
picoJava-II™ Microarchitecture Guide
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300

Part No.: 960-1160-11
March 1999

Please

Recycle

Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.

The contents of this document are subject to the current version of the Sun Community Source License, picoJava Core (“the License”). You may not use this

document except in compliance with the License. You may obtain a copy of the License by searching for “Sun Community Source License” on the World

Wide Web at http://www.sun.com. See the License for the rights, obligations, and limitations governing use of the contents of this document.

Sun, Sun Microsystems, the Sun logo and all Sun-based trademarks and logos, Java, picoJava, and all Java-based trademarks and logos are trademarks,

registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are

trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an

architecture developed by Sun Microsystems, Inc.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE

DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY

ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN

MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN

THIS PUBLICATION AT ANY TIME.

Contents

Preface xix

1. Overview 1

1.1 Purpose 1

1.2 Components 2

1.2.1 Instruction Cache Unit (ICU) 3

1.2.2 Integer Unit (IU) 3

1.2.3 Floating Point Unit (FPU) 4

1.2.4 Data Cache Unit (DCU) 4

1.2.5 Stack Manager Unit (SMU) 5

1.2.6 Bus Interface Unit (BIU) 5

1.2.7 Powerdown, Clock, and Scan Unit (PCSU) 5

2. Instruction Cache Unit (ICU) 7

2.1 Structure 10

2.2 Functionalities 10

2.2.1 Instruction Cache Control (ic_cntl) 10

2.2.2 Instruction Buffer (I-Buffer) 11

2.2.3 I-Buffer Control (ibuf_cntl) 12

2.2.4 Instruction Cache Datapath (icu_dpath) 12
iii

2.3 Cache Transactions 12

2.3.1 Cache Read Hits 12

2.3.2 Cache Read Misses 13

2.3.3 Noncacheable (NC) Reads 14

2.3.4 Cache Indexed Flushing 14

2.3.5 Error Transactions 14

2.3.6 Diagnostic Accesses 14

2.4 Power Management 15

2.5 Interface Signals 15

3. Integer Unit (IU) 19

3.1 Instruction Pipeline 20

3.2 Instruction Folding Unit (IFU) 21

3.2.1 I-Buffer Interface 22

3.2.2 Folding Logic 22

3.2.3 Folding Groups 23

3.3 Register Control Unit (RCU) 25

3.3.1 RCU Datapath 25

3.3.2 Interface Signals 27

3.4 Datapath 29

3.4.1 Functionalities 30

3.4.2 Interface Signals 31

3.5 Pipe Control Unit 32

3.5.1 Stall Types 33

3.5.2 Interface Signals 34

3.6 Microcode 35

3.6.1 Interface Protocol 36

3.6.2 Control Logic 37

3.6.3 Datapath 38
iv picoJava-II Microarchitecture Guide • March 1999

4. Floating Point Unit (FPU) 41

4.1 Structure 41

4.1.1 ALU 43

4.1.2 Multiply/Divide (MDIV) 43

4.1.3 Microcode Sequencer 43

4.2 Pipeline 43

4.3 Add and Subtract 44

4.4 Multiply and Divide 45

4.5 IEEE 754 Compliance 45

4.5.1 Deviation From IEEE 754 Specification 46

4.5.2 NaN Operations 46

4.6 Opcodes 47

4.6.1 FADD and FSUB Operations 47

4.6.2 FMUL and DMUL Operations 47

4.6.3 FDIV, FREM, DDIV, and DREM Operations 47

4.6.4 FConvert Operations 47

4.7 Power Management 48

4.8 Interface 48

4.8.1 Input Operations 48

4.8.2 Output Operations 50

4.8.3 Data Forwarding 51

4.9 Critical Paths 51

4.10 Signals 52

5. Data Cache Unit (DCU) 53

5.1 Dependencies 55

5.2 Data Cache 55

5.3 Functionalities 57

5.3.1 Arbiter 57

5.3.2 Address Control 57
Contents v

5.3.3 Aligner Control 57

5.3.4 Miss Control 58

5.3.5 Writeback Control 58

5.3.6 Data Cache Datapath 58

5.4 Pipeline 58

5.4.1 Cache Reads 59

5.4.2 Cache Writes 59

5.4.3 Cache Fills 60

5.4.4 Writebacks 62

5.4.5 Noncacheable (NC) Loads 63

5.4.6 Noncacheable (NC) Stores 63

5.5 Cache Transactions 64

5.5.1 Arbitration of Requests 64

5.5.2 Replacements 64

5.5.3 Cache Compare Flushing 65

5.5.4 Cache Indexed Flushing 65

5.5.5 Cache Invalidate Flushing 65

5.5.6 Zeroing of Cache Lines 65

5.5.7 Nonallocating Writes 66

5.5.8 Nonfetching Allocates 66

5.5.9 Diagnostic Accesses 66

5.6 Interface Signals 66

5.7 Power Management 68

5.8 Critical Timing Path 68

6. Stack Manager Unit (SMU) 71

6.1 Functionalities 73

6.2 Dribbling Operations 74

6.2.1 Spills and Fills 75

6.2.2 Stack Overflow 75
vi picoJava-II Microarchitecture Guide • March 1999

6.2.3 Stack Underflow 76

6.2.4 Stack Cache Write Misses 76

6.3 Pipeline 77

6.4 Interface Signals 77

7. Bus Interface Unit (BIU) 79

7.1 Functionalities 79

7.2 Arbitration 80

7.3 Interfaces 81

7.4 Power Management 82

7.5 Interface Signals 83

8. Powerdown, Clock, Reset, and
Scan Unit (PCSU) 85

8.1 Power Management 85

8.1.1 Normal Mode 85

8.1.2 Standby Mode 86

8.2 Clock Management 88

8.3 Reset Management 88

8.4 Scan and Test Features 89

8.5 Interface Signals 91

8.6 Debug and Trace Features 92

8.7 JTAG Support 93

8.7.1 Full Internal Scan 93

8.7.2 Breakpoints and External Halt Mode 93

8.7.3 Single-Stepping 94

8.7.4 Nonscannable Arrays 95

9. External Interface 97

9.1 Core Interface Signals 97

9.1.1 Processor Interface Signals 100
Contents vii

9.1.2 Memory Interface Signals 101

9.1.3 Trace and Debug Signals 103

9.2 picoJava-II Transactions 105

9.2.1 Boot Mode 105

9.2.2 Read-Type Transactions 106

9.2.3 Write-Type Transactions 108

9.3 Endianness and Cacheability 111

9.4 Customizable Features 111

10. Traps and Interrupts 113

10.1 Definitions 113

10.2 Traps 114

10.3 Trap Control 114

10.4 Interrupts 114

10.4.1 Nonmaskable Interrupts (NMI) 115

10.4.2 Maskable Interrupts 115

10.5 Interrupt Control 116

11. Megacells 117

11.1 Instruction Cache Data RAM 117

11.1.1 I/O Pins 120

11.1.2 I/O Signals 121

11.1.3 Timing 122

11.1.4 RAM Redundancy 124

11.1.5 Testing 124

11.2 Instruction Cache Tag RAM 125

11.2.1 I/O Pins 128

11.2.2 I/O Signals 130

11.2.3 Timing 130

11.2.4 Implementation 133
viii picoJava-II Microarchitecture Guide • March 1999

11.2.5 RAM Redundancy 133

11.2.6 Testing 133

11.3 Data Cache Data RAM 134

11.3.1 I/O Pins 136

11.3.2 I/O Signals 137

11.3.3 Timing 138

11.3.4 Implementation 140

11.3.5 RAM Redundancy 140

11.3.6 Testing 140

11.4 Data Cache Tag RAM 141

11.4.1 I/O Pins 144

11.4.2 I/O Signals 145

11.4.3 Timing 146

11.4.4 Implementation 149

11.4.5 RAM Redundancy 149

11.4.6 Testing 149

11.5 Stack Cache RAM 150

11.5.1 I/O Pins 150

11.5.2 I/O Signals 151

11.5.3 Timing 152

11.5.4 Testing 154

11.6 Floating Point Unit (FPU) ROM 154

11.6.1 I/O Pins 156

11.6.2 I/O Signals 157

11.6.3 Timing 158

11.6.4 Implementation 160

11.6.5 ROM Contents 160

11.6.6 RAM Redundancy 160

11.6.7 Testing 160
Contents ix

11.7 Integer Unit (IU) ROM 161

11.7.1 I/O Signals 162

11.7.2 Timing 162

11.7.3 Implementation 163

11.7.4 ROM Contents 163

11.7.5 RAM Redundancy 163

11.7.6 Testing 163

Index 165
x picoJava-II Microarchitecture Guide • March 1999

Figures

FIGURE 1-1 picoJava-II Core 2

FIGURE 1-2 Basic Pipeline 3

FIGURE 2-1 Instruction Cache Unit (ICU) Interaction with Other Units 8

FIGURE 2-2 Aligners 9

FIGURE 2-3 Program Counter 9

FIGURE 2-4 Instruction Buffer 11

FIGURE 2-5 A Miss State Transaction 13

FIGURE 3-1 Integer Unit (IU) 20

FIGURE 3-2 Instruction Pipeline in the IU 21

FIGURE 3-3 Instruction Folding Unit (IFU) Datapath 24

FIGURE 3-4 Register Control Unit (RCU) Datapath (Register Access Part for RS1) 26

FIGURE 3-5 Integer Unit (IU) Datapath 30

FIGURE 3-6 pipe_dpath (PC Pipe and OPTOP Pipe) 33

FIGURE 3-7 Microcode Interface with the Main IU Datapath 35

FIGURE 4-1 Floating Point Unit (FPU) 42

FIGURE 4-2 Double-Precision Operation Using Two Cycles 44

FIGURE 4-3 Simplified ALU Section of the Floating Point Unit (FPU) 44

FIGURE 4-4 Multiply and Divide (MDIV) Section of the FPU 45

FIGURE 4-5 Floating Point Interface 48
xi

FIGURE 4-6 FPU Timing 49

FIGURE 4-7 Critical Paths in the FPU 51

FIGURE 5-1 Data Control Unit (DCU) Interaction with Other Units 54

FIGURE 5-2 16-Kbyte Data Cache (512x256) 56

FIGURE 5-3 A Pipeline Read Transaction 59

FIGURE 5-4 A Cache Write Transaction 60

FIGURE 5-5 A Cache Fill Transaction 61

FIGURE 5-6 A Writeback Transaction 62

FIGURE 5-7 A Noncacheable Load 63

FIGURE 5-8 A Noncacheable Store 64

FIGURE 5-9 Critical Timing Path in the DCU 69

FIGURE 6-1 Stack Manager Unit (SMU) Interaction with Other Units 72

FIGURE 6-2 Stack Cache 74

FIGURE 7-1 Bus Interface Unit (BIU) 80

FIGURE 7-2 BIU Arbiter 80

FIGURE 7-3 Bus Interface Unit (BIU) Interaction with Other Units 82

FIGURE 8-1 Protocol for the PCSU Standby Mode 86

FIGURE 8-2 Test-Related Vendor Issue 90

FIGURE 8-3 Tracing the Instruction Flow Using the picoJava-II Core 92

FIGURE 8-4 Single-Step Timing Through Scan Mode 94

FIGURE 8-5 Single-Stepping Using Breakpoints 95

FIGURE 8-6 Single-Stepping Using pj_halt 95

FIGURE 9-1 The picoJava-II External Interface 98

FIGURE 9-2 An Example of a System Based on the picoJava-II Core 104

FIGURE 9-3 A Cached Read Transaction Followed by a Noncached Read Transaction 107

FIGURE 9-4 A Cached Write Transaction Followed by a Noncached Write Transaction 108

FIGURE 9-5 A Cached Load Miss 109

FIGURE 9-6 A Noncached Write 110
xii picoJava-II Microarchitecture Guide • March 1999

FIGURE 9-7 A Writeback and Cached Read Miss 110

FIGURE 9-8 An Example of How To Use the picoJava-II Core 111

FIGURE 10-1 Interrupt Control Mechanism 116

FIGURE 11-1 Instruction Cache Block (icram) 119

FIGURE 11-2 Timing Diagram A (Instruction Cache Data RAM) 123

FIGURE 11-3 Timing Diagram B (Instruction Cache Data RAM) 124

FIGURE 11-4 Instruction Cache Tag (itag) 127

FIGURE 11-5 Timing Diagram A (Instruction Cache Tag RAM) 132

FIGURE 11-6 Timing Diagram B (Instruction Cache Tag RAM) 133

FIGURE 11-7 Data Cache Data RAM (dcram) 135

FIGURE 11-8 Timing Diagram A (Data Cache Data RAM) 139

FIGURE 11-9 Timing Diagram B (Data Cache Data RAM) 140

FIGURE 11-10 Data Cache Tag RAM (dtag) 143

FIGURE 11-11 Timing Diagram A (Data Cache Tag RAM) 148

FIGURE 11-12 Timing Diagram B (Data Cache Tag RAM) 149

FIGURE 11-13 Stack Cache RAM Interface 150

FIGURE 11-14 Timing Diagram A (Read Cycle, Stack Cache RAM) 153

FIGURE 11-15 Timing Diagram B (Write Cycle, Stack Cache RAM) 153

FIGURE 11-16 Floating Point Unit (FPU) ROM 155

FIGURE 11-17 FPU ROM Interface 156

FIGURE 11-18 Assertion and Deassertion of rom_en and me 159

FIGURE 11-19 Timing Diagram A (FPU ROM) (Read Cycle, Normal Operation, Enabled,
Nontest Mode) 159

FIGURE 11-20 Timing Diagram B (FPU ROM) (Read Cycle, Normal Operation, Disabled,
Nontest Mode) 160

FIGURE 11-21 Integer Unit (IU) ROM 161

FIGURE 11-22 Timing Diagram (IU ROM) 162
Figures xiii

xiv picoJava-II Microarchitecture Guide • March 1999

Tables

TABLE 2-1 ICU Interface with the IU 15

TABLE 2-2 ICU Interface with the BIU 16

TABLE 2-3 ICU Interface with the Instruction Cache Tag 16

TABLE 2-4 ICU Interface with the Instruction Cache 16

TABLE 2-5 ICU Interface with the PCSU 17

TABLE 3-1 Instruction Types in the IFU 23

TABLE 3-2 IFU Groupings 23

TABLE 3-3 Block Interface with the IFU 27

TABLE 3-4 Block Interface with the IU 28

TABLE 3-5 Block Interface with Pipeline Control 28

TABLE 3-6 Block Interface with the SMU 29

TABLE 3-7 Block Interface of the IU Datapath 31

TABLE 3-8 Interface Signals for Pipe Control 34

TABLE 3-9 Block Interface of Microcode Control 37

TABLE 3-10 Block Interface of the Microcode Datapath 38

TABLE 4-1 Example Results of a NaN Two-Input Operation 46

TABLE 4-2 FPU Input Cycle Transactions 49

TABLE 4-3 FPU Signals 52

TABLE 5-1 Data Cache Fill Ordering 61
xv

TABLE 5-2 DCU Interface with the Bus Interface Unit (BIU) 66

TABLE 5-3 DCU Interface with the Stack Manager Unit (SMU) 67

TABLE 5-4 DCU Interface with the Integer Unit (IU) 67

TABLE 5-5 Miscellaneous DCU Interfaces 68

TABLE 6-1 OPTOP Instructions That Trigger Underflows 76

TABLE 6-2 Pipeline Actions for Spills and Fills 77

TABLE 6-3 SMU Interface with the IU 77

TABLE 6-4 SMU Interface with the DCU 78

TABLE 7-1 BIU Interfaces with the Instruction Cache and the Data Cache 83

TABLE 7-2 BIU External Interface Signals 83

TABLE 8-1 PCSU Interface with JTAG 91

TABLE 8-2 PCSU Interface with Function Units 91

TABLE 8-3 PCSU Interface with External Systems 91

TABLE 9-1 Interface Signals 98

TABLE 9-2 Transaction Sizes 102

TABLE 9-3 Transaction Types 102

TABLE 9-4 ack s 103

TABLE 11-1 test_mode and Enable Signals (Instruction Cache Data RAM) 118

TABLE 11-2 Input Pins (Instruction Cache Data RAM) 120

TABLE 11-3 I/O Signals (Instruction Cache Data RAM) 121

TABLE 11-4 Timing Specifications (Instruction Cache Data RAM) 122

TABLE 11-5 test_mode and Enable Signals (Instruction Cache Tag RAM) 126

TABLE 11-6 Input Pins (Instruction Cache Tag RAM) 128

TABLE 11-7 Output Pins (Instruction Cache Tag RAM) 129

TABLE 11-8 I/O Signals (Instruction Cache Tag RAM) 130

TABLE 11-9 Timing Specifications (Instruction Cache Tag RAM) 131

TABLE 11-10 test_mode and Enable Signals (Data Cache Data RAM) 135

TABLE 11-11 Input Pins (Data Cache Data RAM) 136
xvi picoJava-II Microarchitecture Guide • March 1999

TABLE 11-12 Output Pins (Data Cache Data RAM) 137

TABLE 11-13 I/O Signals (Data Cache Data RAM) 137

TABLE 11-14 Timing Specifications (Data Cache Data RAM) 138

TABLE 11-15 test_mode and Enable Signals (Data Cache Tag RAM) 142

TABLE 11-16 Input Pins (Data Cache Tag RAM) 144

TABLE 11-17 Output Pins (Data Cache Tag RAM) 145

TABLE 11-18 I/O Signals (Data Cache Tag RAM) 145

TABLE 11-19 Timing Specifications (Data Cache Tag RAM) 147

TABLE 11-20 Input Pins (Stack Cache RAM) 150

TABLE 11-21 Output Pins (Stack Cache RAM) 151

TABLE 11-22 I/O Signals (Stack Cache RAM) 151

TABLE 11-23 Timing Specifications (Stack Cache RAM) 152

TABLE 11-24 Input Pins (FPU ROM) 156

TABLE 11-25 Output Pins (FPU ROM) 156

TABLE 11-26 Truth Table for ROM Output 157

TABLE 11-27 I/O Signals (FPU ROM) 157

TABLE 11-28 Timing Specifications (FPU ROM) 158

TABLE 11-29 I/O Signals (IU ROM) 162

TABLE 11-30 Timing Specifications (IU ROM) 162
Tables xvii

xviii picoJava-II Microarchitecture Guide • March 1999

Preface

This specification is the single depository of information that a logic designer or

architect needs to gain a thorough understanding of the picoJava™-II

microarchitecture—the second-generation Java™ processor.

