally, you can place and route the design using the A1.5i GUI.
Refer to the Quick Start Guide Tutorial for more information about
using the GUI for place and route.

Conducting Timing Simulation
To perform timing simulation, use NGD2VER to create an SDF file
and structural Verilog file, along with a testbench.

To perform timing simulation, run the following command at the
command-line

verilog –f filest.f

filest.f contains the names of the two files used in timing simulation.
By default, the Verilog file produced by NGD2VER uses the
$sdf_annotate directive, which annotates the SDF file with the Verilog
file from NGD2VER.

Note: Run NGD2VER with the –ul option before running timing
simulation.

The timing simulation testbench contains a definition for the Verilog
macro GSR_SIGNAL. You must toggle this macro at the start of
timing simulation. To decide on the proper pulse width, consult the
Databook for the die-speed grade appropriate to your simulation.

Virtex VHDL FPGA Compiler VSS Tutorial
This tutorial familiarizes you with the A1.5i FPGA Compiler/VSS
design flow and includes a VHDL design you can optionally down-
load to the demo board. This tutorial presents common tasks such as
locking pins and setting slew rate.

Getting Ready for this Tutorial
To use this tutorial, you need the software described in the “Using
Common Setup Procedures” section. If you use a version of Synopsys
newer than v1997.01, you must follow the additional steps in the
“Setting Up for the Spartan/XC4000 Verilog FPGA Compiler Tuto-

XSI Synopsys Interface/Tutorial Guide

1-88 Xilinx Development System

rial” section. If you want to target a device other than Virtex, refer-
ence the directories that apply to that family (for example, the XDW
libraries have separate directories for XC4000XL, Spartan, and
Virtex). Use synlibs with the exact die-speed target desired.

Setting Up for the Virtex VHDL FPGA Compiler
Tutorial

To use this tutorial, ensure installation of your Xilinx and Synopsys
software and know where the software resides on your system. If you
use a version of Synopsys newer than v1997.01, you must re-compile
the XSI XDW and simulation libraries. Refer to the setup instructions
in the “Setting up for FPGA Compiler” section.

For this tutorial, recompile only the libraries related to synthesizing a
Virtex device (if using a version of Synopsys newer than v1997.01),
and ensure compilation of the Virtex XDW DesignWare libraries. The
A1.5i simulation libraries come in two parts, a functional simulation
part and a timing simulation part. The A1.5i XSI VHDL functional
simulation libraries are called UNISIM. The A1.5i XSI VHDL timing
simulation libraries are called SIMPRIM libraries. The SIMPRIM
library is a VITAL simulation library.

Compile the Spartan XDW DesignWare libraries, XDW simulation
libraries, LogiBLOX simulation libraries, UNISIM simulation
libraries, and SIMPRIM libraries. All of these libraries contain
compile scripts which let you compile these libraries in the $XILINX
area. However, to use these scripts, you need write permissions to the
$XILINX area. If you do not have write permissions, make a local
copy of the $XILINX/synopsys/libraries directory and use the
following instructions, but instead of changing directories to
$XILINX/synopsys/libraries, change directories to your local copy of
that area.

Use the following instructions to compile the libraries Maker sure
you have followed the directions listed in the “Using Common Setup
Procedures” section.

1. Change directories to the $XILINX/synopsys/libraries/dw/src/
virtex directory.

2. Type the following command at the UNIX prompt

dc_shell –f install_dw.dc

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-89

3. Change directories to the $XILINX/synopsys/libraries/sim/src/
simprims directory.

4. Type the following command at the UNIX prompt.

./analyze.csh

5. Change directories to the $XILINX/synopsys/libraries/sim/src/
unisims directory.

6. Type the following command at the UNIX prompt.

./analyze.csh

7. In the empty directory you created earlier in the “Using Common
Setup Procedures” section, copy the file virtxxsvhdlc.tar.Z.
Uncompress and untar this file.

8. Create a .synospys_dc.setup file and a .synopsys_vss.setup using
the templates provided in the $XILINX/.synopsys/examples
area and the instructions listed in the “Using Common Setup
Procedures” section.

9. You must add to the .synopsys_dc.setup file several lines related
to synthesis libraries. Use the A1.5i XSI tool synlibs, which
displays the synthesis library information needed for a given die-
speed combination. To add the correct information into the
.synopsys_dc.setup file for a Virtex, type the following command
in the same directory as the .synopsys_dc.setup file.

synlibs -fc v50pq240-4 >> .synopsys_dc.setup

This appends the output of synlibs into the .synopsys_dc.setup
file. If you compiled the Virtex XDW libraries in the $XILINX
tree, you can proceed to checking the .synopsys_vss.setup file. If
you compiled the XDW libraries in the $XILINX area, then you
need not modify the define_design_lib line in the
.synopsys_dc.setup file.

10. If you copied the $XILINX/synopsys/libraries directory locally,
change the path in the .synopsys_dc.setup file to reflect the
copied directory path. For example, if you copied $XILINX/
libraries to /home/data, then the `define_design_lib’ setting
made by synlibs, edit the previous v50-4 examplle to reflect the /
home/data location.

define_design_lib xdw_virtex /home/data/libraries/ \
dw/lib/virtex

XSI Synopsys Interface/Tutorial Guide

1-90 Xilinx Development System

11. In the directory where you created your .synopsys_dc.setup,
.synopsys_vss.setup and where you uncompressed and untarred
the file virtexxsivhdle.tar.Z file, type the following command.

ls -l

12. Make sure the directory contains the following items.

• .synopsys_dc.setup

• .synopsys_vss.setup

• WORK

• func

• synth

• time

The func directory contains all files and scripts needed for func-
tional simulation. The synth directory contains all files and
scripts needed for synthesis. The time directory contains files
needed for timing simulation.

Conducting Functional Simulation
To conduct functional simulation, you must first compile the design
files and testbench, then run the VSS simulation tool. This tutorial
assumes that you uncompressed, untarred, and placed your setup
files in /home/user/tutorial. If you placed these files elsewhere,
replace your path appropriately in the following instructions.

The A1.5i XSI VSS functional simulation flow allows you to simulate
instantiated XSI cells such as FDCE and CLKDLL. Additionally, by
using the UNISIM simulation libraries, you can simulate and imple-
ment the GSR without impact to the design or testbench.

To conduct functional simulation, use the following instructions.

1. Change directories to the /home/user/tutorial directory.

2. You conduct functional simulation by running the script
func.script. Before running the script, open the file func.script in a
text editor. Notice the following items in this file.

• The files for simulation read in from the bottom up.

• The testbench reads in last.

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-91

• vhdlan uses the –i option. Always use vhdlan with the –i
option. By default, vhdlan uses the –c option, which works
only if your system uses a certain type of C compiler. If you
want to use the –c option with vhdlan, refer to the Synopsys
web site for the proper setup.

• The contents of the func.sim file.

#!/bin/csh –f

rm –r WORK

mkdir WORK

vhdlan –i tenths.vhd

vhdlan –i smallcntr.vhd

vhdlan –i cnt60.vhd

vhdlan –i hex2led.vhd

vhdlan –i stmchine.vhd

vhdlan –i stopwatch.vhd

vhdlan –i testbenchf.vhd

vhdlsim –e commandf.txt overall

3. Run the functional simulation by typing the following command
at the UNIX prompt.

./func.sim

4. You get error messages because the VHDL code contains an
instantiated component (OSC4) that does not have an underlying
RTL behavioral description; you must make an RTL model for
functional simulation. For more information on OSC4, refer to the
Libraries Guide and the Databook. Use the UNISIM libraries to
functionally simulate library cells instantiated from the XSI
libraries. VHDL code that instantiates any XSI library cell must
contain the following two lines.

library UNISIM;

use UNISIM.all;

In general, you need these lines only in the files that contain
instantiated XSI library cells (such as FDCE, RAM32X1S, and
BUFG, for example). However, you can place the above two lines
in every VHDL file in your design.