For details about programming the picoJava-II architecture—

■ Data types and runtime structure

■ Instruction set

■ Java method invocation and return

■ Monitors

■ Support of C Language

■ Garbage collection

■ System Management and Debugging

—see the picoJava-II Programmer’s Reference Manual.

The Java Language and the Java Virtual

Machine

The Java language is an object-oriented programming language developed by Sun

Microsystems, Inc., in the early 1990s. Modeled after C and C++, it is designed to be

simple and platform-independent at both the source and binary levels. The Java

language was initially developed to address the problems of building software for

networked consumer devices.

The Java virtual machine is the cornerstone of the Java programming language. It is

the component of the Java technology responsible for the Java cross-platform

delivery as well as for the small size of its compiled code. The Java virtual machine

is an abstract computing machine. Like a real computing machine, it has an
xix

instruction set and uses various memory areas. The Java virtual machine

understands only a particular file format—the class file format. A class file contains

Java virtual machine instructions, a symbol table, and other information. The Java

virtual machine does not understand the Java programming language and does not

require a specific underlying implementation.

Organization of This Book

There is no single best order for the chapters in this manual. You should read the

sections that you are interested in and follow the references to the other sections if

you need additional details.

Chapter 1, Overview, introduces the picoJava-II modules.

Chapter 2, Instruction Cache Unit (ICU), describes the picoJava-II ICU, which fetches

instructions from the instruction cache and provides them to the Integer Unit (IU).

Chapter 3, Integer Unit (IU), describes the picoJava-II IU, which executes integer

instructions, dispatch and tracking of integer and floating-point instructions,

exception detection and handling, and other pipeline support functions.

Chapter 4, Floating Point Unit (FPU), describes the picoJava-II FPU.

Chapter 5, Data Cache Unit (DCU), describes the picoJava-II DCU, which manages all

requests to the data cache.

Chapter 6, Stack Manager Unit (SMU), describes the picoJava-II SMU, which stores

and provides the necessary operands to the IU.

Chapter 7, Bus Interface Unit (BIU), describes the picoJava-II BIU, which is the glue

between the picoJava-II core and memory.

Chapter 8, Powerdown, Clock, Reset, and Scan Unit (PCSU), describes the picoJava-II

power management environment.

Chapter 9, External Interface, describes the picoJava-II core external interfaces.

Chapter 10, Traps and Interrupts, describes the picoJava-II trap handling, which is

designed to support real-time systems.

Chapter 11, Megacells, contains specifications for the picoJava-II megacells.

At the end of this specification is an index.
xx picoJava-II Microarchitecture Guide • March 1999

Related Books and References

Three books form the documentation set for the picoJava-II release:

■ picoJava-II Programmers’s Reference Manual

■ picoJava-II Microarchitecture Guide (this book)

■ picoJava-II Verification Guide

The following publications are reference material for the subject matter:

■ Lindholm, Tim and Frank Yellin: The Java™ Virtual Machine Specification. Addison

Wesley, ISBN 0-201-63452-X.

■ IEEE Standard Test Access Port and Boundary-Scan Architecture, ANSI/IEEE Std.
1149.1-1990.

■ IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std. 754-1985.

■ Ungar, David: ACM SIGPLAN Notices, 19(5):157-167: Generation Scavenging: A
Non-disruptive High Performance Storage Reclamation Algorithm, April 1984.

■ Wilson P., and T. Moher: ACM SIGPLAN Notices, 24(10):23-35: A Card-marking
Scheme For Controlling Intergenerational References In Generation-based Garbage
Collection On Stock Hardware, 1989.

■ Steele, Guy L.: Communications of the ACM, 18(9): Multiprocessing Compactifying
Garbage Collection, September 1975.

■ Hudson, R., and J. E. B. Moss: Proceedings of International Workshop on Memory
Management: Incremental Garbage Collection For Mature Objects, St. Malo, France,

September 16-18, 1992.
Preface xxi

Typographic Conventions

TABLE P-1 describes the typographic conventions used in this book.

Sun Documents

The SunDocsSM program provides more than 250 manuals from Sun Microsystems,

Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase

documentation sets or individual manuals using this program.

For a list of documents and how to order them, see the catalog section of the

SunExpress™ Internet site at http://www.sun.com/sunexpress .

TABLE P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands,

instructions, files, and directories;

on-screen computer output; email

addresses; URLs

Edit your .login file.

Use ls -a to list all files.

machine_name% You have mail.

AaBbCc123 What you type, contrasted with

on-screen computer output

machine_name% su
Password:

AaBbCc123 Command-line placeholder:

replace with a real name or value

To delete a file, type rm filename.

AaBbCc123 Book titles, section titles in cross-

references, new words or terms,

or emphasized words

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

<> A bit number or colon-separated

range of bit numbers within a

field

WB_VECTOR<15:0>
xxii picoJava-II Microarchitecture Guide • March 1999

Sun Documentation Online

The docs.sun.com Web site enables you to access Sun technical documentation

online. You can browse the docs.sun.com archive or search for a specific book title

or subject. The URL is http://docs.sun.com/ .

Disclaimer

The information in this manual is subject to change and will be revised from time to

time. For up-to-date information, contact your Sun representative.

Feedback

Email your comments on this book to: picojava-doc@sun.com .

Acknowledgment

Many people—picoJava-II licensees, engineers, programmers, marketers—

contributed to this book. We thank them for their input, feedback, and support.
Preface xxiii

xxiv picoJava-II Microarchitecture Guide • March 1999

CHAPTER 1

Overview

The picoJava-II core is a hardware implementation of the Java virtual machine

instruction set. It supports all Java virtual machine instructions, including the

_quick codes.

The core requires supporting software (such as a class loader, a bytecode verifier, a

thread manager, and a garbage collector, and low-level microkernel) as part of the

Java runtime environment, which is beyond the scope of this manual.

This manual focuses on the hardware only.

This chapter describes the picoJava-II core in the following sections:

■ Purpose on page 1

■ Components on page 2

1.1 Purpose
The core is targeted for emerging, networked, embedded applications, such as:

■ Internet chip for network appliances

■ Advanced cellular phone

■ Traditional embedded products

■ Global positioning systems

■ Network computers
1

1.2 Components
The core includes the following units:

■ Instruction Cache Unit (ICU)

■ Integer Unit (IU)

■ Floating Point Unit (FPU)

■ Data Cache Unit (DCU)

■ Stack Manager Unit (SMU)

■ Bus Interface Unit (BIU)

■ Powerdown, Clock, and Scan Unit (PCSU)

FIGURE 1-1 is a core block diagram; FIGURE 1-2 shows the processor’s basic pipeline.

FIGURE 1-1 picoJava-II Core

Floating Point

Powerdown,

Data CacheInstruction

Stack

Bus Interface Unit

Cache Unit

Unit and control

Unit

Stack

Data cache
Instruction cache

Processor interface

Memory and I/O interface

RAM/tag

RAM/tag

Microcode

Floating-point
ROM

Megacells

cache

Manager
Unit

Unit
ROMInteger

Clock, and Scan
Unit
2 picoJava-II Microarchitecture Guide • March 1999

FIGURE 1-2 Basic Pipeline

See Instruction Pipeline on page 20 for details.

1.2.1 Instruction Cache Unit (ICU)

The Instruction Cache Unit (ICU) fetches instructions and dispatches them to the

decode unit of the Integer Unit (IU). The major blocks are:

■ Instruction cache: Direct-mapped, 16-byte line size, configurable between 0-Kbyte,

1-Kbyte, 2-Kbyte, 4-Kbyte, 8-Kbyte and 16-Kbyte sizes

■ Instruction buffer: 16 bytes

The ICU can write 8 bytes and issue up to 7 bytes in one cycle to the IU.

■ Instruction cache control logic

■ Instruction buffer control logic

■ Instruction cache datapath

The ICU supports low-power mode. See Chapter 2 for more information.

1.2.2 Integer Unit (IU)

The Integer Unit (IU) decodes the Java virtual machine instruction, which consists of

an opcode that specifies the operation to be performed, followed by zero or more

operands. See Chapter 3 for more information.

The instructions belong to the following groups:

Arithmetic/logical/shift Branch Load immediate Method invocation and return

Integer multiply/divide Object field manipulation Load/store from local

variables

Monitor enter and exit

Stack manipulation Array management Conversion Trapping

Fetch Decode Execute Writeback

Fetch fixed-
size cache
lines from the
instruction cache

Execute for
one or more
cycles. Micro-

Cache

Access the Write results
back into the
operand stack.
Forward all

Register

Access the

active.

Precode and
group instruc-
tions. Can send
a maximum of
four instructions.

register file for

results before W.

data cache.

to the I-Buffer.

operands.
Chapter 1 Overview 3

The major blocks are:

■ 32-bit ALU and shifter

■ Microcode ROM

■ Programmer-visible registers

■ Multiply/divide unit

■ Trap generation logic

■ Dependency checking and forwarding logic

■ Stack cache: 64-entry, 32-bit-wide array with three read and two write ports

Some instructions are executed using the microcode engine in the IU; other

instructions cause a trap and must be emulated by trap software.

1.2.3 Floating Point Unit (FPU)

The Floating Point Unit (FPU) executes the floating-point instructions. It is

optimized for single-precision performance to save on area. See Chapter 4 for more

information.

The major blocks are:

■ Microcode sequencer

■ Input and output data registers

■ Floating-point adder/ALU

■ Floating-point multiply/divide unit

The FPU supports low-power mode. No floating-point exceptions are signalled as

per The Java Virtual Machine Specification.

1.2.4 Data Cache Unit (DCU)

The Data Cache Unit (DCU) handles all the sourcing and sinking of data for load

and store instructions. It interacts with the SMU, the IU, the ICU, and the BIU. See

Chapter 5 for more information.

The data cache is configurable among 0-Kbyte, 1-Kbyte, 2-Kbyte, 4-Kbyte, 8-Kbyte,

and 16-Kbyte sizes.
4 picoJava-II Microarchitecture Guide • March 1999

The major blocks are:

■ Two-way, set-associative, write back, write allocate, 16-byte-line size cache.

■ Arbiter logic

■ Address control

■ Aligner control

■ Data cache control logic

■ Copyback buffer (16 bytes)

The data cache also supports low-power mode.

1.2.5 Stack Manager Unit (SMU)

The Stack Manager Unit (SMU) stores and provides the necessary operands to the

IU. It also handles the overflow and underflow conditions of the stack. See

Chapter 6 for more information.

The major blocks are:

■ Stack control logic

■ Dribble manager logic

■ Dribble datapath

1.2.6 Bus Interface Unit (BIU)

The Bus Interface Unit (BIU) implements the picoJava-II interface to the external

world. It can generate requests to memory and I/O devices. Internal to the core, it

interfaces with the ICU and the DCU. See Chapter 7 for more information.

The major blocks are:

■ Arbitration logic

■ Address and data muxes

1.2.7 Powerdown, Clock, and Scan Unit (PCSU)

The Powerdown, Clock, and Scan Unit (PCSU) integrates the clock generation and

low power management. The processor core supports various powerdown modes, as

described in Chapter 8.
Chapter 1 Overview 5

6 picoJava-II Microarchitecture Guide • March 1999

CHAPTER 2

Instruction Cache Unit (ICU)

The Instruction Cache Unit (ICU) fetches instructions from the instruction cache

(I-Cache) and provides them to the decode block located in the Integer Unit (IU). To

separate the rest of the pipeline from the fetch stage, the ICU uses an instruction

buffer (I-Buffer) to hold instructions that are fetched from memory until they are

consumed by the IU.

This chapter contains the following sections:

■ Structure on page 10

■ Functionalities on page 10

■ Cache Transactions on page 12

■ Power Management on page 15

■ Interface Signals on page 15

To support the aggressive folding feature of the IU, the ICU provides the following

data bandwidths:

■ The I-Buffer gets 8 bytes from the I-Cache or 4 bytes from the Bus Interface Unit

(BIU).

■ The I-Buffer is 16 bytes deep.

■ The IU consumes a maximum of 7 bytes from the I-Buffer in a cycle.

■ The instruction cache line size is 16 bytes.

■ The data bus to the BIU is 4 bytes.

In a cache miss, the ICU generates a memory request for the missed line. It takes one

cycle in a cache hit. If the I-Buffer is empty and an instruction cache miss occurs, the

decode unit is stalled. The line in the instruction cache can be invalidated by self-

modifying code, however.

The ICU interacts with the IU and the BIU, as shown in FIGURE 2-1.

See FIGURE 2-2 and FIGURE 2-3 for an expansion of the aligners and program-counter-

related datapath that are shown in FIGURE 2-1.
7

FIGURE 2-1 Instruction Cache Unit (ICU) Interaction with Other Units

Aligner

8:1

2:1

I$(16K)
3264

64
ibuf_dout

64

8:1

 LD
88

next_fetch

+4

iu_addr_e

IU

Bypass

BIU

icu_biu_addr

IBUF [15] IBUF [0]

pc_dpath

icu_pc_d

iu_br_pc

icu_dout_d

biu_data

32 56

Tags

icu_addr
icu_addr

miss_state_machine

icu_req

miss

icu_addr_d1
8 picoJava-II Microarchitecture Guide • March 1999

FIGURE 2-2 Aligners

FIGURE 2-3 Program Counter

Big endian ordering assigns the lowest address to the highest data byte:

0 1 2 3 4 5 6 7

A B C D E F G H

icu_addr_2_0 =000 => ABCDEFGH
icu_addr_2_0 =001 => BCDEFGHX
icu_addr_2_0 =010 => CDEFGHXX
icu_addr_2_0 =011 => DEFGHXXX
icu_addr_2_0 =100 => EFGHXXXX
icu_addr_2_0 =101 => FGHXXXXX
icu_addr_2_0 =110 => GHXXXXXX
icu_addr_2_0 =111 => HXXXXXXX

8-byte aligner:

0 1 2 3

A B C D

icu_addr_1_0 =00 => ABCD
icu_addr_1_0 =01 => BCDX

4-byte aligner:

icu_addr_1_0 =10 => CDXX
icu_addr_1_0 =11 => DXXX

32

+
32

icu_pc_d

ibuf_pc_sel

iu_shift_d 8

32

En-

jmp_pc

coder
Chapter 2 Instruction Cache Unit (ICU) 9

2.1 Structure
The instruction cache is a direct-mapped, 16-byte line size cache with a single-cycle

latency. The cache size is configured to 16-Kbyte sizes (see FIGURE 2-1 on page 8).

Each line has a cache tag entry and an associated valid bit. On a cache miss, the ICU

writes 16 bytes of data into the cache from main memory.

A cache tag contains a 18-bit address tag field and one valid bit for a 16-Kbyte size

cache.

A 16-byte instruction buffer delinks the fetch stage from the rest of the pipeline for

performance reasons. See Instruction Buffer (I-Buffer) on page 11 for details.

The process status register (PSR)contains an Instruction Cache Enable (ICE) bit,

which, if disabled, causes instruction fetches to behave as if they had missed in the

instruction cache—the ICU fetches the instructions from memory and forwards them

to the I-Buffer but does not write them into the instruction cache.