XSI Synopsys Interface/Tutorial Guide

1-92 Xilinx Development System

The following example shows the stopwatch.vhd file with the
two lines added.

library IEEE;

use IEEE.std_logic_1164.all;

library UNISIM;

use UNISIM.all;

entity stopwatch is

 port (RESET : in STD_LOGIC;

 STRTSTOP : in STD_LOGIC;

 TENTHSOUT : out STD_LOGIC_VECTOR(9 downto 0);

 ONESOUT : out STD_LOGIC_VECTOR(6 downto 0);

 TENSOUT : out STD_LOGIC_VECTOR(6 downto 0);

 CLOCK: in STD_LOGIC

);

end stopwatch;

architecture inside of stopwatch is

component BUFGDLL

 port (I: in STD_LOGIC; O: out STD_LOGIC);

end component;

component BUFG

 port (I : in STD_LOGIC;

 O : out STD_LOGIC);

end component;

component stmchine

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-93

 port (CLK : in STD_LOGIC;

 RESET : in STD_LOGIC;

 STRTSTOP : in STD_LOGIC;

 CLKEN : out STD_LOGIC;

 RST : out STD_LOGIC

);

end component;

component tenths

 port (CLOCK : in STD_LOGIC;

 CLK_EN : in STD_LOGIC;

 ASYNC_CTRL : in STD_LOGIC;

 TERM_CNT : out STD_LOGIC;

 Q_OUT : out STD_LOGIC_VECTOR(9 downto 0));

end component;

component cnt60

 port (CE : in STD_LOGIC;

 CLK : in STD_LOGIC;

 CLR : in STD_LOGIC;

 LSBSEC : out STD_LOGIC_VECTOR(3 downto 0);

 MSBSEC : out STD_LOGIC_VECTOR(3 downto 0));

end component;

component hex2led

 port (HEX : in STD_LOGIC_VECTOR(3 downto 0);

 LED : out STD_LOGIC_VECTOR(6 downto 0));

end component;

signal strtstopinv : STD_LOGIC;

XSI Synopsys Interface/Tutorial Guide

1-94 Xilinx Development System

signal oscout : STD_LOGIC;

signal clkint : STD_LOGIC;

signal clkenable : STD_LOGIC;

signal rstint : STD_LOGIC;

signal xcountout : STD_LOGIC_VECTOR(9 downto 0);

signal xtermcnt : STD_LOGIC;

signal cnt60enable : STD_LOGIC;

signal lsbcnt : STD_LOGIC_VECTOR(3 downto 0);

signal msbcnt : STD_LOGIC_VECTOR(3 downto 0);

begin

DLL:BUFGDLL port map(I=>CLOCK,O=>oscout);

CLOCKBUF:BUFG port map(I=>oscout,O=>clkint);

MACHINE:stmchine port map(CLK=>clkint,

 RESET=>RESET,

 STRTSTOP=>strtstopinv,

 CLKEN=>clkenable,

 RST=>rstint

);

XCOUNTER:tenths port map(CLOCK=>clkint,

 CLK_EN=>clkenable,

 ASYNC_CTRL=>rstint,

 TERM_CNT=>xtermcnt,

 Q_OUT=>xcountout

);

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-95

sixty: cnt60 port map(CE=>cnt60enable,

 CLK=>clkint,

 CLR=>rstint,

 LSBSEC=>lsbcnt,

 MSBSEC=>msbcnt

);

lsbled:hex2led port map(HEX=>lsbcnt,

LED=>ONESOUT

);

msbled:hex2led port map(HEX=>msbcnt,

LED=>TENSOUT

);

cnt60enable<=xtermcnt and clkenable;

TENTHSOUT<=not(xcountout);

strtstopinv<=not(STRTSTOP);

end inside;

5. After correcting the stopwatch.vhd file, recompile the func.sim
file. The simulation starts and displays the waveform viewer. The
UNIX shell displays the vhdlsim prompt.

Synthesizing Your Design
In this section of the tutorial, you synthesize the design and create a
place and routed NCD file. After creating the place and routed NCD
file, you can optionally create a BIT file for downloading to the demo
board, using bitgen and promgne, or the Hardware Debugger.

Use the following instructions to synthesize your design.

1. Create a compile script. You can modify the default compile
script located in the A1.5i software. Copy the file $XILINX/
template.fpga.script.4kex into your /home/user/tutorial direc-

XSI Synopsys Interface/Tutorial Guide

1-96 Xilinx Development System

tory, which contains the .synopsys_dc.setup and
.synopsys_vss.setup files you created earlier.

2. Rename the file template.fpga.script.virtex to run.script.

Open the file run.script in a text editor and notice the following
items. The file run.script compiles only one VHDL file. You must
comment out several lines not relevant to synthesis of this partic-
ular design.

The following example shows the unmodified run.script file
(using the file template.fpga.script.virtex).

/* ==*/

/* Sample Script for Synopsys to Xilinx Using */

/* FPGA Compiler */

/* */

/* Targets the Xilinx XCV150PQ240-3 and assumes a */

/* VHDL source file by way of an example. */

/* */

/* For general use with VIRTEX architectures. */

/* ==*/

/* === */

/* Set the name of the design’s top-level module. */

/* (Makes the script more readable and portable.) */

/* Also set some useful variables to record the */

/* designer and company name. */

/* === */

 TOP = <design_name>

 /* ========================== */

 /* Note: Assumes design file- */

 /* name and entity name are */

 /* the same (minus extension) */

 /* ========================== */

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-97

 designer = “XSI Team”

 company = “Xilinx, Inc”

 part = “XCV150PQ240-3”

/* === */

/* Analyze and Elaborate the design file and specify */

/* the design file format. */

/* === */

 analyze –format vhdl TOP + “.vhd”

 /* ============================ */

 /* You must analyze lower-level */

 /* hierarchy modules here */

 /* ============================ */

 elaborate TOP

/* === */

/* Set the current design to the top level. */

/* === */

 current_design TOP

/* === */

/* Set the synthesis design constraints. */

/* === */

 remove_constraint –all

/* If setting timing constraints, do it here.

 For example: */

/*

 create_clock <clock_pad_name> –period 50

*/

/* === */

/* Indicate those ports on the top-level module that */

/* should become chip-level I/O pads. Assign any I/O */

/* attributes or parameters and perform the I/O */

XSI Synopsys Interface/Tutorial Guide

1-98 Xilinx Development System

/* synthesis. */

/* === */

 set_port_is_pad “*”

 set_pad_type -slewrate HIGH all_outputs()

 insert_pads

/* +++ */

/* Compile the design */

/* +++ */

 compile –map_effort med

/* === */

/* Write the design report files. */

/* === */

 report_fpga > TOP + “.fpga”

 report_timing > TOP + “.timing”

/* === */

/* Set the part type for the output netlist. */

/* === */

 set_attribute TOP “part” –type string part

/* === */

/* Save design in EDIF format as <design>.sedif */

/* === */

 write –format edif –hierarchy –output TOP + “.sedif”

/* === */

/* Write out the design to a DB. */

/* === */

 write –format db –hierarchy –output TOP + “.db”

/* === */

/* Write-out the timing constraints that were */

/* applied earlier. (Note that any design hierarchy */

/* needs to be flattened before the constraints are */

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-99

/* written-out.) */

/* === */

 write_script > TOP + “.dc”

/* === */

/* Call the Synopsys-to-Xilinx constraints translator*/

/* utility DC2NCF to convert the Synopsys constraints*/

/* to a Xilinx NCF file. You may like to view */

/* dc2ncf.log to review the translation process. */

/* === */

 sh dc2ncf –w TOP + “.dc”

/* === */

/* Exit the Compiler. */

/* === */

 exit

/* === */

/* Now run the Xilinx design implementation tools. */

/* === */

The following example shows the modified run.script file (using
the file run.script).

Before using this script, notice the following items.

• The design compiles from the bottom up.

• The proper type of output for place and route in A1.5i is an
SEDIF file when compiling a Virtex design in FPGA
Compiler.

• Dont_touch commands appear in the script. Whenever you
instantiate a component from the XSI synthesis library, you
must place a Dont_touch on the instance to prevent Synopsys
from deleting or modifying the library cell.

/* ==*/

/* Sample Script for Synopsys to Xilinx Using */

XSI Synopsys Interface/Tutorial Guide

1-100 Xilinx Development System

/* FPGA Compiler */

/* */

/* Targets the Xilinx XCV150PQ240-3 and assumes a */

/* VHDL source file by way of an example. */

/* */

/* For general use with VIRTEX architectures. */

/* ==*/

/* === */

/* Set the name of the design’s top-level module. */

/* (Makes the script more readable and portable.) */

/* Also set some useful variables to record the */

/* designer and company name. */

/* === */

 TOP = stopwatch

 /* ========================== */

 /* Note: Assumes design file- */

 /* name and entity name are */

 /* the same (minus extension) */

 /* ========================== */

 designer = “XSI Team”

 company = “Xilinx, Inc”

 part = “XCV150PQ240-3”

/* === */

/* Analyze and Elaborate the design file and specify */

/* the design file format. */

/* === */

analyze –format vhdl “smallcntr.vhd”

elaborate smallcntr

compile

analyze –format vhdl “hex2led.vhd”

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-101

elaborate hex2led

compile

analyze –format vhdl “cnt60.vhd”

analyze –format vhdl “stmchine.vhd”

analyze –format vhdl “tenths.vhd”

analyze –format vhdl TOP + “.vhd”

 /* ============================ */

 /* You must analyze lower-level */

 /* hierarchy modules here */

 /* ============================ */

 elaborate TOP

/* === */

/* Set the current design to the top level. */

/* === */

 current_design TOP

 set_dont_touch “DLL”

/* === */

/* Set the synthesis design constraints. */

/* === */

 remove_constraint –all

/* If setting timing constraints, do it here.

 For example: */

/*

 create_clock <clock_pad_name> –period 50

*/

/* === */

/* Indicate those ports on the top-level module that */

/* should become chip-level I/O pads. Assign any I/O */

/* attributes or parameters and perform the I/O */

/* synthesis. */

XSI Synopsys Interface/Tutorial Guide

1-102 Xilinx Development System

/* === */

 set_port_is_pad “*”

 set_pad_type –slewrate HIGH all_outputs()

 insert_pads

/* +++ */

/* Compile the design */

/* +++ */

 compile –map_effort med

/* === */

/* Write the design report files. */

/* === */

/* report_fpga > TOP + “.fpga”

 report_timing > TOP + “.timing” */

/* === */

/* Set the part type for the output netlist. */

/* === */

 set_attribute TOP “part” –type string part

/* === */

/* Save design in EDIF format as <design>.sedif */

/* === */

 write –format edif –hierarchy –output TOP + “.sedif”

/* === */

/* Write out the design to a DB. */

/* === */

/* write –format db –hierarchy –output TOP + “.db” */

/* === */

/* Write-out the timing constraints that were */

/* applied earlier. (Note that any design hierarchy */

/* needs to be flattened before the constraints are */

/* written-out.) */

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-103

/* === */

/* write_script > TOP + “.dc” */

/* === */

/* Call the Synopsys-to-Xilinx constraints translator*/

/* utility DC2NCF to convert the Synopsys constraints*/

/* to a Xilinx NCF file. You may like to view */

/* dc2ncf.log to review the translation process. */

/* === */

/* sh dc2ncf –w TOP + “.dc” */

/* === */

/* Exit the Compiler. */

/* === */

/* exit */

/* === */

/* Now run the Xilinx design implementation tools. */

/* === */

3. Synthesize the design by first starting Design Analyzer. Type the
following command in the directory that contains the
.synopsys_dc.setup file for this design.

design_analyzer &

This brings up the Design Analyzer GUI.

4. When the GUI appears, run the script run.script by selecting
Execute Script from the Setup pull-down menu. A pop-up
window appears where you can select the script run.script.

If the script runs successfully, the script stops and creates an
SXNF file. If an error occurs, check the following.

• Make sure that you set up the .synopsys_dc.setup file
correctly.

• Make sure that you compiled the XDW synthesis libraries for
the version of Synopsys you use.

XSI Synopsys Interface/Tutorial Guide

1-104 Xilinx Development System

• Make sure that the paths referenced in the
.synopsys_dc.setup file exist. Refer to the “Using Common
Setup Procedures” section for more information.

• Make sure you run the design_analyzer & command in the
directory that contains the .synopsys_dc.setup file when you
start Design Analyzer.

5. Take the SXNF file produced by Design Analyzer and place and
route the design for timing simulation using the following script.

#!/bin/csh –f

ngdbuild –p v50PC84-4 stopwatch.sxnf

map stopwatch.ngd

par stopwatch.ncd stopwatch_r.ncd

ngdanno stopwatch_r.ncd

ngd2vhdl stopwatch_r.nga

Optionally, you can place and route the EDIF files using the A1.5i
GUI. Refer to the Quick Start Guide Tutorial for more information
about using the GUI for place and route.

Conducting Timing Simulation
To perform timing simulation, use NGD2VHDL to create an SDF file
and structural VHDL file, along with a testbench. Use the script file
timing.sim to perform the timing simulation.

You run timing.sim in the directory that contains the
.synopsys_vss.setup file you created earlier.

Open the script file timing.sim in a text editor and notice the
following.

• vhdlan uses the –i option. Always use vhdlan with the –i option.
By default, vhdlan uses the –c option, which works only if your
system uses a certain type of C compiler. If you want to use the –c
option with vhdlan, refer to the Synopsys web site for the proper
setup.

• The -sdf_top option is specified first when invoking vhdldbx or
vhdlsim.

The following example shows the contents of the file timing.sim.

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-105

#!/bin/csh -f

rm -r WORK

mkdir WORK

vhdlan –i stopwatch_r.vhd

vhdlan –i testbencht.vhd

vhdlsim –sdf_top /testbenchf/uut –sdf \
stopwatch_r.sdf –e commandt.txt overall

Close the timing.sim file in the text editor. Run the timing simulation,
which produces a waveform view similar to the functional simula-
tion, by typing the following command at the UNIX prompt.

./timing.sim

If you get error and warning about “Bad Regions” or undefined
libraries, make sure you set up the simulation libraries for A1.5i XSI
VSS correctly. Make sure that the paths in the .synopsys_vss.setup file
point to paths which exist in your setup. For further information,
refer to the “Using Common Setup Procedures” section.