2.2 Functionalities
The ICU does the following:

■ Determines the next instruction to be fetched

■ Generates address, data, and control signals for the data and the tag RAMs

■ Aligns the data out of the RAM and feeds it to the I-Buffer

■ Handles noncacheable instruction fetches

■ Provides the datapath and control for handling cache misses

The I-Buffer tracks the valid instructions in the queue and updates the entries.

2.2.1 Instruction Cache Control (ic_cntl)

Instruction cache control (ic_cntl) determines which instruction in the instruction

cache to access. Depending on the scenario, it uses the branch target pc , the trap pc ,

or the next pc for the access.

ic_cntl also provides mux selects for the data mux. It selects between the cache fill

bus and the miscellaneous bus, which has a diagnostic role. It also keeps track of the

current pc .
10 picoJava-II Microarchitecture Guide • March 1999

ic_cntl generates bus requests due to cache misses or noncacheable requests. On a

cache miss, ic_cntl bypasses data from the ICU to the I-Buffer as soon as data are

available from memory prior to completion of the cache fill. The ICU continues

fetching sequential data until the I-Buffer is full or until a branch or trap occurs.

2.2.2 Instruction Buffer (I-Buffer)

As shown in FIGURE 2-4, the I-Buffer is a 16-byte-deep, first-in-first-out (FIFO) buffer.

In a cycle, the ICU adds 8 valid bytes to the I-Buffer from the instruction cache,

starting from the first available position. When the I-Buffer is full, the transaction

stops. The IU can read out a maximum of 7 valid bytes, also starting from position

one.

FIGURE 2-4 Instruction Buffer

When a branch or trap occurs, the ICU flushes the entries in the I-Buffer, causing the

branch or trap data to move to the top of that buffer.

FIFO

Maximum of 8 valid bytes

Maximum of 7 valid bytes

I-Cache

IU decoding

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ic_data_mux shft_data_mux

shft_data_sel <7:0>

ibuf_dout [i]

8 bits

ibuf_dout [i] i+1 i+2 i+3 i+4
8 bits

 i+5 i+6 i+7

icache_data_sel <7:0>

ibuf_slice [1]

algn_data <63:56>

8 bits
 <7:0>

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7
Chapter 2 Instruction Cache Unit (ICU) 11

2.2.3 I-Buffer Control (ibuf_cntl)

I-Buffer control (ibuf_cntl) provides mux selects and other control signals for the

I-Buffer functions. It also keeps track of the valid bits. The I-Buffer is full if the valid

entries exceed 8 bytes.

Each I-Buffer entry is associated with:

■ A valid bit that indicates that the entry has a valid byte

■ A dirty bit that indicates an error in the data fetch

■ The length of the instruction that corresponds to that opcode

2.2.4 Instruction Cache Datapath (icu_dpath)

The instruction cache datapath (icu_dpath) consists of the address and datapath

logic (see FIGURE 2-1 on page 8). The data RAM and tag RAMs are not included in

the datapath.

The datapath does the following:

■ Provides appropriate addresses and data to the RAMs

■ Stores valid instructions into the I-Buffer

■ Sends appropriate addresses on the memory buses for cache fill transactions

■ Supports diagnostic reads and writes into the cache

icu_dpath includes the datapath for generating the program counter of the next

instruction that is to be decoded.

2.3 Cache Transactions
There are four types of cache transactions: read hits, read misses, noncacheable

reads, and indexed flushing.

2.3.1 Cache Read Hits

On a read hit, the ICU does the following:

1. Fetches 8 bytes of data from the instruction cache and stores them in the I-Buffer
in one cycle.

The ICU can write a maximum of 8 bytes into the I-Buffer.
12 picoJava-II Microarchitecture Guide • March 1999

2. Decodes the instruction-length information associated with every byte of the data
from the instruction cache into 4 bits per byte and writes them into the length
entry of the I-Buffer.

2.3.2 Cache Read Misses

FIGURE 2-5 illustrate a cache read miss.

FIGURE 2-5 A Miss State Transaction

Idle

NC

Fill second
word state

state

(1) ack

 miss and

request

Standby
state

ack=0

I-Cache
request

!cacheable

miss and
cacheable

 (1) ack

(n) Denotes encoding priority

pcsu_pwdn and !jmp_e
(1)

and !valid_diag

(1)

(2)
pcsu_pwdn

!pcsu_pwdn

(2) valid_diag | jmp_e

 (3)

(4)

Fill third
word state

(3)

(3)Fill fourth
word state

(3)

(1) ack

(1) ack

(2) err_ack

(2) err_ack

(2)
err_ack

(1) ack

(3)

state

state

(2) err_ack

or

 | ibuf_full

(2) err_ack
Chapter 2 Instruction Cache Unit (ICU) 13

On a cache miss:

1. Miss control generates a cache fill request to the BIU.

2. On receiving data from memory, the ICU writes the data into the cache and
bypasses them into the I-Buffer.

Branches or traps occur only after completion of the process.

2.3.3 Noncacheable (NC) Reads

The ICU sends a noncacheable request to the BIU for noncacheable instructions.

Once the data are available on the cache fill bus, the ICU bypasses them into the

I-Buffer and does not write them into the instruction cache.

2.3.4 Cache Indexed Flushing

The picoJava-II core supports self-modifying code, and the IU maps

cache_flush and cache_index_flush into a single indexed flush signal,

iu_flush_e , to the ICU. Thus, the ICU can invalidate an instruction cache line

without comparing its tag against the address provided by the IU.

During a flush, the ICU accesses the tag for the indexed line and resets the valid bit.

2.3.5 Error Transactions
If an error occurs during a cache fill transaction, the ICU generates a fault bit and

stores it in the I-Buffer along with the instruction. It does not write the line into the

instruction cache.

Hence, except for setting the fault bit, an error transaction acts like a noncacheable

transaction. The IU takes a trap when it decodes the instruction.

2.3.6 Diagnostic Accesses

The ICU supports diagnostic access instructions, which directly read or write the

contents of the tag and data RAMs. The core reads or writes the ICU RAMs for such

instructions in the E stage. For details on diagnostic access instructions, see

picoJava-II Programmer’s Reference Manual.
14 picoJava-II Microarchitecture Guide • March 1999

2.4 Power Management
The instruction cache receives a power_down signal that turns off the cache when

not in use. The cache is also off while waiting for data to return from memory

during a cache fill transaction.

For more information on power management, see Chapter 8.

2.5 Interface Signals
The following tables define the ICU interface signals.

TABLE 2-1 ICU Interface with the IU

Signal Type Description

iu_br_pc <31:0> Input Branch or trap PC

iu_addr_e <31:0> Input The address for diagnostic reads and writes into RAMs

misc_din <31:0> Input Data bus for diagnostic writes

iu_shift_d <7:0> Input The number of bytes data that should be shifted

iu_brtaken_e Input Branch instruction in the E stage has been taken

iu_ic_diag_e Input Diagnostic read or write

iu_flush_e Input Flush instruction in E stage

iu_psr_ice Input I-Cache enable bit in the PSRregister

iu_psr_bm8 Input 8-bit boot code enable bit from PSRregister

diag_ld_cache_c Output Diagnostic read to RAM

icu_hold Output IU pipe hold for diagnostic access when there is an

outstanding transaction in the ICU

icu_dout_d <55:0> Output The first 7 bytes of the I-Buffer

ibuf_oplen <27:0> Output The opcode length from the I-Buffer

icu_drty_d <6:0> Output Dirty output from the first 7 bytes of the I-Buffer

icu_lvd_d <6:0> Output Valid output from the first 7 bytes of the I-Buffer

icu_pc_d <31:0> Output PCof the first byte of the I-Buffer

misc_dout <31:0> Output Data bus for diagnostic reads
Chapter 2 Instruction Cache Unit (ICU) 15

TABLE 2-2 ICU Interface with the BIU

Signal Type Description

biu_data <31:0> Input Data from the BIU for cache fill

icu_biu_addr <31:0> Output The address to the BIU for cache fill transaction

biu_icu_ack <1:0> Input Acknowledgment from the BIU that data on biu_data
bus are available

icu_req Output Instruction cache fill request: tv (transaction valid)

icu _size <1:0> Output The size of data requested

icu_type <3:0> Output The instruction cache transaction type

TABLE 2-3 ICU Interface with the Instruction Cache Tag

Signal Type Description

itag_vld Input Valid bit from the tag RAM

ic_hit Input Hit from the tag comparator

itag_dout Input Tag data from tag RAM

icu_tag_in <17:0> Output Data to be written into the tag RAM

icu_tag_vld Output Valid bit to be written into the tag RAM

icu_tag_we Output Write enable for tag array

icu_tag_addr Output The address for accessing tag

icram_powerdown Output Tag RAM cell’s powerdown pin

TABLE 2-4 ICU Interface with the Instruction Cache

Signal Type Description

icram_dout <63:0> Input Data from the instruction RAM

icu_din <31:0> Output Data to the instruction RAM

icu_addr <13:3> Output Address for accessing the instruction RAM

icram_powerdown Output RAM cell’s powerdown pin

icu_ram_we Output Write enable
16 picoJava-II Microarchitecture Guide • March 1999

TABLE 2-5 ICU Interface with the PCSU

Signal Type Description

pcsu_powerdown Input PCSU request for powerdown

icu_in_powerdown Output ICU notification to the PCSU that it is ready for clock

shutoff
Chapter 2 Instruction Cache Unit (ICU) 17

18 picoJava-II Microarchitecture Guide • March 1999

CHAPTER 3

Integer Unit (IU)

The Integer Unit (IU) executes all the instructions that are defined in The Java Virtual
Machine Specification, except for the floating-point-related instructions, which are

executed in the Floating Point Unit (FPU).

This chapter contains the following sections:

■ Instruction Pipeline on page 20

■ Instruction Folding Unit (IFU) on page 21

■ Register Control Unit (RCU) on page 25

■ Datapath on page 29

■ Pipe Control Unit on page 32

■ Microcode on page 35

At the front-end, the IU interacts with:

■ The Instruction Cache Unit (ICU) to fetch instructions

■ The Floating Point Unit (FPU) to execute floating point instructions

■ The Data Cache Unit (DCU) to execute load-related and store-related instructions

After fetching new instructions from the ICU, the IU does the following:

■ Groups the instructions in the Instruction Folding Unit (IFU)

■ Accesses registers and provides bypass signals in the Register Control Unit (RCU)

■ Decodes the operation in the decode unit and executes the instruction in the

execution and microcode datapaths

FIGURE 3-1 illustrates the IU.
19

FIGURE 3-1 Integer Unit (IU)

3.1 Instruction Pipeline
The instruction pipeline consists of six stages, as shown in FIGURE 3-2.

Integer Cache Unit Floating Point Unit

Instruction Folding Unit
Microcode

Microcode

Register Control Unit Microcode datapath

Execution control

Trap logic

Stack Manager Unit Data Cache Unit

Execution datapath

(ICU) (FPU)

(IFU)

(RCU)

(SMU) (DCU)
20 picoJava-II Microarchitecture Guide • March 1999

FIGURE 3-2 Instruction Pipeline in the IU

Here are the pipeline stages in the sequence in which they occur:

■ Fetch (F) stage — The ICU fetches instructions from either the instruction cache in

the ICU or from external memory.

■ Decode (D) stage — The IU groups and precodes instructions in the Instruction

Folding Unit (IFU).

■ Register (R) stage — The IU fetches the operands from the stack cache and

determines load-use conditions, bypass conditions, and stack cache miss

conditions. The logic for this stage is in the Register Control Unit (RCU).

■ Execution (E) stage — The IU uses the ALU to either compute arithmetic or

calculate the address of a load or store from the DCU. All multicycle instructions

use the microcode datapath for execution.

■ In case of a control flow instruction, the IU calculates the branch address and

the condition upon which the branch is dependent.

■ In case of a floating-point instruction, the IU provides the operands to the FPU

for execution.

■ Cache (C) stage — The IU accesses data from the data cache, prioritizes, and

takes traps at the end of the cycle.

■ Write (W) stage — The IU writes back results to the stack cache.

3.2 Instruction Folding Unit (IFU)
The Instruction Folding Unit (IFU) does the following:

■ Examines the top 7 bytes in the instruction buffer (I-Buffer) to determine how

many instructions can be folded (up to a maximum of four)

■ Decodes the instructions and provides the result to the R stage and sends the shift

signal, which indicates the number of bytes consumed, to the I-Buffer

IU-related portion

F D R E C W
Chapter 3 Integer Unit (IU) 21

3.2.1 I-Buffer Interface

The I-Buffer is a 16-byte-deep prefetch buffer. Each I-Buffer byte, bi, contains:

■ A valid bit, vi, which indicates whether that byte is valid

■ A dirty bit, di, which indicates whether that byte is dirty

■ A 4-bit length information, li, which indicates the length of the instruction that

corresponds to that opcode.

3.2.2 Folding Logic

The folding logic determines how many instructions can be dispatched in a cycle

according to the instructions and length information from the ICU. The core can

dispatch two operand loads (one operation and a result store) and emulate RISC-like

execution.

Folding is disabled if one of the following conditions is true:

■ The PSR.FLE bit is set to zero.

■ Instructions that cause a memory exception are present in the I-Buffer.

■ The local variables are not in the stack cache.

A folded group of instructions is reexecuted after folding is disabled if an instruction

in a folded group traps.

b0 b1 b2 b3 b4 b5 b6 b7 b14 b15

v0 v1 v2 v3 v4 v5 v6 v7 v14 v15

d0 d1 d2 d3 d4 d5 d6 d7 d14 d15

l0 l1 l2 l3 l4 l5 l6 l7 l14 l15

. . . .

. . . .

. . . .

. . . .
22 picoJava-II Microarchitecture Guide • March 1999

3.2.3 Folding Groups

The IFU classifies instructions into six types and groups them for the opcodes, as

listed in TABLE 3-1.

TABLE 3-2 lists the groupings; each line represents a group.

The IFU takes the top 7 bytes of the I-Buffer and arranges the instructions according

to a RS1, RS2, OP, RD format, as shown in FIGURE 3-3.

TABLE 3-1 Instruction Types in the IFU

LV A local variable load or load from global register or push constant

OP An operation that uses the top two entries of stack and that produces a one-word result

BG2 An operation that uses the top two entries of the stack and breaks the group

BG1 An operation that uses only the topmost entry of stack and breaks the group

MEM A local vars store, global register store, and memory load

NF A nonfoldable instruction

TABLE 3-2 IFU Groupings

LV LV OP MEM

LV LV OP

LV LV BG2

LV OP MEM

LV BG2

LV BG1

LV OP

LV MEM

OP MEM
Chapter 3 Integer Unit (IU) 23

FIGURE 3-3 Instruction Folding Unit (IFU) Datapath

0 1 2 3 4 5 6

DEC DEC DECDECDEC DEC DEC

A B C D

RS1 RS2 OP RD

A B A B C A B C D

I-Buffer

I0 I1 I2

I3 I4 I5 I6

I1 I6

I1 I6

. . .

. . .

len0

len1

len2
24 picoJava-II Microarchitecture Guide • March 1999

3.3 Register Control Unit (RCU)
The Register Control Unit (RCU) consists of:

■ The register access logic, which generates the constants, fetching operands from

the stack and determining stack cache hits or misses

■ The bypass logic, which generates the control for bypass signals that are used by

the IU to bypass data from older stages in the E stage. It also generates the load

use case, during which the IU stalls the D and R stages of the pipe.

■ The destination logic, which determines the destination address for each

operation in the R stage, keeps track of the destination address down the pipe,

and writes to the stack cache.

3.3.1 RCU Datapath

The register access datapath contains:

■ The stack cache

■ The adder for computing the address of the operands in the stack

■ Comparators for the bypass logic

■ The destination pipe to keep track of destination addresses

The RCU computes the local variable addresses to access the stack cache. Some

instructions push constants onto the stack, in which case the RCU generates the

constants in the runit.

By default, the RCU accesses the top two entries of the stack. If an operation uses

more than two entries of the stack, however, the RCU uses a help bit, generated by

the IFU, which signals for four operands over two cycles.

FIGURE 3-4 shows the runit datapath for RS1. RS1 outputs operand 1 for the ALU.

Similarly, an RS2 datapath provides operand 2.
Chapter 3 Integer Unit (IU) 25

FIGURE 3-4 Register Control Unit (RCU) Datapath (Register Access Part for RS1)

To determine bypassing, the RCU compares the operand addresses with the

destination addresses in the E, C, and W stages of the pipeline. Actual data

bypassing occurs in the E stage because of timing.

The RCU also compares the C stage destination addresses with the stack bottom to

determine stack cache hits or misses. In a hit, the RCU writes the data into the stack

cache; in a miss, it forwards the data to the SMU, to be written out to memory.