Virtex VHDL FPGA Compiler VSS Tutorial
This tutorial familiarizes you with the A1.5i FPGA Compiler/VSS
design flow and includes a VHDL design you can optionally down-
loaded to the demo board. This tutorial presents common tasks such
as locking pins and setting slew rate.

Getting Ready for this Tutorial
To use this tutorial, you need the software described in the “Using
Common Setup Procedures” section. If you want to target a device
other than Virtex, reference the directories that apply to that family
(for example, the XDW libraries have separate directories for
XC4000XL, Spartan, and Virtex). Use synlibs with the exact die-speed
target desired.

Setting Up for the Virtex VHDL FPGA Compiler VSS
Tutorial

To use this tutorial, ensure installation of your Xilinx and Synopsys
software and know where the software resides on your system. If you

XSI Synopsys Interface/Tutorial Guide

1-106 Xilinx Development System

use a version of Synopsys newer than v1997.01, you must re-compile
the XSI XDW and simulation libraries. Refer to the setup instructions
in the “Setting up for FPGA Compiler” section.

For this tutorial, recompile only the libraries related to synthesizing a
Virtex device (if using a version of Synopsys newer than v1997.01),
and ensure compilation of the Virtex XDW DesignWare libraries. The
A1.5i simulation libraries come in two parts, a functional simulation
part and a timing simulation part. The A1.5i XSI VHDL functional
simulation libraries are called UNISIM. The A1.5i XSI VHDL timing
simulation libraries are called SIMPRIM libraries. The SIMPRIM
library is a VITAL simulation library.

Compile the Spartan XDW DesignWare libraries, XDW simulation
libraries, LogiBLOX simulation libraries, UNISIM simulation
libraries, and SIMPRIM libraries. All of these libraries contain
compile scripts which let you compile these libraries in the $XILINX
area. However, to use these scripts, you need write permissions to the
$XILINX area. If you do not have write permissions, make a local
copy of the $XILINX/synopsys/libraries directory and use the
following instructions, but instead of changing directories to
$XILINX/synopsys/libraries, change directories to your local copy of
that area.

Use the following instructions to compile the libraries Maker sure
you have followed the directions listed in the “Using Common Setup
Procedures” section.

1. Change directories to the $XILINX/synopsys/libraries/dw/src/
virtex directory.

2. Type the following command at the UNIX prompt

dc_shell –f install_dw.dc

3. Change directories to the $XILINX/synopsys/libraries/sim/src/
simprims directory.

4. Type the following command at the UNIX prompt.

./analyze.csh

5. Change directories to the $XILINX/synopsys/libraries/sim/src/
unisims directory.

6. Type the following command at the UNIX prompt.

./analyze.csh

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-107

7. In the empty directory you created earlier in the “Using Common
Setup Procedures” section, copy the file virtxxsvhdlc.tar.Z.
Uncompress and untar this file.

8. Create a .synospys_dc.setup file and a .synopsys_vss.setup using
the templates provided in the $XILINX/.synopsys/examples
area and the instructions listed in the “Using Common Setup
Procedures” section.

9. You must add to the .synopsys_dc.setup file several lines related
to synthesis libraries. Use the A1.5i XSI tool synlibs, which
displays the synthesis library information needed for a given die-
speed combination. To add the correct information into the
.synopsys_dc.setup file for a Virtex, type the following command
in the same directory as the .synopsys_dc.setup file.

synlibs -fc v50pq240-4 >> .synopsys_dc.setup

This appends the output of synlibs into the .synopsys_dc.setup
file. If you compiled the Virtex XDW libraries in the $XILINX
tree, you can proceed to checking the .synopsys_vss.setup file. If
you compiled the XDW libraries in the $XILINX area, then you
need not modify the define_design_lib line in the
.synopsys_dc.setup file.

10. If you copied the $XILINX/synopsys/libraries directory locally,
change the path in the .synopsys_dc.setup file to reflect the
copied directory path. For example, if you copied $XILINX/
libraries to /home/data, then the `define_design_lib’ setting
made by synlibs, edit the previous v50-4 example to reflect the /
home/data location.

define_design_lib xdw_virtex /home/data/libraries/ \
dw/lib/virtex

11. In the directory where you created your .synopsys_dc.setup,
.synopsys_vss.setup and where you uncompressed and untarred
the file virtexxsivhdle.tar.Z file, type the following command.

ls -l

12. Make sure the directory contains the following items.

• .synopsys_dc.setup

• .synopsys_vss.setup

• WORK

XSI Synopsys Interface/Tutorial Guide

1-108 Xilinx Development System

• func

• synth

• time

The func directory contains all files and scripts needed for func-
tional simulation. The synth directory contains all files and
scripts needed for synthesis. The time directory contains files
needed for timing simulation.

Conducting Functional Simulation
To run a functional simulation, you need to compile the design files
and testbench, before you run the VSS simulation tool. This tutorial
assumes that you uncompressed, untarred, and placed your setup
files in /home/user/tutorial. If you placed your files elsewhere,
replace your path appropriately in the following instructions.

The A1.5i XSI VSS functional simulation flow allows you to simulate
instantiated XSI cells such as FDCE and CLKDLL. Additionally, by
using the UNISIM simulation libraries, you can simulate and imple-
ment the GSR without impact to the design or testbench.

To conduct functional simulation, use the following steps.

1. Change directories to the /home/user/tutorial directory.

2. You conduct functional simulation by running the script
func.script. Before running the script, open the file func.script in a
text editor. Notice the following items in this file.

• The files for simulation read in from the bottom up.

• The testbench reads in last.

• vhdlan uses the –i option. Always use vhdlan with the –i
option. By default, vhdlan uses the –c option, which works
only if your system uses a certain type of C compiler. If you
want to use the –c option with vhdlan, refer to the Synopsys
web site for the proper setup.

• The contents of the func.sim file.

#!/bin/csh –f

rm –r WORK

mkdir WORK

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-109

vhdlan –i tenths.vhd

vhdlan –i smallcntr.vhd

vhdlan –i cnt60.vhd

vhdlan –i hex2led.vhd

vhdlan –i stmchine.vhd

vhdlan –i stopwatch.vhd

vhdlan –i testbenchf.vhd

vhdlsim –e commandf.txt overall

3. Run the functional simulation by typing the following command
at the UNIX prompt.

./func.sim

4. You get error messages because the VHDL code contains an
instantiated component (OSC4) that does not have an underlying
RTL behavioral description; you must make an RTL model for
functional simulation. For more information on OSC4, refer to the
Libraries Guide and the Databook. Use the UNISIM libraries to
functionally simulate library cells instantiated from the XSI
libraries. VHDL code that instantiates any XSI library cell must
contain the following two lines.

library UNISIM;

use UNISIM.all;

In general, you need these lines only in the files that contain
instantiated XSI library cells (such as FDCE, RAM32X1S, and
BUFG, for example). However, you can place the above two lines
in every VHDL file in your design.