The RCU datapath has the four global registers, which it writes to only in the W

stage and reads in the R stage. The bypass logic also keeps track of writes to global

registers.

Valid

gl_0 gl_3
gl_1gl_2

-1
0
1

2
3

4
5

0.0
1.0

2.0
B0

B0,B1

const_gl_sel

gl_sel const_sel

offset_sel

final_data_sel

data_rs1

-4 EN

!(hold)

Stack cache

V h B0 B1 Op0 Op1 t

Help Offset Opcode Type

optop_inc1

optop_inc2

ucode_addr_s

lvars_minus_offset_rs1

scache_addr_sel_rs1

lvars_offset_sec_cycle

scache_dout_rs1

const_final_rs1
26 picoJava-II Microarchitecture Guide • March 1999

3.3.2 Interface Signals

TABLE 3-3 through TABLE 3-6 define the interface signals.

TABLE 3-3 Block Interface with the IFU

Signal Type Description

opcode_1_rs1_r <7:0> Input First byte of the opcode in RS1 stage

opcode_2_rs1_r <7:0> Input Second byte of the opcode in RS1 stage

opcode_1_rs2_r <7:0> Input First byte of the opcode in RS2 stage

opcode_2_rs2_r <7:0> Input Second byte of the opcode in RS2 stage

opcode_1_op_r <7:0> Input First byte of the opcode in OPstage

opcode_2_op_r <7:0> Input Second byte of the opcode in OPstage

opcode_1_rsd_r <7:0> Input First byte of the opcode in RSd stage

opcode_2_rsd_r <7:0> Input Second byte of the opcode in RSd stage

valid_rsd_r Input RDis of MEMtype

offset_1_rs1_r <7:0> Input First byte of offset in RS1 stage

offset_2_rs1_r <7:0> Input Second byte of offset in RS1 stage

offset_1_rs2_r <7:0> Input First byte of offset in RS2 stage

offset_2_rs2_r <7:0> Input Second byte of offset in RS2 stage

valid_rs1_r Input Indication that the opcode in RS1 is valid

valid_rs2_r Input Indication that the opcode in RS2 is valid

type_rs1_r <7:0> Input Indication of the type of long operation in RS1

lvars_acc_rs1_r Input Assertion for all operations that access the stack

cache using the lvars register in RS1

group_1_r Input Indication of a group 1 folding

group_2_r Input Indication of a group 2 folding

group_3_r Input Indication of a group 3 folding

group_4_r Input Indication of a group 4 folding

group_5_r Input Indication of a group 5 folding

group_6_r Input Indication of a group 6 folding

group_7_r Input Indication of a group 7 folding
Chapter 3 Integer Unit (IU) 27

group_8_r Input Indication of a group 8 folding

group_9_r Input Indication of a group 9 folding

no_fold_r Input Indication of no folding

TABLE 3-4 Block Interface with the IU

Signal Type Description

rs1_data_e <31:0> Output Operand 1

rs2_data_e <31:0> Output Operand 2

rs1_forward_mux_sel <3:0> Output Bypass controls for RS1

rs2_forward_mux_sel <3:0> Output Bypass controls for RS2

iu_lvars <31:0> Input Architectural VARSregister

iu_sc_bottom <31:0> Input Architectural SC_BOTTOM

iu_data_w <31:0> Input Data to be written to the stack

ucode_areg0 <31:0> Input Address from microcode for data to stack

ucode_addr_s Input Microcode address to access the stack cache

rs1_forward_mux_sel Output Mux selects for data forwarding

TABLE 3-5 Block Interface with Pipeline Control

Signal Type Description

scache_rd_miss_e Output Stack cache read miss

optop_e <31:0> Input OPTOPfrom the E stage

inst_vld <2:0> Input Indication of a valid instruction in the W, C,

and E stages

iu_trap_r Input Indication of a trap in the R stage

hold_e Input Indication of a hold in the E stage

hold_c Input Indication of a hold in the C stage

optop_offset Output Indication of an OPTOPnet change

TABLE 3-3 Block Interface with the IFU (Continued)

Signal Type Description
28 picoJava-II Microarchitecture Guide • March 1999

3.4 Datapath
The IU datapath of the E stage pipeline is a one-cycle execution engine used by

simple instructions that take only one cycle, as well as by the microcode for

multiple-cycle instructions and calculation of addresses.

The major functional units in the datapath are:

■ Main adder

■ Address adder

■ Comparator, shifter

■ Bit-wise operator

■ Integer converter

The IU also maintains most architecture registers inside the datapath, except for:

■ PCand OPTOP, which it monitors in pipe control

■ GLOBAL0, GLOBAL1, GLOBAL2, and GLOBAL3, which it monitors in the R stage

TABLE 3-6 Block Interface with the SMU

Signal Type Description

smu_rf_addr <5:0> Input Address for read/write from dribbler

smu_data <31:0> Input Data from SMU for fills

iu_smu_data <31:0> Output Read port of SMU

dest_addr_w <31:0> Output Stack cache write miss address

scache_wr_miss_w Output Stack cache write miss request

smu_we Input Write enable signal from the dribbler
Chapter 3 Integer Unit (IU) 29

FIGURE 3-5 Integer Unit (IU) Datapath

3.4.1 Functionalities

The IU datapath has the following functionalities:

■ Add, sub, neg — Use the main adder. carry_in and carry_out are the

interface signals. For 64-bit arithmetic operations, use carry_out as the

carry_in for the next stage.

RS1 RS2

ConvertBitShifterAdderCMP

Adder

Reg 1

Reg 2

Reg Ngt eq lt

imdr_data

fpu_data_e alu_out_e

ucode_porta

iu_data_eiu_addr_e iu_br_pc

pc_e

pc_c

S$_miss_addr

u_m_adder_porta

u_m_adder_portb

offset_e

0

forward_c

forward_w forward_w

forward_w1forward_w 1

ucode_portc

rs2_bypass

reg_wr_mux_sel

reg_we

carry_in

carry_out

C stage

W stage

...

1632

pc_r

-11 0

forward_c

ucode_reg_data

C stage

W stage

W1 stage

load_buffer

icu_diag_data_c
dcu_diag_data_c

dcu_data_c

forward_c

forward_w

forward_w 1

dcu_data_w

ucode_reg_data

reg_rd_mux_sel
ucode_porta

iu_alu_a iu_alu_b

W stage

load_buffer_mux_out

dcu_data_c
30 picoJava-II Microarchitecture Guide • March 1999

■ Compare, compare with zero — Use the comparator, which supports both signed

and unsigned comparisons. There are three output signals: gt , eq , and lt .

■ Left and right shift — Use the shifter, which supports the left shift, the right

logical shift, and the right arithmetic shift.

■ AND, OR, XPR — Use the bit-wise operator.

■ i2b, i2s, i2c, i2l — Use the integer converter, which supports sign extensions in 8-

bit and 16-bit conversions.

■ RS1 value — This value goes directly to the output for constant push instructions

and local var store instructions.

■ RS2 value — In an extended store, the IU bypasses this value to iu_data_e .

■ Address adder — This adder calculates the addresses for:

■ Microcode

■ Branch targets

■ Stack cache misses

3.4.2 Interface Signals

TABLE 3-7 defines the interface signals for the IU datapath.

TABLE 3-7 Block Interface of the IU Datapath

Signal Type Description

ru_rs1_e <31:0> Input src1 operand from the stack cache

ru_rs2_e <31:0> Input src2 operand from the stack cache

scache_miss_addr_e <31:0> Input Address of stack cache access miss

dcu_data_c <31:0> Input Data of stack cache access miss (from the
data cache)

ucode_porta_e <31:0> Input src1 operand from microcode

ucode_portc_e <31:0> Input Microcode result

u_m_adder_porta_e <31:0> Input Address 1 of microcode address adder

u_m_adder_portb_e <31:0> Input Address 2 of microcode address adder

pc_e <31:0> Input PCvalue from the E stage

pc_c <31:0> Input PCvalue from the C stage

imdr_data_e <31:0> Input Multiply-divide-remainder result

fpu_data_e <31:0> Input FPU result

icu_diag_data_c <31:0> Input Diagnostic read from the ICU

dcu_diag_data_c <31:0> Input Diagnostic read from the DCU
Chapter 3 Integer Unit (IU) 31

3.5 Pipe Control Unit
The Pipe Control Unit (PCU) contains a decode unit, which provides the control for

the IU, and pipe logic, which keeps track of PCand OPTOPregisters (as shown in

FIGURE 3-6). It also generates pipeholds for the various stages.

carry_out_e Output Carry output of the main adder

iu_addr_e <31:0> Output Output of address adder to the data cache
and the instruction cache

iu_data_e <31:0> Output Bypassed IU data to the data cache and the

instruction cache

iu_br_pc_e <31:0> Output Branch target PC

alu_out_w <31:0> Output Output of ALU

TABLE 3-7 Block Interface of the IU Datapath (Continued)

Signal Type Description
32 picoJava-II Microarchitecture Guide • March 1999

FIGURE 3-6 pipe_dpath (PCPipe and OPTOPPipe)

The decode unit decodes all the single-cycle operations for the IU. Microcode

handles multicycle instructions.

The different holds from different blocks on the core are resolved in the pipe logic to

generate a pipeline hold. Maintenance of PCpipe and OPTOPregisters takes place in

the PCSU.

3.5.1 Stall Types

All state changes and therefore all OPTOPchanges occur only at the end of the E

stage.

Following are the various types of pipeline stalls in the core:

■ dcu_hold — This stall holds the pipeline DREC due to a load miss. Once the

data are available, iu_data_vld latches the data into the cache register.

■ smu_hold — This stall holds the pipeline DREC in an underflow or overflow. All

writes to stack cache take place in the W stage.

PC_R

PC_E

Architectural PC

+

OPTOP_E

Architectural OPTOP

PC_out

optop_e encod_optop_shft

Shadow OPTOP

wr_optop

OPTOP_out

icu_pc_d
Chapter 3 Integer Unit (IU) 33

■ pj_halt — The pipeline DREC is on hold when this external signal is asserted.

■ pj_in_halt — The pipeline DREC is on hold when this signal is asserted at

instruction and data breakpoints.

■ ucode busy — This stall holds the pipeline DR when the microcode is active.

OPTOPupdates cannot occur in the last cycle of a microcode operation.

■ imdr busy — This stall holds the pipeline DR when the multiply/divide/

remainder unit is busy.

■ fpu busy — This stall holds the pipeline DR when the FPU is active.

■ scache hold — This stall holds the pipeline DR on a local variable load miss in

the R stage when the instruction moves to the E stage. The hold is deasserted

once data are available from the data cache.

■ icu_hold — This stall holds the pipeline DR during diagnostic reads and writes

to the I-Cache or I-Tag.

■ multicycle hold — This stall holds the pipeline D during the fetch of

operands for long and double operations.

■ lduse hold — This stall holds the pipe for one cycle in a load use—a load in the

E stage and a use in R stage.

3.5.2 Interface Signals

TABLE 3-8 defines the interface signals for pipe control.

TABLE 3-8 Interface Signals for Pipe Control

Signal Type Description

icu_pc_d <31:0> Input PCof the first instruction in the I-Buffer

inst_vld_r Input Valid operation

fold_r Input Folded group in the R stage

pc_offset_r <2:0> Input Offset that calculates end PC

arch_optop <31:0> Output Architectural OPTOP

arch_pc <31:0> Output Architectural PC

wr_optop_e Input Update of the architectural OPTOPregister

iu_data_e <31:0> Input Data bus to write to OPTOP

iu_trap_c Input Trap taken in the C stage

reissue_c Output Flush pipe and reissue instruction in the C stage

squash_fold Output No folding: used when folding group traps
34 picoJava-II Microarchitecture Guide • March 1999

3.6 Microcode
Microcode implements the multicycle instructions. It has its own datapath, which

consists mainly of eight temporary registers and a ROM (284x80), but shares two

adders in the IU.

The microcode interface with the main IU datapath is shown in FIGURE 3-7.

FIGURE 3-7 Microcode Interface with the Main IU Datapath

RS1 RS2 Architectural ALU
D-Cache

Microcode-specific datapath

Stack register

ucode_porta ialu_b <31:0>

ucode_portc u_addr_st_rd iu_addr_e

Mem_adder

mem_porta mem_portb

Rom_ucode

u_f21~00

iu_optop

(Control)

(Input to ALU) (B_operand to the ALU)

(Data input to S$/D$) (Read address to S$) (Address to D$)

registers register

mem_porta mem_portb

u_addr_st_wt

ialu_a <31:0>

m_adder_sum

(A_operand to the ALU)

(Write address to S$)
Chapter 3 Integer Unit (IU) 35

3.6.1 Interface Protocol

The microcode interface protocol is as follows:

■ In the stack cache, only one read port and one write port are available to the

microcode; it cannot read and write at the same stack cache address.

■ In the architectural registers, only one read port and one write port are available

to the microcode; it can read and write to the same register.

■ At the beginning of a microcode operation, the top two entries of the stack are

available in the rs1 and rs2 registers. If microcode makes a data cache read

request, the rs1 value changes. The rs2 value stays the same during a microcode

operation.

■ U_addr_st_rd , the read_address pointer to the stack cache, must be an early

signal.

■ U_addr_st_wt , the write_address pointer to the stack cache, can be a late

signal. ucode_portc is the data input to the stack cache.

■ ucode_addr_d , the address pointer to the data cache, is the output of the

Mem_adder. ucode_portc is the data input to the data_cache .

■ If microcode issues a stack cache read in cycle X, data are available to use in cycle

X + 1 in the rs1 stack register.

■ If microcode issues a data cache read in cycle X, data are available to use in cycle

X + 2 in the data cache register (dreg).

■ Microcode can access both the stack cache and the data cache in a given cycle.

■ Stack cache and data cache misses are transparent to microcode. In case of a miss,

ie_stall_ucode stalls microcode.

■ If data from the IU to microcode are invalid, the IU issues ie_stall_ucode to

hold the microcode process.

■ If microcode issues a stack cache read request and then a data cache request in the

next cycle, a stack cache read miss and data cache request can occur in the same

cycle. Thus, microcode must complete the stack cache miss first and then process

the data cache request. Also, the iu_addr mux muxes between the load miss and

the ALU output.

■ Microcode can access the data cache and stack cache on a back-to-back basis.

■ Microcode can request the IU to copy data from the data cache to the stack cache

by providing addresses for both caches.

■ Microcode can cancel a data cache request a cycle late and can therefore issue data

cache requests prior to determining an exception.

■ Microcode can cancel a data cache or stack cache request a cycle late when it

asserts the u_abt_rdwt signal. Unlike an exception, however, the microcoded

instruction continues to execute.

■ Microcode asserts the u_done signal in the last cycle of an operation.
36 picoJava-II Microarchitecture Guide • March 1999

■ Microcode cannot update OPTOPor VARSin the last cycle.

■ Once microcode has changed the VARS, FRAME, or CONST_Pregister, it cannot

make data cache read requests.

■ Synchronous interrupt can only take place during the first cycle of a microcode

operation. The IU ensures no state changes even if microcode has made requests.

■ Asynchronous interrupts can occur at any time. Microcode may have made state

changes, however, which are not recoverable.

■ Only ie_stall_ucode stalls microcode.

■ iu_trap_r and ifu_op_valid_r are never active at the same time. Microcode

does not decode soft_trap instructions.

■ To support the OPLIM check in the IU, microcode first updates OPTOPfor all

invoke_*_quick instructions, then builds the new frame on the stack and

changes the related architecture registers.

■ If a microcoded instruction completes in one cycle, the u_done signal stays high.

■ The IU does not allow a microcode read of stack_cache if the address is either

OPTOP+ 4 or OPTOP+ 8.

3.6.2 Control Logic

The microcode control logic picks up the instruction in the R stage. The ROM

address is generated for all multicycle operations. By default, the address points to

location 0x0, which has the default control values. The address accesses a 300x80-

entry asynchronous ROM. The microcode control also has branching mechanism for

handles and exceptions (see TABLE 3-9).

TABLE 3-9 Block Interface of Microcode Control

Signal Type Description

opcode_1_op_r <7:0> Input Operation with an immediate operand

opcode_2_op_r <7:0> Input Operation with an immediate operand

opcode_3_op_r <7:0> Input Operation with an immediate operand

valid_op_r Input Validation of an operation

iu_trap_r Input Issue of a trap operation (R stage) from the IU

iu_hold_e Input Holding of microcode in the IU (multiple E stages)

iu_psr_gce Input Enabling of garbage collection

u_f23 ~00<79:0> Output Control decode for the E stage

u_done Output Completion of microcode (not busy)
Chapter 3 Integer Unit (IU) 37

3.6.3 Datapath

The datapath consists of temporary registers and muxes to control the five read

ports and three write ports to the microcode-specific datapath (see TABLE 3-10).

u_ref_null Output Null array_ or object_ref

u_ary_ovf Output Indication that the index in an array is out of bounds

u_ptr_un_eq Output Two not-equal class pointers

u_gc_notify Output Detection of a condition for garbage collection

ie_stall_ucode Input An IU stall of a microcode operation

ie_kill_ucode Input An IU termination of a microcode operation

iu_hold_e Input IU hold of the E stage

iu_psr_gce Input Garbage collection enable bit from the PSR

ie_alu_cryout Input Carry-out of the ALU adder

ie_comp_a_eq0 Input Signal that indicates that operand A equals to 0

TABLE 3-10 Block Interface of the Microcode Datapath

Signal Type Description

rs1 <31:0> Input Top of stack, also used for reading stack

rs2 <31:0> Input The second operand from the stack

dreg <31:0> Input Data from data_cache

alu_out <31:0> Input Output of ALU

archi_data <31:0> Input Output of architectural registers

iu_optop <31:0> Input OPTOPregister

ucode_porta <31:0> Output Port A of microcode to ALU

ucode_portb <31:0> Output Port B of microcode to ALU

ialu_a <31:0> Output A_operand to the ALU of the IU

ucode_portc <31:0> Output Port C of microcode, data to stack_ or data_cache

u_areg0 <31:0> Output Signal for calculating the write address to the stack cache

u_addr_st_rd <31:0> Output Signal for reading the address port to the stack cache

TABLE 3-9 Block Interface of Microcode Control (Continued)

Signal Type Description
38 picoJava-II Microarchitecture Guide • March 1999

u_f01_wt_stk Output Microcode write to the stack cache request

u_f02_rd_stk Output Microcode read from the stack cache request

u_m_adder_porta <31:0> Output A_operand input to the memory adder

u_m_adder_portb <31:0> Output B_operand input to the memory adder

m_adder_sum <31:0> Input Output of the mem_adder(=ucode_addr_d)

u_abt_rdwt Output Termination of the access to the data cache or stack cache

TABLE 3-10 Block Interface of the Microcode Datapath (Continued)

Signal Type Description
Chapter 3 Integer Unit (IU) 39

40 picoJava-II Microarchitecture Guide • March 1999

CHAPTER 4

Floating Point Unit (FPU)

The Floating Point Unit (FPU) resolves all mathematical instructions.

This chapter contains the following sections:

■ Structure on page 41

■ Pipeline on page 43

■ Add and Subtract on page 44

■ Multiply and Divide on page 45

■ IEEE 754 Compliance on page 45

■ Opcodes on page 47

■ Power Management on page 48

■ Interface on page 48

■ Critical Paths on page 51

■ Signals on page 52

4.1 Structure
The FPU is organized into four basic sections, as shown in FIGURE 4-1.
41

FIGURE 4-1 Floating Point Unit (FPU)

The four basic sections are:

■ Microcode sequencer — Controls the microcode flow and microcode branches.

■ Input-output registers — Controls input-output data transactions. This section

also provides the input data loading and output data unloading registers for

intermediate result storage.

■ Floating point adder-ALU — Includes the combinatorial logic that performs the

floating-point adds, floating-point subtracts, and conversion operations.

■ Floating point multiply/divide unit — Contains the hardware for performing

multiply, divide, and remainder operations.

The FPU module is organized as a microcoded engine with a 32-bit datapath, which

is often reused many times during computation of the result.

Double-precision (DP) operations require approximately four times the number of

cycles as single-precision (SP) operations.

During typical operation, the microcode sequencer presents a new microword to the

Datapath Unit. It monitors the returning branch condition to determine the next

microword.

The FPU datapath consists of two main sections: ALU and multiply/divide (MDIV).

Microcode

Input/

ALU

sequencer B
ra

nc
h

co
nd

iti
on

output

fpop

fpbusyn

fpain

registers

fpout

Mux

fpkill

reset_1

fpop_valid

fpbin

Multiply/divide/
remainder unit
42 picoJava-II Microarchitecture Guide • March 1999

4.1.1 ALU

The ALU contains a 32-bit datapath with compute elements that perform floating

point add, subtract, compare, and conversion operations, as well as all normalization

calculations.

4.1.2 Multiply/Divide (MDIV)

The MDIV contains a multiply array logic section, which can perform array

calculation for SP floating-point multiply in two cycles. Therefore, the entire single-

precision multiply requires four cycles, except in special cases.

For each double-precision floating-point multiply, the picoJava-II core uses this

multiply array logic section eight times, thus requiring approximately 15 cycles for

double-precision floating-point multiply, depending on the data.

4.1.3 Microcode Sequencer

The microcode sequencer (MSEQ) requires two 160-entry ROMs. Other control

structures include the microcode PCand the next microcode calculation logic. This

logic contains many incoming branch signals that control the microcode flow. A

given field in each microcode word selects the appropriate branch condition.

When an fpop command is issued, the FPU uses hardware to map it to the correct

microcode starting address.

4.2 Pipeline
Output data are available for reading one cycle after the fpbusyn signal is

deasserted. For double-precision output data, two read cycles are required to obtain

both output data words, as shown in FIGURE 4-2.

The fpbusyn signal is asserted low in the cycle following the detection of a valid

opcode. It remains asserted until the cycle before the first data is output.
Chapter 4 Floating Point Unit (FPU) 43

FIGURE 4-2 Double-Precision Operation Using Two Cycles

4.3 Add and Subtract
A branch condition might be asserted after each primitive microcycle operation,

which can then result in a change in program flow. FIGURE 4-3 is a simplified block

diagram of the ALU section of the FPU.

FIGURE 4-3 Simplified ALU Section of the Floating Point Unit (FPU)

clk

fpain /fpbin

fpop

fpout

fpbusyn

fpop_valid

LSW MSW

MSW LSW

Input registers

32-bit adder

Right shifter

Left shifter

Priority encode

Exponent Mantissa

D
e
c
o
d
e

Exponent
subtract

12 12 32 32

Priority amount

Left shift amount
44 picoJava-II Microarchitecture Guide • March 1999

4.4 Multiply and Divide
FIGURE 4-4 shows the MDIV section of the FPU.

FIGURE 4-4 Multiply and Divide (MDIV) Section of the FPU

4.5 IEEE 754 Compliance
The FPU conforms to IEEE-754 compatibility, which requires support for gradual
underflow that allows the mantissa to become unnormalized, leading to smaller

errors in handing very small numbers. The FPU implements this gradual underflow

exactly as defined in the IEEE specification.

Multiplier array

Partial sum register

R
egister

Adder

Divide iteration

Multiplicand/remainderMultiplier

Multiply or divide result
Chapter 4 Floating Point Unit (FPU) 45

4.5.1 Deviation From IEEE 754 Specification

For differences from IEEE 754, see The Java Virtual Machine Specification by Tim

Lindholm and Frank Yellin.

These differences include providing special case outputs when an input is a NAN.

Also, The Java Virtual Machine Specification allows only one type of conceptual NAN

value compared to the IEEE specification, which allows several variations of NAN.

4.5.2 NaN Operations

The core’s NaN operation applies to any two input operations—except compares,

which have their own rules for NaNs.

For example, in a two-input operation—

out = a op b; /* op = {+,-,*,/,%} */

—TABLE 4-1 shows the results.

Where the single- and double-precision values of INaN for TABLE 4-1 are:

Invalid combinations include some of the following for each opcode, A_operand
and B_operand :

■ FADD, DADD: {+INF,-INF}

■ FMUL, DMUL: {0, +-INF}

■ FDIV, DDIV, FREM, DREM: {+-INF,+-INF} {any number, 0}

The core treats all NaNs as quiet NANs: They do not signal an exception.

Here, the INaN (indefinite NaN) output acts as the signal for an invalid

combination.

TABLE 4-1 Example Results of a NaN Two-Input Operation

out A B Description

AnanP Anan X Copies ANan to output (with positive sign)

BnanP Not_nan Bnan Copies BNan to output (with positive sign)

INaN Invalid combination Produces the Inan result (positive always)

INaN = 7fff 0000 For single-precision operations

INaN = 7fff e000 0000 0000 For double-precision operations
46 picoJava-II Microarchitecture Guide • March 1999

4.6 Opcodes
FPU opcodes perform a variety of operations, as described in this section.

4.6.1 FADDand FSUBOperations

Most single-precision FADD/FSUBoperations require four cycles. Certain rare cases

that involve DENORM, NaN, or INFINITY input operands may require up to seven

cycles. Most DADD/DSUBoperations require eight cycles plus extra cycles for loading

and unloading, for a total of 12 cycles.

4.6.2 FMULand DMULOperations

Single precision requires four cycles. Double precision requires 15 cycles, except for

cases where the multiply operation underflows into the DENORM range.

4.6.3 FDIV, FREM, DDIV, and DREMOperations

An FDIV operation typically requires 31 cycles.

A DDIV operation typically requires 61 cycles.

An FREM/DREMoperation typically requires approximately x number of cycles,

where x equals to DIVIDEND EXPONENT minus DIVISOR EXPONENT. The

number could be as high as 2,000 cycles for DREMand is data dependent. To support

applications with very high interrupt rates, the DREM opcode traps and is emulated

by software if the PSR.DRTbit is set.

4.6.4 FConvert Operations

Fconvert converts a single-precision or double-precision floating-point value to a

32-64 INT value, or vice versa.

On an overflow, the maximum positive or negative number is provided. These

operations require a variable number of cycles.
Chapter 4 Floating Point Unit (FPU) 47

4.7 Power Management
When the FPU is in an idle state, such as when the fpop is not a valid FPU opcode,

it assumes a lower power mode by preventing unnecessary toggling of logic

(thrashing) when no calculation is necessary. In this mode, all states remain

unchanged to ensure that the large combinatorial data paths remain quiet.

4.8 Interface
The interface to the FPU consists of two 32-bit input buses (fpain <31:0>,

fpbin <31:0>), as shown in FIGURE 4-5. These inputs are directed to one or more of

the FPU internal input registers based upon the type of fpop operation.

FIGURE 4-5 Floating Point Interface

4.8.1 Input Operations

Input loading of the FPU is through the following:

■ Two 32-bit input buses, fpain <31:0> and fpbin <31:0>

■ An 8-bit fpop <7:0> opcode command bus

FPU

fpain <31:0> fpbin <31:0>

fpop <7:0>

fpbusyn

fpout <31:0>

fpkill

clk

fphold
reset_l

fpop_valid

test_mode

powerdown
48 picoJava-II Microarchitecture Guide • March 1999

An input transaction begins when the core detects a valid FPU opcode on the fpop
input. In the next cycle (cycle 0) and optionally the following cycle (cycle 1), input

data are transferred over these two buses.

TABLE 4-2 lists the data type and the number of operands for the FPU input

transactions, and FIGURE 4-6 illustrates FPU timing.

FIGURE 4-6 FPU Timing

For example, a DSUBoperation (two double-precision operands) transfers the MS
words A_operand and B_operand in cycle 0. fpop is valid one cycle before cycle 0.

Since this input transaction requires two cycles, the LS word of the A and B

operands is transferred in the following cycle (cycle 1). In single-cycle input

transactions, the cycle 1 transaction is absent.

The B_operand is the second operand in the equation. Therefore, DSUBperforms:

 R.d = A.d - B.d.

TABLE 4-2 FPU Input Cycle Transactions

Operand Number
and Type

Cycles to
Load Input

Cycle 0:
FPAIN, FPBIN

Cycle 1:
FPAIN, FPBIN cyc0_type

Two doubles 2 a.d.m b.d.m a.d.l b.d.l 0

Two singles 1 a.f b.f None 1

One long or double 1 a.x.m a.x. l None 2

3

One integer or single 1 a.x 0
.m =MSword

None

.l = LS word

4

5

fpop

fpain , fpbin

fpbusyn

fpout LSW MSW

fpop

CYC0

fpclk

CYC1
Chapter 4 Floating Point Unit (FPU) 49

Note – The double-precision value is indicated by .d .

4.8.2 Output Operations

The fpbusyn output signal is asserted (low) in the cycle following a valid fpop
detection. It remains asserted until the first output transaction cycle, as shown in

FIGURE 4-2 on page 44.

Once the FPU calculation begins, the FPU acts as a master by starting the output

transaction as soon as the calculation is complete, as indicated by deasserting the

fpbusyn signal.

The FPU ignores fpop s that are presented on:

■ Cycles when fpbusyn is asserted (asserted low)

■ The cycle that follows the deassertion of fpbusyn
■ The first output transaction cycle of a two-cycle output (double or long)

The output transaction consists of one or two cycles (if the result is long or double)

over the 32-bit fpout <31:0> bus:

■ The first cycle transfers the LS word.

■ The second cycle (if needed) transfers the MSword.

fpkill

The fpkill input signal terminates any FPU transaction on the next cycle and

returns the FPU to the low-power idle state.

fphold

When asserted by the IU, the fphold input signal freezes the FPU operation at its

current cycle and causes that cycle to repeat. Completion of the cycle occurs only

when the IU deasserts fphold at the end.

The FPU is sensitive to fphold at all times; only fpkill overrides the hold

function.

fpop_valid

The fpop_valid signal indicates that the incoming fpop byte is valid. Here, the

fpop must also be a valid floating point operation for the FPU to proceed.
50 picoJava-II Microarchitecture Guide • March 1999

4.8.3 Data Forwarding

The FPU cannot forward data. Thus, an FPU operation (always writes to top-of-

stack), followed immediately by another operation (ALU or FPU) that has a source

as the top-of-stack, must stall the pipeline for one additional cycle.

4.9 Critical Paths
There are two primary critical paths in the FPU, both located in the ALU section.

The first critical path requires taking the incoming right shift amount from the SA

register, performing the 32-bit wide shift and then performing a 32-bit add. The

overflow (OVF) from this add may then be selected to control a mux, which picks

the next microcode word into the microword register.

The second path takes a registered mantissa value and performs a 32-bit leading

zero detection (LZD). Its output is then added to another 12-bit value. FIGURE 4-7

shows these two critical paths.

FIGURE 4-7 Critical Paths in the FPU

Right shift

Adder

Mux4 to 1

12 Leading zero detect

Adder

32

32

32

Microword

Mux 4 to 1

SA register

Select

Mantissa register

register

OVF

Register
Chapter 4 Floating Point Unit (FPU) 51

4.10 Signals
TABLE 4-3 defines the FPU signals.

TABLE 4-3 FPU Signals

Signal Type Definition

fpain <31:0> Input 32-bit loading channel

fpbin <31:0> Input 32-bit loading channel

fpout <31:0> Output 32-bit output channel

fpop_valid Input Valid fpop input

fpop <7:0> Input 8-bit floating-point operation command

fpkill Input Termination of the fpop and return of the FPU to idle

fpbusyn Output An active FPU operation

reset_l Input A reset of the FPU

powerdown Input A shutdown of the FPU ROMs

fphold Input A freeze of an FPU operation
52 picoJava-II Microarchitecture Guide • March 1999

CHAPTER 5

Data Cache Unit (DCU)

The Data Cache Unit (DCU) arbitrates between requests to the data cache, which can

come from the Stack Manager Unit (SMU) or the pipeline.

This chapter contains the following sections:

■ Dependencies on page 55

■ Data Cache on page 55

■ Functionalities on page 57

■ Pipeline on page 58

■ Cache Transactions on page 64

■ Interface Signals on page 66

■ Power Management on page 68

■ Critical Timing Path on page 68

The DCU interacts with the SMU, the Integer Unit (IU), the Instruction Cache Unit

(ICU), and the Bus Interface Unit (BIU). FIGURE 5-1 shows the interaction among

these units.

Note – Data cache requests from the pipeline use bit 30 to determine endianness

and bits 29:28 to determine noncacheability. The DCU assumes data cache requests

from the SMU to be cacheable and big endian. For details, see Endianness and
Cacheability on page 111.

Note – You must not write and read the status RAM in the same cycle.
53

FIGURE 5-1 Data Control Unit (DCU) Interaction with Other Units

 Arbiter

Tags

Data RAM

 WB control

Align

Miss control

Tag Comp

Bus Interface Unit (BIU)

Stack Manager Unit

Write

Address

To IU

32 bits

64 bits

Tag Comp

32 bits

From BIU

wr reg

WR buffer

 32’b0

WB

Integer Unit (IU)/Decode Unit

Endianness
sign extend
rotation

control

control

control

register

(SMU)
54 picoJava-II Microarchitecture Guide • March 1999

5.1 Dependencies
DCU actions depend upon the following:

■ Cache hits — In cache hits, the DCU returns data to the IU or SMU in one cycle

for loads. It also takes one cycle in case of write hits.

■ Cache misses — In cache misses, the DCU stalls the pipeline until the requested

data are available from main memory.