The following example shows the modified stopwatch.vhd file.

library IEEE;

use IEEE.std_logic_1164.all;

library UNISIM;

use UNISIM.all;

entity stopwatch is

XSI Synopsys Interface/Tutorial Guide

1-110 Xilinx Development System

 port (RESET : in STD_LOGIC;

 STRTSTOP : in STD_LOGIC;

 TENTHSOUT : out STD_LOGIC_VECTOR(9 downto 0);

 ONESOUT : out STD_LOGIC_VECTOR(6 downto 0);

 TENSOUT : out STD_LOGIC_VECTOR(6 downto 0);

 CLOCK: in STD_LOGIC

);

end stopwatch;

architecture inside of stopwatch is

component BUFGDLL

 port (I: in STD_LOGIC; O: out STD_LOGIC);

end component;

component BUFG

 port (I : in STD_LOGIC;

 O : out STD_LOGIC);

end component;

component stmchine

 port (CLK : in STD_LOGIC;

 RESET : in STD_LOGIC;

 STRTSTOP : in STD_LOGIC;

 CLKEN : out STD_LOGIC;

 RST : out STD_LOGIC

);

end component;

component tenths

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-111

 port (CLOCK : in STD_LOGIC;

 CLK_EN : in STD_LOGIC;

 ASYNC_CTRL : in STD_LOGIC;

 TERM_CNT : out STD_LOGIC;

 Q_OUT : out STD_LOGIC_VECTOR(9 downto 0));

end component;

component cnt60

 port (CE : in STD_LOGIC;

 CLK : in STD_LOGIC;

 CLR : in STD_LOGIC;

 LSBSEC : out STD_LOGIC_VECTOR(3 downto 0);

 MSBSEC : out STD_LOGIC_VECTOR(3 downto 0));

end component;

component hex2led

 port (HEX : in STD_LOGIC_VECTOR(3 downto 0);

 LED : out STD_LOGIC_VECTOR(6 downto 0));

end component;

signal strtstopinv : STD_LOGIC;

signal oscout : STD_LOGIC;

signal clkint : STD_LOGIC;

signal clkenable : STD_LOGIC;

signal rstint : STD_LOGIC;

signal xcountout : STD_LOGIC_VECTOR(9 downto 0);

signal xtermcnt : STD_LOGIC;

signal cnt60enable : STD_LOGIC;

signal lsbcnt : STD_LOGIC_VECTOR(3 downto 0);

signal msbcnt : STD_LOGIC_VECTOR(3 downto 0);

XSI Synopsys Interface/Tutorial Guide

1-112 Xilinx Development System

begin

DLL:BUFGDLL port map(I=>CLOCK,O=>oscout);

CLOCKBUF:BUFG port map(I=>oscout,O=>clkint);

MACHINE:stmchine port map(CLK=>clkint,

 RESET=>RESET,

 STRTSTOP=>strtstopinv,

 CLKEN=>clkenable,

 RST=>rstint

);

XCOUNTER:tenths port map(CLOCK=>clkint,

 CLK_EN=>clkenable,

 ASYNC_CTRL=>rstint,

 TERM_CNT=>xtermcnt,

 Q_OUT=>xcountout

);

sixty: cnt60 port map(CE=>cnt60enable,

 CLK=>clkint,

 CLR=>rstint,

 LSBSEC=>lsbcnt,

 MSBSEC=>msbcnt

);

lsbled:hex2led port map(HEX=>lsbcnt,

LED=>ONESOUT

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-113

);

msbled:hex2led port map(HEX=>msbcnt,

LED=>TENSOUT

);

cnt60enable<=xtermcnt and clkenable;

TENTHSOUT<=not(xcountout);

strtstopinv<=not(STRTSTOP);

end inside;

5. After you modify the stopwatch.vhd file, the func.sim file
compiles with no errors. The simulation starts and displays the
waveform viewer. The UNIX shell displays the vhdlsim prompt.

Synthesizing Your Design
In this section of the tutorial, you synthesize the design and create a
place and routed NCD file. After creating the place and routed NCD
file, you can optionally create a BIT file for downloading to the demo
board, using bitgen and promgne, or the Hardware Debugger.

To synthesize your design, use the following instructions.

1. Create a compile script. You can modify the default compile
script located in the A1.5i software. Copy the file $XILINX/
template.fpga.script.4kex into your /home/user/tutorial direc-
tory, which contains the .synopsys_dc.setup and
.synopsys_vss.setup files you created earlier.

2. Rename the file template.synopsys.dc.setup.4kes to run.script.

3. Open the file run.script in a text editor. The file run.script
compiles only one VHDL file. You must comment out several
lines not relevant to synthesis of this particular design.

The following example shows the unmodified run.script file
(using the file template.synopsys_dc.setup.4kex).

/* ==*/

/* Sample Script for Synopsys to Xilinx Using */

XSI Synopsys Interface/Tutorial Guide

1-114 Xilinx Development System

/* FPGA Compiler */

/* */

/* Targets the Xilinx XC4028EX-3 and assumes a VHDL */

/* source file by way of an example. */

/* */

/* For general use with XC4000E/EX architectures. */

/* Not suitable for use with XC3000A/XC5200 */

/* architectures. */

/* ==*/

/* === */

/* Set the name of the design’s top-level module. */

/* (Makes the script more readable and portable.) */

/* Also set some useful variables to record the */

/* designer and company name. */

/* === */

 TOP = <design_name>

 /* ========================== */

 /* Note: Assumes design file- */

 /* name and entity name are */

 /* the same (minus extension) */

 /* ========================== */

 designer = “XSI Team”

 company = “Xilinx, Inc”

 part = “4028expg299-3”

/* === */

/* Analyze and Elaborate the design file and specify */

/* the design file format. */

/* === */

 analyze –format vhdl TOP + “.vhd”

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-115

 /* ============================ */

 /* You must analyze lower-level */

 /* hierarchy modules here */

 /* ============================ */

 elaborate TOP

/* === */

/* Set the current design to the top level. */

/* === */

 current_design TOP

/* === */

/* Set the synthesis design constraints. */

/* === */

 remove_constraint –all

 /* Some example constraints */

 create_clock <clock_port_name> –period 50

 set_input_delay 5 –clock <clock_port_name> \

 { <a_list_of_input_ports> }

 set_output_delay 5 –clock <clock_port_name> \

 { <a_list_of_output_ports> }

 set_max_delay 100 –from <source> –to <destination>

 set_false_path –from <source> –to <destination>

/* === */

/* Indicate those ports on the top-level module that */

/* should become chip-level I/O pads. Assign any I/O */

/* attributes or parameters and perform the I/O */

/* synthesis. */

/* === */

 set_port_is_pad “*”

 /* Some example I/O parameters */

 set_pad_type –pullup <port_name>

XSI Synopsys Interface/Tutorial Guide

1-116 Xilinx Development System

 set_pad_type –no_clock all_inputs()

 set_pad_type –clock <clock_port_name>

 set_pad_type –exact BUFGS_F <hi_fanout_port_name>

 set_pad_type –slewrate HIGH all_outputs()

 /* ============================= */

 /* Note: Synopsys slew-control= */

 /* HIGH is the same as Xilinx’s */

 /* slewrate=SLOW. Synopsys slew- */

 /* control=LOW is same as Xilinx */

 /* slewrate=FAST. */

 /* ============================= */

 insert_pads

/* === */

/* Synthesize and optimize the design */

/* === */

 compile –boundary_optimization

/* === */

/* Write the design report files. */

/* === */

 report_fpga > TOP + “.fpga”

 report_timing > TOP + “.timing”

/* === */

/* Write out the design to a DB file. (Post compile) */

/* === */

 write –format db –hierarchy –output TOP + “_compiled.db”

/* === */

/* Replace CLBs and IOBs with gates. */

/* === */

 replace_fpga

/* === */

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-117

/* Set the part type for the output netlist. */

/* === */

 set_attribute TOP “part” –type string part

/* === */

/* Optional attribute to remove the FPGA Compiler’s */

/* mapping structures from the design. This permits */

/* The Xilinx design implementation tools to map the */

/* design instead. */

/* === */

/* set_attribute find(design,”*”) “xnfout_write_map_symbols” \

 –type boolean FALSE */

/* === */

/* Add any I/O constraints to the design. */

/* === */

 set_attribute <port_name> “pad_location” \

 –type string “<pad_location>”