■ Noncacheable loads and stores — The IU or SMU bypasses the DCU when a load

or store is noncacheable and sends a request to the BIU.

■ Nonaligned loads and stores — Nonaligned loads and stores trap in the

software.

The DCU also generates requests to the bus in cache misses and noncacheable loads

and stores.

5.2 Data Cache
The data cache is a two-way set associative, write-back, write-allocate, 16-byte line

cache. The cache size is configurable to 0-Kbyte, 1-Kbyte, 2-Kbyte, 4-Kbyte, 8-Kbyte,

and 16-Kbyte sizes. The default is 16 Kbytes. Each line has a cache tag store entry

associated with it. On a cache miss, the DCU writes 16 bytes of data into the cache

from main memory.

FIGURE 5-2 shows a 16-Kbyte data cache.
Chapter 5 Data Cache Unit (DCU) 55

FIGURE 5-2 16-Kbyte Data Cache (512x256)

The cache tags contain a 19-bit address tag field, one valid bit, and one dirty bit.

Each set also has one Least Recently Used (LRU) bit, which indicates the line in that

set that was updated least recently. To support multiple cache sizes, the width of tag

fields can change easily.

The DCU data RAMs consist of two RAM banks, each with 2,048 entries of 32 bits

each (for a 16-Kbyte data cache). The lines are organized such that alternate entries

in the same cache line are mapped to different RAM blocks to allow simultaneous

access to the following:

■ Two consecutive words in a single line, which is useful for performing entire line

fills or evictions

■ The same word in both ways of a set, which is useful for lookups during which

the required data may be present in either way of the set

If the PSRbit for cache-enable is not set, the DCU handles loads and stores as if they

were noncacheable instructions.

A single 16-byte writeback buffer contains dirty cache lines that must be replaced. In

a single cycle, the cache can provide a maximum of 4 bytes on a read or a write into

the cache.

Note – When the core is in reset state, the RAMs are in an unknown state. Reset

software must use diagnostic accesses to initialize the RAMs explicitly.

The DCU can also perform diagnostic reads and writes on the cache.

128 bits

128 bits

Way 0

Way 1

Cache line = 128 bits
56 picoJava-II Microarchitecture Guide • March 1999

5.3 Functionalities
The DCU does the following:

■ Arbitrates data cache requests from the SMU and the pipeline

■ Generates address, data, and control signals for the data and tag RAMs

■ Reorders the data RAM output to provide the right data in a cache hit

■ Provides datapath and control logic for processing noncacheable requests

■ Provides the datapath and datapath control functions for cache misses

5.3.1 Arbiter

The arbiter does the following:

■ Arbitrates data cache requests from the pipeline and the SMU

■ Selects address and data inputs for the tag and data RAMs

5.3.2 Address Control

Address control updates the following:

■ The address field of the tags while writing to the caches

■ The LRUbit during cache access, invalidating the entry in case of flushes

■ The dirty bit while writing to the caches

5.3.3 Aligner Control

Aligner control provides the following:

■ Write-enable signals to the data RAM

■ Control signals to align data from the data RAM during cache hits
Chapter 5 Data Cache Unit (DCU) 57

5.3.4 Miss Control

Miss control interfaces with the writeback control and the read buffer control and

does the following:

■ Handles all cache misses

■ Generates a stall signal to the pipeline as well as the bus requests for cache line

fills

■ Provides the handshaking signals for these transactions

5.3.5 Writeback Control

Writeback control determines which line to replace, depending on the LRUbit, and

verifies if the dirty bit is set. If so, it moves that line into the write buffer. Once the

cache fill transaction started by miss control is complete, writeback control starts a

writeback cycle.

5.3.6 Data Cache Datapath

The data cache datapath consists of all the address and datapath logic, as shown in

FIGURE 5-1 on page 54. The data RAM and tag RAMs are not included in the

datapath.

The datapath does the following:

■ Provides appropriate address and data to the RAMs

■ Postprocesses data before sending them to the pipeline or the register file

■ Sends appropriate address and data on the memory buses for cache fill and

writeback transactions

The datapath also contains a single-entry, 16-byte size store buffer, thus

accommodating a cache line that is being replaced.

5.4 Pipeline
This section describes the cache transactions in the pipeline.
58 picoJava-II Microarchitecture Guide • March 1999

5.4.1 Cache Reads

A cache read takes three stages, as illustrated in FIGURE 5-3.

FIGURE 5-3 A Pipeline Read Transaction

■ Register (R) stage, during which the instruction is decoded to determine if it is a

load or store.

■ Execute (E) stage, during which the address is computed using a separate 32-bit

adder for loads and stores. In parallel, a request is sent to the data cache.

Depending on the priority, the address and request are ready before the end of the

E stage.

■ Cache (C) stage, during which the tags and data RAMs are accessed with the

address in this clock. Only the tags are accessed in this stage for stores.

Tags are compared. If there is a cache hit, the load’s data are available at the end of

C stage after going through aligner muxes to obtain the requested 32 bits of data. If

there is a cache miss, a request is made to the bus. In case of stores, data are written

into the cache in the C+1 stage on a cache hit. In case of a miss, a request is made to

the bus in the background.

5.4.2 Cache Writes

A cache write takes three stages, as illustrated in FIGURE 5-4.

Priority

Address

 Data RAM

 Tag RAM

 Aligner

 Comparators
Decode

Load/
store

Hit=1
Hit = 0

Fill or writeback request
to memory controller

Data available
at end of C
if cache hit

 Register stage Execute stage Cache stage

arbitration

generation
unit

Instruc-

from
tions

I-Buffer
Chapter 5 Data Cache Unit (DCU) 59

FIGURE 5-4 A Cache Write Transaction

The data cache is a write-allocate-writeback cache. When a write miss occurs, the

DCU fetches a line from memory and writes it into the D-Cache. However, since the

SMU writes sequential data, if the write to the end of a cache line misses the

D-Cache, the DCU writes the missed data directly into the D-Cache instead of

reading from memory. This protocol saves memory cycles and context switch time as

well as improves the interrupt latency.

The DCU does not stall the pipeline but cannot accept additional requests until the

store transaction is complete. The IU or SMU can dispatch back-to-back stores for the

data cache. Stores can take two or more cycles to complete, depending on the cache

hit or miss, replacing dirty lines, and so on. The IU assumes this to be a one-cycle

operation and continues the execution flow.

Note – There is a bubble between a store and an immediate load.

5.4.3 Cache Fills

On a cache miss, a cache fill request is sent to the memory controller at the end of

the C stage. A cache fill transaction starts whenever there is a cache miss and there

are no outstanding bus requests. It waits until it receives a pj_ack from the memory

controller, then writes the data from the memory bus onto the cache.

FIGURE 5-5 is a state diagram for the cache fill transaction.

 Priority arbiter
 Tag RAM

 Comparators

Decode

Load/
store

Hit = 1
Hit = 0

 Tag RAM Data RAM

Memory

Address

request generated

calculation

 Register stage Execute stage Cache stage
60 picoJava-II Microarchitecture Guide • March 1999

FIGURE 5-5 A Cache Fill Transaction

The transaction also forwards the right data to the IU or SMU after sign extension of

data, if required. On the second pj_ack , the second part of the line is written into

the cache. The same process is repeated for the remaining two ack s.

If an error ack is received during cache fill, the state memory controller is

immediately reset and goes back to the idle state. FIGURE 5-5 does not show that

transaction.

TABLE 5-1 lists the order of filling.

TABLE 5-1 Data Cache Fill Ordering

Requested
Data Word Order of Fill Data Returned

0 0,1,2,3

1 1,2,3,0

2 2,3,0,1

3 3,0,1,2

Idle

 Line fill
wait 1

Line fill
wait 2

and cache miss = 1

miss = 0

pj_ack = 1

pj_ack = 0

pj_ack = 0

pj_ack = 1

mem_req = 0

Fill req
wait state

Line fill
wait 3

pj_ack = 1

pj_ack = 0
pj_ack=1

pj_ack = 0
Chapter 5 Data Cache Unit (DCU) 61

5.4.4 Writebacks

FIGURE 5-6 is a state diagram for the writeback transaction.

FIGURE 5-6 A Writeback Transaction

A writeback (WB) transaction takes place whenever a cache miss occurs and there is

a dirty line to be replaced. In case of cacheable loads and stores, a writeback

transaction starts after a cache line fill cycle is complete.

The WB transaction takes place in the background. Thus, the pipeline stall is

deactivated once the cache fill transaction is complete. In case there is another miss

while the WB transaction is in progress, the cache fill transaction waits for the WB

transaction to finish before it starts its process.

During this transaction, if an error ack is received, the state machine is reset to its

idle state. To simplify the logic, if there is a request for the line being written back

during the WB cycle, the data are not bypassed. Instead, the state machine signals a

cache miss.

Idle

request

 WB

 wb_start = 0

pj_ack = 1

pj_ack = 0

pj_ack = 1

wb_start = 1

WB

wait 1

wb_start = Cache fill done and replaced line is dirty

pj_ack = 0

pj_ack = 0

pj_ack = 1 pj_ack = 1
 WB

wait 2

 WB
wait 3pj_ack = 0
62 picoJava-II Microarchitecture Guide • March 1999

5.4.5 Noncacheable (NC) Loads

Noncacheable loads force a cache miss, and an NC request is made to the bus. Once

the data are available, they are bypassed to the pipeline, as shown in FIGURE 5-7.

FIGURE 5-7 A Noncacheable Load

5.4.6 Noncacheable (NC) Stores

Noncacheable stores also force a cache miss and an NC request is made to the bus.

The data are written into the writeback buffer and the pipeline is not stalled. The

transaction is very similar to the WB transaction once the store data are written into

the write buffer.

If the write buffer contains a cache line, the noncacheable store occurs after the

cached store is retired. This step maintains strong write ordering.

FIGURE 5-8 illustrates a noncacheable store.

Idle

request

pj_ack = 1

pj_ack = 0

NC load

Bypass
data

NC_load and
dcache_req = 0
Chapter 5 Data Cache Unit (DCU) 63

FIGURE 5-8 A Noncacheable Store

5.5 Cache Transactions
This section defines the various cache transactions.

5.5.1 Arbitration of Requests

The data cache receives requests from both the SMU and the pipeline. Usually, the

pipeline has a higher priority than the SMU; however, in rare cases where the SMU

holds the pipe, it has a priority over the IU pipe.

The requests from the SMU are single 32-bit loads or stores.

5.5.2 Replacements

The core uses the pseudo Least Recently Used (LRU) replacement policy. There is

one bit for every two lines; the bit is updated whenever data are written into the

cache. This policy does not penalize read latency. An LRU update occurs only on a

cache fill or a write hit in the cache.

Once a miss is detected, the LRUbit determines the line to be replaced. If the dirty

bit of that line is set, the line is moved into the writeback buffer. Cache miss is

detected in the C stage. Moving the replaced line into the write buffer takes two

additional cycles. Once the cache fill transaction is complete, a writeback request is

sent to the memory controller. Writebacks take place in the background.

Idle

request

pj_ack = 1

NC store

NC_Store and
mem_req = 0

pj_ack = 0
64 picoJava-II Microarchitecture Guide • March 1999

5.5.3 Cache Compare Flushing

In a cache compare flushing operation, the corresponding line tags are accessed and

compared to determine a hit. If it is a hit and the dirty bit is not set, the tag’s valid

bit is turned off. If the dirty bit is set, a writeback transaction starts. The LRUbit is

also updated.

This protocol accommodates self-modifying code.

5.5.4 Cache Indexed Flushing

Cache indexed flushing is similar to cache compare flushing, except that the tags are

not compared. The cache line to be invalidated is written back to memory if it is

dirty. The valid bit is reset after moving the dirty line into memory.

The cache indexed flush instruction has the same address semantics as a diagnostic

read or write.

5.5.5 Cache Invalidate Flushing

In a cache invalidation, the corresponding line tags are accessed and compared to

determine a cache hit. If it is a hit, the line is invalidated. There is no writeback

transaction. On a cache miss, there is no state change.

5.5.6 Zeroing of Cache Lines

When the core executes the zero_line instruction, the DCU receives a signal from

the IU to zero out a particular cache line. zero_line takes five cycles to complete—

one to determine hit or miss and four to write. The IU assumes this to be a one-cycle

operation and continues the execution flow unless there is an instruction following

zero_line that uses the data cache. This instruction is then stalled until

zero_line completes.

If the core executes zero_line when the data cache is absent or turned off, it

generates an exception (ZeroLineEmulationTrap).

The tags are checked to see if the cache line is a valid dirty line. If not, the cache line

is filled with zeroes. If it is a dirty line, a writeback transaction is done and then the

cache line is zeroed out. In case of cache line zeroing, it is a nonallocate store. The

LRUbit is updated and the dirty bit is set.
Chapter 5 Data Cache Unit (DCU) 65

5.5.7 Nonallocating Writes

The DCU supports nonallocating writes to handle the nastore_word_index
instruction and processes them like cacheable stores on a cache hit. However, on a

cache miss, the DCU converts nastore_word_index into a noncacheable store and

sends it to memory.

The DCU also uses nonallocating writes for SMU requests to avoid fetching new

lines into the cache, hence improving the performance of dribble stores.

5.5.8 Nonfetching Allocates

The DCU uses nonfetching allocates for SMU requests to write out data at the last

word in a line. For such writes, it allocates the address for the line in the cache,

evicting and writing back another line if necessary, but does not fetch the contents of

the new line from memory; instead, it anticipates the SMU to overwrite that entire

line.

5.5.9 Diagnostic Accesses

The DCU supports diagnostic access instructions, which directly read or write the

contents of the tag and data RAMs. The core reads or writes the DCU RAMs for such

instructions in the E stage. For details on diagnostic access instructions, see

picoJava-II Programmer’s Reference Manual.

5.6 Interface Signals
TABLE 5-2 through TABLE 5-5 define the DCU interfaces.

TABLE 5-2 DCU Interface with the Bus Interface Unit (BIU)

Signal Type Description

dcu_biu_data <31:0> Output Data bus for writeback/NC store transactions

biu_data <31:0> Input Data bus for cache fill/NC load transactions

dcu_addr_out <31:0> Output Address bus for memory transactions

dcu_size <1:0> Output Size of data requested
66 picoJava-II Microarchitecture Guide • March 1999

dcu_type <3:0> Output Type of transaction

dcu_req Output Transaction valid/request

iu_psr_dce Input Enable the data cache

biu_dcu_ack <1:0> Input Acknowledgment that data are available on data bus

TABLE 5-3 DCU Interface with the Stack Manager Unit (SMU)

Signal Type Description

smu_data <31:0> Input The SMU data bus for stack spills

smu_addr <31:0> Input The SMU address used for spills and fills

smu_ld Input A load request from the SMU

smu_st Input A store request from the SMU

smu_data_vld Output An acknowledgment from the DCU that valid data are

available on the dcu_data bus

smu_stall Output A signal that stalls the SMU because of a busy or miss

state of the D-Cache

smu_prty Input A signal that indicates the SMU priority over the IU in

the DCU

TABLE 5-4 DCU Interface with the Integer Unit (IU)

Signal Type Description

iu_addr_e <31:0> Input The address that corresponds to the IU request

iu_data_e <31:0> Input Data bus used for writes to the DCU

iu_inst_e <7:0> Input Load and store instruction from the IU

iu_stall Output Pipeline stall

kill_inst_e Input Termination of instruction execution in the E stage

iu_trap_c Input Termination of outstanding DCU operations because of

a trap

iu_diag_e Input Diagnostic read or write commands to the DCU

iu_zero_e Input A zero_line instruction to the DCU

TABLE 5-2 DCU Interface with the Bus Interface Unit (BIU) (Continued)

Signal Type Description
Chapter 5 Data Cache Unit (DCU) 67

5.7 Power Management
The data cache receives a power_down signal to turn off the cache when not in use.

This signal turns off the address decoders and the sense amplifiers. Before the caches

are turned off, all outstanding transactions are completed.

The data cache is also turned off during the idle cycles when the cache is not

accessed. It is turned off during the dead cycles of a cache fill transaction.

5.8 Critical Timing Path
The most critical path in the DCU is the tag access-tag comparison path, shown in

FIGURE 5-9. This path is for a 16-Kbyte, two-way set associative cache configuration.

TABLE 5-5 Miscellaneous DCU Interfaces

Signal Type Description

clk Input Clock

dcu_si Input Scan-in port

dcu_so Output Scan-out port

pcsu_powerdown Input Powerdown

dcu_data Output Data bus used for data cache reads to the IU, the SMU,

and the external unit
68 picoJava-II Microarchitecture Guide • March 1999

FIGURE 5-9 Critical Timing Path in the DCU

Tag 1

 Tag 2

19-bit comparator

19-bit comparator

32 bits

32 bits

From data RAM bank A

Hit or

Bypass mux

clk-q = 0.3 ns Tag access = 2 ns Tag compare = 1 ns

Setup time = 0.5 ns

Mux logic = 0.5 ns

miss
logic

From data RAM bank B
Chapter 5 Data Cache Unit (DCU) 69

70 picoJava-II Microarchitecture Guide • March 1999

CHAPTER 6

Stack Manager Unit (SMU)

The Stack Manager Unit (SMU) handles overflow and underflow conditions of the

stack cache. For details on how the core uses the stack cache, see Chapter 3,

“Memory System and Caches,” in picoJava-II Programmer’s Reference Manual.

This chapter contains the following sections:

■ Functionalities on page 73

■ Dribbling Operations on page 74

■ Pipeline on page 77

■ Interface Signals on page 77

The SMU stalls the pipeline upon detecting an overflow or underflow. FIGURE 6-1

shows its interaction with the Integer Unit (IU) and the Data Cache Unit (DCU).

Note – See Dribbling Operations on page 74 for the algorithm that defines an SMU

operation.
71

FIGURE 6-1 Stack Manager Unit (SMU) Interaction with Other Units

Operand stack

6

add_a add_b add_d

66 6 32 32 32
do_a do_b

smu_addr <5:0>

Decode Unit Execution Unit

Increment or

smu_addr <31:0>
32

Subtract

32

OPTOP<31:0>

SC_BOTTOM<31:0>

Data Cache Unit (DCU)

dcu_data
32

SMU control

32
smu_data

di_d

33

decrement
72 picoJava-II Microarchitecture Guide • March 1999

6.1 Functionalities
The SMU performs the following functions:

■ Moves data in and out of the stack into memory in an overflow or underflow in

the stack cache. It also provides the control signals for one read port and one

write port of the stack cache, which are used for dribbling only.

■ Handles spills and fills of the stack cache by speculatively dribbling the data in

and out of the stack cache from and to the data cache.

■ Generates a pipeline stall signal to stall the pipe when a stack cache overflow or

underflow condition is detected.

■ Keeps track of requests sent to the data cache. A single request to the data cache

consists of a 32-bit consecutive load or store request.

■ Handles stack cache write misses of the IU.

The stack cache is a 64-entry, three-read, two-write port register file. It caches the top

few entries of the operand stack. Two read ports and one write port fetch and store

operands to and from the IU. Exclusive read and write ports perform background

dribbling of data to and from the data cache, depending on whether the condition is

an overflow or underflow.

Note the following points about the stack cache:

■ All memory accesses generated as offsets from OPTOP, VARS, or FRAMEare stack

accesses. The IU first checks whether the address exists in the stack cache. All

other memory accesses go directly to the data cache.

The condition for deciding whether an address is a hit in the stack cache is the

address in the interval (OPTOP+ 4, SC_BOTTOMinclusive).

Memory accesses generated as offsets from OPTOPmust always hit the stack cache.

The locations that correspond to the four top words in the stack and the two

empty words above the top of the stack are present in the stack cache.

Accesses to these locations are assumed to hit directly in the stack cache because

OPTOP offsets are always between 4 and −1, inclusive, and the SMU always
ensures that the stack cache has between 6 and 60 entries at the top of the stack.

■ The SMU must be on (PSR.DRE= 1).

This setting ensures correct program behavior. If the SMU is disabled

(PSR.DRE=0), it does not hold the pipe, the requirement of 6–60 entries in the

stack cache is not met, and the stack cache underflow or overflow operation is not

handled correctly. Therefore, operations may use erroneous data.
Chapter 6 Stack Manager Unit (SMU) 73

Note – The SMU is not a performance feature that can be switched off unless the

program understands the stack cache behavior. The stack cache operation is not

transparent to the program if the SMU is off.

■ An address that hits the stack cache is stored at the entry in the stack cache that

corresponds to the 6 least significant bits of the address.

■ Do not set fill_mark to 0 because this setting causes incorrect program

behavior.

■ The word pointed to by SC_BOTTOMis assumed to be present in the stack cache.

■ The SMU datapath keeps track of the memory address for loading or storing data

from and to the stack cache. It also moves data from the stack cache to memory,

and vice versa. During initialization, a 32-bit address is stored in SC_BOTTOM.
From then on, only the SMU manipulates the SC_BOTTOMregister and software

must not write to it. The SMU increments SC_BOTTOMon a fill and decrements it

on a spill.

6.2 Dribbling Operations
The stack cache caches part of the stack. See FIGURE 6-2.

FIGURE 6-2 Stack Cache

picoJava-II stack

OPTOP<31:0>

SC_BOTTOM<31:0>

Stack grows

Stack
cache

downwards

All entries in this area are valid and dirty.

Next empty location

Earliest entry in stack cache

Higher address

Lower address
74 picoJava-II Microarchitecture Guide • March 1999

OPTOPis on the stack cache. The entries between SC_BOTTOMand OPTOPare dirty

data and must be saved in memory in a stack overflow.

6.2.1 Spills and Fills

During a cycle, the SMU compares the number of entries against a high watermark

and a low watermark:

■ If the result exceeds the high watermark, the SMU starts a spill transaction and

sends a write request to the data cache, along with the address and data, and

receives an acknowledgment in return.

The SMU sends another request if a spill condition continues to exist.

■ If the result is less than the low watermark, the SMU starts a fill transaction and

sends a read request to the data cache, along with the address, and receives an

acknowledgment in return.

The SMU then writes the data on the DCU bus into the stack cache. It sends

another request if a fill condition continues to exist.

Note – The low watermark must be at least eight entries and less than the high

watermark. Both watermarks must not match.

Spill and fill transactions take place in the background while the pipeline continues

to execute instructions.

In case of a drastic jump in the OPTOPvalue so that no entries are on the stack cache,

the SMU stalls the pipeline and ensures that adequate free space is available on the

stack cache.

Note – In a write of a new OPTOPvalue (OPTOP') to the OPTOPregister, if

OPTOP< OPTOP' <= OPTOP+ 64, the contents of the stack cache between OPTOPand

OPTOP' may not be saved.

6.2.2 Stack Overflow

A stack overflow occurs if OPTOP< SC_BOTTOM– 60, causing OPTOPto fall off the

stack. The SMU then stalls the pipeline and activates a state machine. The state

machine sends a series of write requests to the data cache.
Chapter 6 Stack Manager Unit (SMU) 75

Once the dirty entries have been written into the data cache, the stack cache verifies

that the six topmost entries of the stack (based on the new OPTOPlocation) are

present in the stack cache, reading them from the data cache or from memory if they

are not already present.

When there are six entries in the stack cache, the SMU deasserts the stall; execution

of instructions continues.

Note – The stack overflow condition also occurs if, after write_optop or

priv_update_optop writes to OPTOP, the new OPTOPexceeds SC_BOTTOM.
Overflows do not occur from returns.

6.2.3 Stack Underflow

A stack underflow occurs if OPTOPexceeds SC_BOTTOM(for example, upon a return

from a large method), causing OPTOPto fall off the top of stack cache. The SMU then

stalls the pipeline and activates a state machine. The state machine sets SC_BOTTOM
to the new OPTOPvalue and sends read requests until there are six entries in the

stack cache.

Once the SMU has written the data into the stack cache, it deasserts the stall. Any

entries beyond OPTOPare not used and therefore not saved.

The SMU can activate an underflow only in response to changes in OPTOPcaused by

the return instructions in TABLE 6-1.

Note – If you use the priv_ret_from_trap instruction to facilitate context

switching, software must ensure that the stack cache contents in the original context

are written back to the data cache.

6.2.4 Stack Cache Write Misses

When the IU has a stack cache miss on a write, it issues to the SMU the store address

and data. The SMU gives this request higher priority over spills and fills and holds

the pipe until the store has been issued to the data cache.

TABLE 6-1 OPTOPInstructions That Trigger Underflows

areturn freturn lreturn return return1

dreturn ireturn priv_ret_from_trap return0 return2
76 picoJava-II Microarchitecture Guide • March 1999

On a stack cache miss request, the SMU clears its pipe, issues the miss address, and

stores the miss data to the data cache.

6.3 Pipeline
TABLE 6-2 details the computations that take place in the pipeline for spills and fills.

6.4 Interface Signals
TABLE 6-3 and TABLE 6-4 define the SMU interfaces.

TABLE 6-2 Pipeline Actions for Spills and Fills

E Stage C Stage W Stage

Computes a new OPTOP. Determines overflow or

underflow.

Determines spill or fill.

Sends a data cache read request in a fill

or underflow and a data cache write

request in a spill or overflow.

Determines a new valid pointer.

TABLE 6-3 SMU Interface with the IU

Signal Type Description

smu_rf_addr <5:0> Output The stack cache address for reads and writes

iu_rf_dout <31:0> Input The spill data from the IU

smu_rf_din <31:0> Output The fill data from the SMU to the IU

smu_hold Output A stall of the pipeline data

iu_optop_in <31:0> Input iu_optop_c value at input of flop

iu_optop_int_we Input iu_optop_c write enable signal

iu_data_in <31:0> Input sc_bottom value from the IU for write_scbottom operations

iu_sbase_we Input Write enable signal for iu_data_in

smu_sbase <31:0> Output The updated SC_BOTTOMvalue

smu_sbase_we Output Write enable signal for smu_sbase

iu_pse_dre Input Dribbler enable bit from the PSRregister

iu_int Input An indication of an interrupt to the SMU

smu_we Input Write enable signal for writes to the stack register file

low_mark <5:0> Input Low watermark value from the PSRregister
Chapter 6 Stack Manager Unit (SMU) 77

high_mark <5:0> Input High watermark value from the PSRregister

smu_data_vld Input Valid DCU data

smu_st_c Input SMU store in C stage

iu_smu_flush Input A write to stack locations between addresses sb – 2 and sb + 2

ret_optop_update Input An update of the OPTOPbecause of return instructions.

iu_smiss Input An indication of an instruction store miss

iu_data <31:0> Input Instruction store miss data from the IU

iu_address <31:0> Input Instruction store miss address from the IU

smu_na_st Output A nonallocate store indication to the DCU

dcu_data Input Data from the D-Cache

TABLE 6-4 SMU Interface with the DCU

Signal Type Description

smu_addr <31:0> Output The address used for a data cache transaction

smu_data <31:0> Output The data for data cache writes

smu_ld Output A data cache load request during fills

smu_st Output A data cache store request during spills

smu_stall Input A stall for the next request due to a cache miss

TABLE 6-3 SMU Interface with the IU (Continued)

Signal Type Description
78 picoJava-II Microarchitecture Guide • March 1999

CHAPTER 7

Bus Interface Unit (BIU)

The Bus Interface Unit (BIU) implements the picoJava-II interface to the external

world. It generates requests to memory and I/O devices. However, the memory bus

is a dedicated bus between the picoJava-II core and the memory controller. Requests

to I/O devices go through the memory controller, which maintains an address map

of the entire system. Hence, the core is the only master on the memory bus and does

not have to arbitrate to use it.

This chapter contains the following sections:

■ Functionalities on page 79

■ Arbitration on page 80

■ Interfaces on page 81

■ Power Management on page 82

■ Interface Signals on page 83

7.1 Functionalities
The BIU contains the arbitration logic for internal requests and performs the

following tasks:

■ Generates read and write requests to memory

■ Provides acknowledgment to the instruction cache and data cache controllers so

they can sink data

■ Handles errors generated on the memory bus

FIGURE 7-1 is a block diagram of the BIU.
79

FIGURE 7-1 Bus Interface Unit (BIU)

7.2 Arbitration
FIGURE 7-2 shows the BIU arbitrator.

FIGURE 7-2 BIU Arbiter

The BIU arbitrates internal requests from the instruction cache and data cache and

generates an external request on the bus. It handles dribble requests from the data

cache as data cache requests.

From the cache

(Address and data)

To the memory bus

Memory bus request

Select

Cache requests

Mux
logic

Arbiter

pj_tv
Arbiter

pj_clk pj_reset

gnt

pj_ack

icu_req

icu_type

icu_size

dcu_req

dcu_type

dcu_size
80 picoJava-II Microarchitecture Guide • March 1999

The instruction cache and data cache controls ensure that only one instruction cache

request and one data cache request can be active.

The arbitration algorithm is as follows:

■ Data cache requests have a higher priority than instruction cache requests.

■ _type and _size indicate to the arbiter the number of acknowledgments to expect

for a transfer.

■ On an external reset (pj_reset), the arbiter resets its state machine, clearing all

pending requests, and becomes idle.

■ In back-to-back requests, the arbiter can initiate the second request in the next

clock after the first transfer is complete or after the last acknowledgment.

■ An error acknowledgment on a cycle terminates a transfer.

7.3 Interfaces
The BIU interfaces with the instruction cache and data cache controllers to the

external (memory) interface.

To request data from memory, the instruction cache or data cache controllers send a

request, along with such information as the request address, data, and size, to the

BIU. The BIU then arbitrates between the pending requests and initiates a transfer

on the memory bus.

The BIU acknowledges read cycles to the requesting controller (instruction cache or

data cache) so the DCU or ICU can latch the data. (See Chapter 9, External Interface,

for descriptions on the various acknowledgments.) In write cycles, the

acknowledgments act for flow control so the instruction cache and data cache

controllers do not generate new requests for pending ones.

If an error acknowledgment occurs on the data transfer, the BIU terminates the

current cycle and sends an error acknowledgment to the requesting controller, which

then ignores the data and takes the appropriate action. The error acknowledgment

can occur on any cycle. Any pending requests are initiated on the bus.

FIGURE 7-3 illustrates how the BIU interfaces with other units.
Chapter 7 Bus Interface Unit (BIU) 81

FIGURE 7-3 Bus Interface Unit (BIU) Interaction with Other Units

7.4 Power Management
Power management is inherently handled because the instruction cache and data

cache controllers stop generating requests to the BIU when they are in powerdown

mode.

dcu_req

icu_req

i
n
t
e
r
f
a
c
e

I-
Cache

a
n
d

D-
Cache

i
n
t
e
r
f
a
c
e

S
y
s
t
e
m

Grant

icu_size

dcu_size

/
2

pj_size

icu_type

icu_addr

dcu_addr

dcu_type
pj_type

/
4

pj_addr
/

32

Arbiter
FSM

To the ICU and the DCU

pj_ack

pj_tv

icu_datain , dcu_datain

pj_dataoutdcu_dataout

/ 2
82 picoJava-II Microarchitecture Guide • March 1999

7.5 Interface Signals
TABLE 7-1 and TABLE 7-2 define the BIU interface signals.

TABLE 7-1 BIU Interfaces with the Instruction Cache and the Data Cache

Signal Type Definition

icu_req Input A signal from the instruction cache that indicates a request

icu_addr <31:0> Input The physical address for an instruction cache request

icu_type <3:0> Input The type of an instruction cache transaction

icu_size <1:0> Input The size of an instruction cache transfer

biu_icu_ack <1:0> Output The bus acknowledgment for an instruction cache transfer

biu_data <31:0> Output Data delivered to the instruction cache or the data cache

from external device

dcu_req Input A signal from the data cache that indicates a request

dcu_addr <31:0> Input The physical address for a data cache request

dcu_type <3:0> Input The type of a data cache transaction

dcu_size <1:0> Input The size of a data cache transfer

dcu_dataout <31:0> Input The data cache data to be written to the external device

biu_dcu_ack <1:0> Output The bus acknowledgment for the data cache transfer

TABLE 7-2 BIU External Interface Signals

Signal Type Description

pj_clk Input Clock

pj_reset Input Reset

pj_address <31:0> Output The address of a data request

pj_data_out <31:0> Output Data written to an external device

pj_data_in <31:0> Input Data read from an external device

pj_tv Output Indication of a valid cycle on the bus

pj_size <1:0> Output The size of a transfer
Chapter 7 Bus Interface Unit (BIU) 83

pj_type <3:0> Output The type of a transfer

pj_ack <1:0> Input The bus acknowledgment for a transaction

pj_ale Output Enabling of the picoJava-II address latch

TABLE 7-2 BIU External Interface Signals (Continued)

Signal Type Description
84 picoJava-II Microarchitecture Guide • March 1999

CHAPTER 8

Powerdown, Clock, Reset, and
Scan Unit (PCSU)

The Powerdown, Clock, Reset, and Scan Unit (PCSU) controls the following:

■ The powerdown functions (see the next section, “Power Management”)

■ The internal clock functions (see Clock Management on page 88)

■ The system reset function (see Reset Management on page 88)

■ The scan and test functions (see Scan and Test Features on page 89)

In addition to the sections listed above, the chapter contains these sections:

■ Interface Signals on page 91

■ Debug and Trace Features on page 92

■ JTAG Support on page 93

8.1 Power Management
The picoJava-II core offers two low-power modes: normal mode and standby mode.

8.1.1 Normal Mode

In normal mode, the function units conserve power as much as possible. They

perform the following operations:

■ The Instruction Cache Unit (ICU) generates the powerdown signal

icram_powerdown while waiting for noncacheable or missed data. This signal

remains asserted until the ICU resumes an operation.