/* === */

/* Save design in XNF format as <design>.sxnf */

/* === */

 –ungroup all –flatten

 write –format xnf –hierarchy –output TOP + “.sxnf”

/* === */

/* Write out the design to a DB. (Post replace_fpga) */

/* === */

 write –format db –hierarchy –output TOP + “.db”

/* === */

/* Write-out the timing constraints that were */

/* applied earlier. (Note that any design hierarchy */

/* needs to be flattened before the constraints are */

/* written-out.) */

XSI Synopsys Interface/Tutorial Guide

1-118 Xilinx Development System

/* === */

 write_script > TOP + “.dc”

/* === */

/* Call the Synopsys-to-Xilinx constraints translator*/

/* utility DC2NCF to convert the Synopsys constraints*/

/* to a Xilinx NCF file. You may like to view */

/* dc2ncf.log to review the translation process. */

/* === */

 sh dc2ncf TOP + “.dc”

/* === */

/* Exit the Compiler. */

/* === */

 exit

/* === */

/* Now run the Xilinx design implementation tools. */

/* === */

The following example shows the modified run.script file (using
the file run.script).

Before using this script, notice the following items.

• The design compiles from the bottom up.

• The VHDL file for the LogiBLOX counter tenths.vhd is not
compiled.

• The VHDL file from the LogiBLOX tools is a simulation
model.

• The proper type of output for place and route in A1.5i is an
SXNF file when compiling an XC4000 design in FPGA
Compiler.

• Dont_touch commands appear in the script. Whenever you
instantiate a component from the XSI synthesis library, you
must place a Dont_touch on the instance to prevent Synopsys
from deleting or modifying the library cell.

/* ==*/

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-119

/* Sample Script for Synopsys to Xilinx Using */

/* FPGA Compiler */

/* */

/* Targets the Xilinx XC4028EX-3 and assumes a VHDL */

/* source file by way of an example. */

/* */

/* For general use with XC4000E/EX architectures. */

/* Not suitable for use with XC3000A/XC5200 */

/* architectures. */

/* ==*/

/* === */

/* Set the name of the design’s top-level module. */

/* (Makes the script more readable and portable.) */

/* Also set some useful variables to record the */

/* designer and company name. */

/* === */

 TOP = stopwatch

 /* ========================== */

 /* Note: Assumes design file- */

 /* name and entity name are */

 /* the same (minus extension) */

 /* ========================== */

 designer = “XSI Team”

 company = “Xilinx, Inc”

 part = “s05pc84-3”

/* === */

/* Analyze and Elaborate the design file and specify */

/* the design file format. */

/* === */

XSI Synopsys Interface/Tutorial Guide

1-120 Xilinx Development System

analyze –format vhdl “smallcntr.vhd”

analyze –format vhdl “cnt60.vhd”

analyze –format vhdl “hex2led.vhd”

analyze –format vhdl “stmchine.vhd”

analyze –format vhdl TOP + “.vhd”

 /* ============================ */

 /* You must analyze lower-level */

 /* hierarchy modules here */

 /* ============================ */

 elaborate TOP

 set_dont_touch “OSCILLATOR”

 uniquify

/* === */

/* Set the current design to the top level. */

/* === */

 current_design TOP

/* === */

/* Set the synthesis design constraints. */

/* === */

 remove_constraint –all

 /* Some example constraints */

/* create_clock <clock_port_name> –period 50

 set_input_delay 5 –clock <clock_port_name> \

 { <a_list_of_input_ports> }

 set_output_delay 5 –clock <clock_port_name> \

 { <a_list_of_output_ports> }

 set_max_delay 100 –from <source> –to <destination>

 set_false_path –from <source> –to <destination> */

/* === */

/* Indicate those ports on the top-level module that */

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-121

/* should become chip-level I/O pads. Assign any I/O */

/* attributes or parameters and perform the I/O */

/* synthesis. */

/* === */

 set_port_is_pad “*”

 /* Some example I/O parameters */

/* set_pad_type –pullup <port_name>

 set_pad_type –no_clock all_inputs()

 set_pad_type –clock <clock_port_name>

 set_pad_type –exact BUFGS_F <hi_fanout_port_name>

 set_pad_type –slewrate HIGH all_outputs() */

 /* ============================= */

 /* Note: Synopsys slew-control= */

 /* HIGH is the same as Xilinx’s */

 /* slewrate=SLOW. Synopsys slew- */

 /* control=LOW is same as Xilinx */

 /* slewrate=FAST. */

 /* ============================= */

 insert_pads

/* === */

/* Synthesize and optimize the design */

/* === */

 compile –boundary_optimization

/* === */

/* Write the design report files. */

/* === */

/* report_fpga > TOP + “.fpga”

 report_timing > TOP + “.timing” */

/* === */

/* Write out the design to a DB file. (Post compile) */

XSI Synopsys Interface/Tutorial Guide

1-122 Xilinx Development System

/* === */

 write –format db –hierarchy –output TOP + “_compiled.db”

/* === */

/* Replace CLBs and IOBs with gates. */

/* === */

 replace_fpga

/* === */

/* Set the part type for the output netlist. */

/* === */

 set_attribute TOP “part” –type string part

/* === */

/* Optional attribute to remove the FPGA Compiler’s */

/* mapping structures from the design. This permits */

/* The Xilinx design implementation tools to map the */

/* design instead. */

/* === */

/* set_attribute find(design,”*”) “xnfout_write_map_symbols” \

 -type boolean FALSE */

/* === */

/* Add any I/O constraints to the design. */

/* === */

/* set_attribute <port_name> “pad_location” \

 –type string “<pad_location>” */

/* === */

/* Save design in XNF format as <design>.sxnf */

/* === */

 ungroup –all –flatten

 write -format xnf -hierarchy -output TOP + “.sxnf”

/* === */

/* Write out the design to a DB. (Post replace_fpga) */

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-123

/* === */

 write –format db –hierarchy –output TOP + “.db”

/* === */

/* Write-out the timing constraints that were */

/* applied earlier. (Note that any design hierarchy */

/* needs to be flattened before the constraints are */

/* written-out.) */

/* === */

/* write_script > TOP + “.dc” */

/* === */

/* Call the Synopsys-to-Xilinx constraints translator*/

/* utility DC2NCF to convert the Synopsys constraints*/

/* to a Xilinx NCF file. You may like to view */

/* dc2ncf.log to review the translation process. */

/* === */

/* sh dc2ncf TOP + “.dc” */

/* === */

/* Exit the Compiler. */

/* === */

/* exit */

/* === */

/* Now run the Xilinx design implementation tools. */

/* === */

4. Synthesize the design by first starting Design Analzyer. Type the
following command in the directory that contains the
.synopsys_dc.setup file for this design.

design_analyzer &

This brings up the Design Analyzer GUI.

5. When the GUI appears, run the script run.script by selecting
Execute Script in the Setup menu. A pop-up window appears
where you can select the script run.script to run.

XSI Synopsys Interface/Tutorial Guide

1-124 Xilinx Development System

If the script runs successfully, the script stops and creates an
SXNF file. If an error occurs, check the following.

• Make sure you set up the .synopsys_dc.setup file correctly.

• Make sure you compiled the XDW synthesis libraries for the
version of Synopsys you use.

• Make sure that the paths referenced in the
.synopsys_dc.setup file exist. Refer to the “Using Common
Setup Procedures” section for more information.

• Make sure you run the design_analyzer & command in the
directory that contains the .synopsys_dc.setup file when you
start Design Analyzer.

6. Take the SXNF file produced by Design Analyzer and place and
route the design for timing simulation using the following script.

#!/bin/csh –f

ngdbuild –p 4003EPC84-4 stopwatch.sxnf

map stopwatch.ngd

par stopwatch.ncd stopwatch_r.ncd

ngdanno stopwatch_r.ncd

ngd2vhdl stopwatch_r.nga

Optionally, you can place and route the SXNF files using the
A1.5i GUI. Refer to the Quick Start Guide Tutorial for more infor-
mation about using the GUI for place and route.

Conducting Timing Simulation
To perform timing simulation, use NGD2VHDL to create an SDF file
and structural VHDL file, along with a testbench. The script file
timing.sim performs the timing simulation.

Run timing.sim in the directory that contains the .synopsys_vss.setup
file you created earlier.

Open the script file timing.sim in a text editor and notice the
following.

• vhdlan uses with the –i option. Always use vhdlan with the –i
option. By default, vhdlan uses the –c option, which works only if
your system uses a certain type of C compiler. If you want to use

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-125

the –c option with vhdlan, refer to the Synopsys web site for the
proper setup.

• The -sdf_top option is specified first when invoking when
vhdldbx or vhdlsim because.

• The contents of file timing.sim here.

#!/bin/csh –f

rm –r WORK

mkdir WORK

vhdlan –i stopwatch_r.vhd

vhdlan –i testbencht.vhd

vhdlsim –sdf_top /testbenchf/uut –sdf \
stopwatch_r.sdf –e commandt.txt overall

Close the timing.sim file in the text editor. Run the timing simulation,
which produces a waveform view similar the functional simulation,
by typing the following command at the UNIX prompt.

./timing.sim

When the script runs, if you get error and warning messages about
“Bad Regions” or undefined libraries, make sure you set up the simu-
lation libraries for A1.5i XSI VSS correctly. Make sure the paths in the
.synopsys_vss.setup file point to paths which exist in your setup. For
further information on setup, refer to the “Using Common Setup
Procedures” section.

Virtex VHDL Alliance FPGA Express v2.1/VSS
Tutorial

This tutorial familiarizes you with the Alliance FPGA Express v2.1/
VSS flow, presenting common tasks such as locking pins and setting
slew rate.

Getting Ready for this Tutorial
To use this tutorial, you need the software described in the “Using
Common Setup Procedures” section. If you want to target a device
other than Virtex, reference the directories that apply to that family
(for example, the XDW libraries have separate directories for
XC4000XL, Spartan, and Virtex). Use synlibs with the exact die-speed

XSI Synopsys Interface/Tutorial Guide

1-126 Xilinx Development System

target desired. You need FPGA Express and VSS v1997.01 or better
for this tutorial.

Setting Up for the Virtex VHDL Alliance FPGA
Express V2.1/VSS Tutorial

To use this tutorial, ensure installation of your Xilinx and Synopsys
software and know where the software resides on your system. If you
use a version of Synopsys newer than v1997.01, you must re-compile
the XSI XDW and simulation libraries. Refer to the setup instructions
in the “Setting up for FPGA Compiler” section.

For this tutorial, recompile only the libraries related to synthesizing a
Virtex device (if using a version of Synopsys newer than v1997.01),
and ensure compilation of the Virtex XDW DesignWare libraries. The
A1.5i simulation libraries come in two parts, a functional simulation
part and a timing simulation part. The A1.5i XSI VHDL functional
simulation libraries are called UNISIM. The A1.5i XSI VHDL timing
simulation libraries are called SIMPRIM libraries. The SIMPRIM
library is a VITAL simulation library.

Compile the Spartan XDW DesignWare libraries, XDW simulation
libraries, LogiBLOX simulation libraries, UNISIM simulation
libraries, and SIMPRIM libraries. All of these libraries contain
compile scripts which let you compile these libraries in the $XILINX
area. However, to use these scripts, you need write permissions to the
$XILINX area. If you do not have write permissions, make a local
copy of the $XILINX/synopsys/libraries directory and use the
following instructions, but instead of changing directories to
$XILINX/synopsys/libraries, change directories to your local copy of
that area.

Use the following instructions to compile the libraries Maker sure
you have followed the directions listed in the “Using Common Setup
Procedures” section.

1. Change directories to the $XILINX/synopsys/libraries/sim/src/
simprims directory.

2. Type the following command at the UNIX prompt.

./analyze.csh

3. Change directories to the $XILINX/synopsys/libraries/sim/src/
unisims directory.

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-127

4. Type the following command at the UNIX prompt.

./analyze.csh

5. In the empty directory you created earlier in the “Using Common
Setup Procedures” section, copy the file vrtxxsivhdle.tar.Z.
Uncompress and untar this file.

6. Create a .synospys_dc.setup file and a .synopsys_vss.setup using
the templates provided in the $XILINX/.synopsys/examples
area and the instructions listed in the “Using Common Setup
Procedures” section.

Conducting Functional Simulation
To run a functional simulation, you need to compile the design files
and testbench, before you run the VSS simulation tool. This tutorial
assumes that you uncompressed, untarred, and placed your setup
files in /home/user/tutorial. If you placed your files elsewhere,
replace your path appropriately in the following instructions.

The A1.5i XSI VSS functional simulation flow allows you to simulate
instantiated XSI cells such as FDCE and CLKDLL. Additionally, by
using the UNISIM simulation libraries, you can simulate and imple-
ment the GSR without impact to the design or testbench.

To conduct functional simulation, use the following steps.

1. Change directories to the /home/user/tutorial directory.

2. You conduct functional simulation by running the script
func.script. Before running the script, open the file func.script in a
text editor. Notice the following items in this file.

• The files for simulation read in from the bottom up.

• The testbench reads in last.

• vhdlan uses the –i option. Always use vhdlan with the –i
option. By default, vhdlan uses the –c option, which works
only if your system uses a certain type of C compiler. If you
want to use the –c option with vhdlan, refer to the Synopsys
web site for the proper setup.

• The contents of the func.sim file.

#!/bin/csh –f

rm –r WORK

XSI Synopsys Interface/Tutorial Guide

1-128 Xilinx Development System

mkdir WORK

vhdlan –i tenths.vhd

vhdlan –i smallcntr.vhd

vhdlan –i cnt60.vhd

vhdlan –i hex2led.vhd

vhdlan –i stmchine.vhd

vhdlan –i stopwatch.vhd

vhdlan –i testbenchf.vhd

vhdlsim –e commandf.txt overall

3. Run the functional simulation by typing the following command
at the UNIX prompt.

./func.sim

4. You get error messages because the VHDL code contains an
instantiated component (OSC4) that does not have an underlying
RTL behavioral description; you must make an RTL model for
functional simulation. For more information on OSC4, refer to the
Libraries Guide and the Databook. Use the UNISIM libraries to
functionally simulate library cells instantiated from the XSI
libraries. VHDL code that instantiates any XSI library cell must
contain the following two lines.

library UNISIM;

use UNISIM.all;

In general, you need these lines only in the files that contain
instantiated XSI library cells (such as FDCE, RAM32X1S, and
BUFG, for example). However, you can place the above two lines
in every VHDL file in your design.

The following example shows the modified stopwatch.vhd file.

library IEEE;

use IEEE.std_logic_1164.all;

library UNISIM;

use UNISIM.all;

entity stopwatch is

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-129

 port (RESET : in STD_LOGIC;

 STRTSTOP : in STD_LOGIC;

 TENTHSOUT : out STD_LOGIC_VECTOR(9 downto 0);

 ONESOUT : out STD_LOGIC_VECTOR(6 downto 0);

 TENSOUT : out STD_LOGIC_VECTOR(6 downto 0);

 CLOCK : in STD_LOGIC

);

end stopwatch;

architecture inside of stopwatch is

component BUFGDLL

port(I: in STD_LOGIC; O: out STD_LOGIC);

end component;

component BUFG

 port (I : in STD_LOGIC;

 O : out STD_LOGIC);

end component;

component stmchine

 port (CLK : in STD_LOGIC;

 RESET : in STD_LOGIC;

 STRTSTOP : in STD_LOGIC;

 CLKEN : out STD_LOGIC;

 RST : out STD_LOGIC

);

end component;

XSI Synopsys Interface/Tutorial Guide

1-130 Xilinx Development System

component tenths

 port (CLOCK : in STD_LOGIC;

 CLK_EN : in STD_LOGIC;

 ASYNC_CTRL : in STD_LOGIC;

 TERM_CNT : out STD_LOGIC;

 Q_OUT : out STD_LOGIC_VECTOR(9 downto 0));

end component;

component cnt60

 port (CE : in STD_LOGIC;

 CLK : in STD_LOGIC;

 CLR : in STD_LOGIC;

 LSBSEC : out STD_LOGIC_VECTOR(3 downto 0);

 MSBSEC : out STD_LOGIC_VECTOR(3 downto 0));

end component;

component hex2led

 port (HEX : in STD_LOGIC_VECTOR(3 downto 0);

 LED : out STD_LOGIC_VECTOR(6 downto 0));

end component;

signal strtstopinv : STD_LOGIC;

signal oscout : STD_LOGIC;

signal clkint : STD_LOGIC;

signal clkenable : STD_LOGIC;

signal rstint : STD_LOGIC;

signal xcountout : STD_LOGIC_VECTOR(9 downto 0);

signal xtermcnt : STD_LOGIC;

signal cnt60enable : STD_LOGIC;

signal lsbcnt : STD_LOGIC_VECTOR(3 downto 0);

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-131

signal msbcnt : STD_LOGIC_VECTOR(3 downto 0);

begin

DLL:BUFGDLL port map(I=>CLOCK, O=>oscout);

CLOCKBUF:BUFG port map(I=>oscout,O=>clkint);

MACHINE:stmchine port map(CLK=>clkint,

 RESET=>RESET,

 STRTSTOP=>strtstopinv,

 CLKEN=>clkenable,

 RST=>rstint

);

XCOUNTER:tenths port map(CLOCK=>clkint,

 CLK_EN=>clkenable,

 ASYNC_CTRL=>rstint,

 TERM_CNT=>xtermcnt,

 Q_OUT=>xcountout

);

sixty: cnt60 port map(CE=>cnt60enable,

 CLK=>clkint,

 CLR=>rstint,

 LSBSEC=>lsbcnt,

 MSBSEC=>msbcnt

);

lsbled:hex2led port map(HEX=>lsbcnt,

XSI Synopsys Interface/Tutorial Guide

1-132 Xilinx Development System

LED=>ONESOUT

);

msbled:hex2led port map(HEX=>msbcnt,

LED=>TENSOUT

);

cnt60enable<=xtermcnt and clkenable;

TENTHSOUT<=not(xcountout);

strtstopinv<=not(STRTSTOP);

end inside;

5. After correcting the stopwatch.vhd file, recompile the func.sim
file. The simulation starts and displays the waveform viewer. The
UNIX shell displays the vhdlsim prompt.

Synthesizing Your Design
In this section of the tutorial, you synthesize the design and create a
place and routed NCD file. After creating the place and routed NCD
file, you can optionally create a BIT file for downloading to the demo
board, using bitgen and promgne, or the Hardware Debugger. For
more information about using the FPGA Express GUI, refer to the
FPGA Express on-line help.

Use the following instructions to synthesize your design.

1. Create an FPGA Express Project, entering source files and speci-
fying a target device (Virtex) as shown in the following two
figures.

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-133

Figure 1-16 Create Project Window for FPGA Express VHDL
(Virtex)

XSI Synopsys Interface/Tutorial Guide

1-134 Xilinx Development System

Figure 1-17 Identifying Sources for anFPGA Express Project
(Virtex)

2. Select the top level entity and select a target device, as the
following figure illustrates.

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-135

Figure 1-18 Top Level Entity and Target Device Selection
(Virtex)

3. An implementation appears in the right-hand window. Select the
implementation and then press the Optimize button on the tool
bar, as in the following figure.

XSI Synopsys Interface/Tutorial Guide

1-136 Xilinx Development System

Figure 1-19 Optimized Implementation in FPGA Express
(Virtex)

4. Select the optimized design and write out the netlist by pressing
the Export Netlist button on the toolbar, as shown in the
following illustration.

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-137

Figure 1-20 FPGA Express Optimized Netlist (VHDL/Virtex))

5. Take the EDIF file produced by FPGA Express and place and
route the design for timing simulation using the following script.

#!/bin/csh –f

ngdbuild –p v50pq240-4 stopwatch.edf

map stopwatch.ngd

XSI Synopsys Interface/Tutorial Guide

1-138 Xilinx Development System

par stopwatch.ncd stopwatch_r.ncd

ngdanno stopwatch_r.ncd

ngd2vhdl stopwatch_r.nga

Optionally, you can place and route by using the A1.5i GUI. Refer
to the Quick Start Guide Tutorial for more information about using
the GUI for place and route.

Conducting Timing Simulation
To perform timing simulation, use NGD2VHDL to create an SDF file
and structural VHDL file, along with a testbench. The script file
timing.sim performs the timing simulation.

Run timing.sim in the directory that contains the .synopsys_vss.setup
file you created earlier.

Open the script file timing.sim in a text editor and notice the
following items.

• vhdlan uses w the –i option. Always use vhdlan with the –i
option. By default, vhdlan uses the –c option, which works only if
your system uses a certain type of C compiler. If you want to use
the -c option with vhdlan, refer to the Synopsys web site for the
proper setup.

• Specify the –sdf_top option first when invoking vhdldbx or
vhdlsim during a timing simulation.

• The contents of the file timing.sim.

#!/bin/csh –f

rm –r WORK

mkdir WORK

vhdlan –i stopwatch_r.vhd

vhdlan –i testbencht.vhd

vhdlsim –sdf_top /testbenchf/uut \
–sdf stopwatch_r.sdf –e commandt.txt overall

Close the timing.sim file in the text editor. Run the timing simulation,
which produces a waveform view similar to the functional simula-
tion, by typing the following command at the UNIX prompt.

./timing.sim

XSI Synopsys Interface/Tutorial Guide

XSI Synopsys Interface/Tutorial Guide 1-139

When the script runs, if you get error or warning messages about
“Bad Regions” or undefined libraries, make sure you set up the simu-
lation libraries for A1.5i XSI VSS correctly. Make sure that the paths in
the .synopsys_vss.setup file point to paths which exist in your setup.
For further information, refer to the “Using Common Setup Proce-
dures” section.

XSI Synopsys Interface/Tutorial Guide

1-140 Xilinx Development System