Alternately, the ICU can connect icram_powerdown to a powerdown pin of the

instruction cache RAM megacell.
85

■ The Data Cache Unit (DCU) generates the dcu_pwrdown signal if all of the

following conditions are met:

■ There are no DCU-related instructions in the E or C stage.

■ There are no active cache fill cycles.

■ The DCU is not replacing dirty lines.

■ The DCU is not executing the zero_line instruction.

■ There are no outstanding requests when a stalled instruction is present.

■ There are no pending stores.

The dcu_pwrdown signal remains asserted until the DCU resumes an operation.

8.1.2 Standby Mode

The core can assume standby mode by executing the powerdown instruction,

priv_powerdown . The PCSU then does the following:

1. Asserts the internal pcsu_powerdown signal to all function units and waits until
they acquiesce.

2. Enters standby mode and indicates the standby state to the system with the
pj_standby_out pin.

Protocol

FIGURE 8-1 shows the protocol for standby mode.

]

FIGURE 8-1 Protocol for the PCSU Standby Mode

ICU

DCU

IUdcu_in_powerdown

icu_in_powerdown

pcsu_powerdown
Control
logic

ready_to

2

3

4

clk

iu_powerdown_e

pj_nmi

pj_irl <3:0>

sync

_powerdown

pusu_wakeup

pj_standby_out
5

pj_reset

1 PCSU
86 picoJava-II Microarchitecture Guide • March 1999

Where:

➀ The core executes a powerdown instruction and causes assertion of

iu_powerdown_e .

➁ The PSCU asserts the pcsu_powerdown signal to the ICU, the DCU, and the IU.

See the next section for details.

➂ The ICU and the DCU assert the dcu_in_powerdown and icu_in_powerdown .

➃ When these signals are combined, the PCSU issues the ready_to_powerdown
signal to the control logic unit.

➄ The PCSU issues the pj_standby_out signal.

And, external to the core, pj_standby_out can be used to gate the clock.

Transition

Here is what takes place when the functional units enter standby mode.

■ The ICU enters standby mode after completing the pending accesses and after the

PCSU has asserted the pcsu_powerdown signal. It then asserts the

icu_in_powerdown signal to indicate to the PCSU that it is ready for the PCSU

to shut off the clock.

■ The DCU enters standby mode after the PCSU has asserted the pcsu_powerdown
signal, where it waits until there are no instructions in the E stage or beyond.

Finally, the DCU asserts the dcu_in_powerdown signal to the PCSU to indicate

that it is ready for the PCSU to shut off the clock.

Exit from Standby Mode

The core wakes up from standby mode if there is an interrupt on pj_irl or

pj_nmi . In this case, resumption of clocks to the core takes four clock cycles,

including the two clocks that are used in the synchronizer stage.

A reset turns off standby mode for the core.

Cache Flushing

It is not necessary to flush the internal cache as long as the caches are in static state

in standby mode. Otherwise, software must push out all dirty entries to external

memory before executing the powerdown instruction.
Chapter 8 Powerdown, Clock, Reset, and Scan Unit (PCSU) 87

Note – Enter standby mode through priv_powerdown .

8.2 Clock Management
The core runs off a single clock source, clk . There is no clock gating inside the core;

however, the pj_standby_out signal can be used to gate the clock to the core.

During the scan, clk serves as a scan clock after the sm signal is asserted. Muxing

the JTAG clock and the system clock into clk must be external to the core.

The core user implements a systemwide clock distribution scheme. The system-level

clock generator distributes clocks to the entire system at various frequencies.

The source that drives clk can be the JTAG clock, a PLL, or a systemwide clock

controller and is outside of the core.

8.3 Reset Management
When a reset operation occurs in the processor core, the registers inside the core

reset themselves. The RAM blocks in the stack cache, the instruction cache, and the

data cache remain unchanged. A reset operation causes the processor to start

executing the next instruction at address 0x00000000. For the values of the registers

after reset, refer to picoJava-II Programmer’s Reference Manual.

The core can reset itself in one of two ways:

■ If the pj_reset signal to the core is active, the processor enters reset mode on

the next rising edge of clk . A low-high transition is assumed to be asynchronous

to the clock; however, a high-low transition must meet the setup requirements for

clk , which must remain asserted for at least eight processor clocks before it is

deasserted. The processor may or may not latch this signal prior to using it.

Note – Reset is active high.

Note – As part of the reset trap sequence, we recommend that you invalidate the

caches explicitly with diagnostic write instructions prior to enabling them.
88 picoJava-II Microarchitecture Guide • March 1999

■ Software can also cause the processor to trigger a reset. The core supports the

priv_reset instruction, which executes a system-level reset sequence.

See Processor Interface Signals on page 100 for more information.

8.4 Scan and Test Features
It is difficult to control and observe the internals of a core and its I/O when it is

embedded within a larger design. Since the clk signal is accessible (a JTAG

controller can mux the JTAG clock into clk), the core provides the basic mux scan

facility that interfaces with three signals: si , so , and sm. A JTAG controller can

connect to the core with these signals.

Due to JTAG limitations, the scan chain is split. The input pins can be driven by the

JTAG TAP controller or directly by the tester. As shown in FIGURE 8-2, you must

supply the JTAG block for single-stepping core operations for debugging.
Chapter 8 Powerdown, Clock, Reset, and Scan Unit (PCSU) 89

FIGURE 8-2 Test-Related Vendor Issue

Since the core is a high-level RTL model, regular scan-based testing is difficult to

implement. However, the core contains a few BIST (built-in-self-test) hooks that

increase the observability of the core when it is embedded in a larger chip. These

features are selectable and are not present in the baseline core. The main emphasis is

on testing the core memory.

You can select an option to get a version of the picoJava-II netlist with an embedded

BIST controller, which tests the instruction and data caches.

Note – This step may reduce the core’s operating speed slightly, typically a mux

delay. Also, the BIST controller contains the hooks to interface to a JTAG controller,

which may already exist in the chip.

JTAG

Tclk

Interface logic

picoJava-II core

Implementation
with the core

so
si

sm

User-provided
IEEE 1149.1
JTAG controller

RAM-BIST
controller

Data Instruc-

• The core provides access to internal signals of the caches for BIST collars.
• The core provides a fully scannable design for JTAG/SCAN.

clk

cache cache
tion

Tdi Tms Trst Tdo
90 picoJava-II Microarchitecture Guide • March 1999

8.5 Interface Signals
TABLE 8-1, TABLE 8-2, and TABLE 8-3 define the PCSU signals.

TABLE 8-1 PCSU Interface with JTAG

Signal Type Description

clk Input The core clock, a mux output of the external system clock and scan clock

si Input Scan input

sm Input Scan mode enable

so Output Scan output

TABLE 8-2 PCSU Interface with Function Units

Signal Type Description

icu_in_powerdown Input The ICU is ready for standby mode

dcu_in_powerdown Input The DCU is ready for standby mode

iu_powerdown_e Input The IU executes priv_powerdown

pcsu_powerdown Output A standby mode request to the units

pj_irl_sync <3:0> Output Synchronized pj_irl to the IU

pj_nmi_sync Output Synchronized pj_nmi to the IU

TABLE 8-3 PCSU Interface with External Systems

Signal Type Description

pj_irl <3:0> Input Interrupt request lines

pj_nmi Input A nonmaskable interrupt

pj_reset Input Reset

pj_clk_out Output Free-running clk output to the external system

pj_standby_out Output Standby mode
Chapter 8 Powerdown, Clock, Reset, and Scan Unit (PCSU) 91

8.6 Debug and Trace Features
The core supports data breakpoint and instruction breakpoint traps. It contains three

32-bit registers that control the debug features:

■ BRK1A, which contains the instruction PC to be trapped on

■ BRK2A, which contains the mask bits for the comparison

■ BRK12C, which controls the various matches

For more details, see picoJava-II Programmer’s Reference Manual.

You cannot set breakpoints on the size of the data load or store. Rather, you must

account for them in the software that uses this feature. The address match for the

incoming address is based on the address in the breakpoint address registers and the

corresponding enable bits in the breakpoint control register.

The core provides control signals and PCaddress to the external system for you to

trace the instruction stream dynamically. You must provide a trace FIFO in which to

collect traces, along with a mechanism for reading the contents of the trace buffer.

See FIGURE 8-3.

FIGURE 8-3 Tracing the Instruction Flow Using the picoJava-II Core

Chip implementation
with the core

Trace FIFO

Dump trace buffer
to the ICE station

picoJava-II core
92 picoJava-II Microarchitecture Guide • March 1999

8.7 JTAG Support
The core supports IEEE 1149.1 JTAG scan capabilities through JTAG support pins in

the core.

The picoJava-II JTAG that supports the pin interface to the JTAG controller is:

The JTAG controller is not part of the core and must be supplied externally.

8.7.1 Full Internal Scan

All internal flip-flops are accessible in scan mode. The CPU state can be extracted

from the scan chain with JTAG. Programmer-visible registers are part of the scan

chain and are accessible through JTAG.

8.7.2 Breakpoints and External Halt Mode

Breakpoints can force the core into halt mode. To force halt mode, set the halt bit in

the breakpoint control register (BRK12C[31]); this setting stalls the CPU pipeline as

the clock continues to run.

The core input pin pj_halt forces the core into halt mode due to external events,

such as a logic analyzer. While asserted, the CPU remains in halt mode. Normal

operation resumes when pj_halt is deasserted.

To use breakpoints, the external agent must correctly set up the breakpoint control

register by turning on the halt bit, then run the program until the breakpoint hits.

The processor halts as soon as the breakpoint is reached.

To resume the processor, the external agent must issue a single pulse on the

pj_resume input port, which restarts the processor. If at that point the external

agent wants to single-step the processor, it must follow the pj_halt and

pj_inst_complete sequencing steps (see the following section). The pj_in_halt
signal is asserted by the core to indicate that the processor has reached the halt state

through the breakpoint, which was set by the user.

clk sm

si so
Chapter 8 Powerdown, Clock, Reset, and Scan Unit (PCSU) 93

The processor asserts the pj_brk1_sync and pj_brk2_sync signals if the halt

mode bit in the breakpoint control register is not set and the breakpoint is detected.

It does not halt in this case, however. The external agent must halt the processor

explicitly (for example, by stopping the clock) if it wants to do so or just observe the

event.

8.7.3 Single-Stepping

The JTAG controller can be designed to enter scan mode when the CPU state is in

halt mode by observing the pj_brk1_sync , pj_brk2_sync , and pj_in_halt
signals.

The JTAG controller must take complete control over the clock during single-

stepping. This control includes bringing the CPU out of the halt mode by inputting

the pj_resume pin signal into the core.

Single clock mode is the picoJava-II single-step scan mode. The JTAG controller

issues one single TCK clock, after which the scan chain is accessed. The

pj_inst_complete signal is a core output signal.

To single-step the processor, the user of the core must use the following two signals:

pj_halt and pj_inst_complete . The external agent must deassert the pj_halt
signal until it sees the pj_inst_complete signal going high. In the same cycle, the

external agent must also assert the pj_halt signal to prevent the next instruction

from completing. The external agent can then scan values or observe signals in the

core.

See FIGURE 8-4, FIGURE 8-5, and FIGURE 8-6 for details.

FIGURE 8-4 Single-Step Timing Through Scan Mode

Clk

Tck

scan_mode scan_mode
single step

Scan
94 picoJava-II Microarchitecture Guide • March 1999

FIGURE 8-5 Single-Stepping Using Breakpoints

FIGURE 8-6 Single-Stepping Using pj_halt

8.7.4 Nonscannable Arrays

Cache and tag arrays are accessible only through extended bytecode instructions.

You can use JTAG in single-step mode to extract cache contents by scanning in the

appropriate cache address and control signals, applying a clock, and scanning out

the flip-flops that contain the accessed data.

This method also applies to the stack cache.

pj_clk

pj_brk1_sync

BRK12C[31]

pj_halt

pj_in_halt

pj_resume

pj_inst_complete

Breakpoint triggers

Processor halts

Processor
resumes

Resume pulse

pj_clk

pj_halt

pj_hold

pj_complete

Processor halted
Processor running

Processor halted
Chapter 8 Powerdown, Clock, Reset, and Scan Unit (PCSU) 95

96 picoJava-II Microarchitecture Guide • March 1999

CHAPTER 9

External Interface

This chapter defines the interface between the picoJava-II core and all external

devices.

The core includes both the CPU (cpu.v) and the Bus Interface Unit (BIU). The BIU

is, however, an independent module to provide flexibility for merging with the

memory controller.

As reference for implementation, see the simulation environment (sys.v) for details

on how the CPU, the BIU, and the memory module are instantiated.

This chapter contains the following sections:

■ Core Interface Signals on page 97

■ picoJava-II Transactions on page 105

■ Endianness and Cacheability on page 111

■ Customizable Features on page 111

9.1 Core Interface Signals
The core interface supports three types of signals:

■ Processor Interface Signals (see page 100)

■ Memory Interface Signals (see page 101)

■ Trace and Debug Signals (see page 103)

FIGURE 9-1 illustrates the picoJava-II external interface and the three types of signals.
97

FIGURE 9-1 The picoJava-II External Interface

The triad R0, R1, or R2 denotes the timing requirement for each of the core interface

signals.

■ R0 is a signal from a flip-flop.

■ R1 is a signal generated during the first phase of clk .

■ R2 is a signal generated during the second phase of clk .

TABLE 9-1 shows the core interface signals, the equivalent gate delays, the signal type,

the R number, whether a signal is synchronous or asynchronous, and the signal

definitions.

TABLE 9-1 Interface Signals

Signal Delay 1 Type R No. A/S Definition

reset_l 5 Setup R1 S Reset and startup of the processor at address 0x00000000

pj_reset_out 2 Valid R2 S Execution of the reset extended bytecode

clk - In R0 CLK The core clock

pj_clk_out * Valid R1 S The picoJava-II clock to external interfaces

reset_l

32

2

32

picoJava-II core

pj_data_in <31:0>

pj_addr <29:0>

pj_type <3:0>

pj_size <1:0>

pj_ack <1:0>

32

pj_tv

2

4

pj_no_fpu

clk

pj_standby_out

pj_irl <3:0>

sm

so

pj_clk_out

pj_nmi

si

4

Memory interface

Processor interface

Trace and debug interface

pj_reset_out

pj_boot8

pj_su

pj_ale

pj_halt

pj_resume

pj_brk1_sync

pj_brk2_sync

pj_in_halt

pj_inst_complete

pj_data_out <31:0>
98 picoJava-II Microarchitecture Guide • March 1999

1The number is in terms of equivalent two-input NAND gate delays.

pj_irl <3:0> - In A Interrupt of exception signals

pj_nmi - In A Nonmaskable interrupt input to the core

pj_boot8 - Static R0 S Size control of instruction cache fetches

pj_standby_out 4 Valid R1 S Notification to the system that the processor is in standby mode

pj_no_fpu - Static R0 S Disabling of the Floating Point Unit (FPU)

so 2 Valid R0 S Basic scan facility

sm 5 Setup R1 S Switch of flip-flops in the core to serial shift

si 3 Setup R1 S Input to the processor core scan chain

pj_data_in <31:0> 5 Setup R1 S Data reads

pj_data_out <31:0> 4 Valid R1 S Data writes

pj_addr <31:0> 10 Valid R1 S Interfaces with nonmultiplexed 32-bit address bus

pj_size <1:0> 6 Valid R1 S The size of the requested data

pj_type <3:0> 6 Valid R1 S The transaction type requested by the Integer Unit

pj_tv 5 Valid R1 S Assertion to start new transaction to the memory controller

pj_ack <1:0> 12 Setup R0 S Indication that data are driving in the same cycle on

pj_data_in

pj_ale 6 Valid R0 S Enabling of address latching

pj_halt 2 Setup R0 S Termination of instruction fetches

pj_resume 2 Setup R0 S Resumption of instruction fetches

pj_brk1_sync 10 Valid R2 S Detection of Breakpoint 1

pj_brk2_sync 10 Valid R2 S Detection of Breakpoint 2

pj_in_halt 1 Valid R0 S The processor is in halt mode (not fetching instructions).

pj_inst_complete 10 Valid R2 S Retrieval of an instruction (when this signal is high)

pj_su 0 Valid R0 S The processor is in supervisor mode

TABLE 9-1 Interface Signals (Continued)

Signal Delay 1 Type R No. A/S Definition
Chapter 9 External Interface 99

9.1.1 Processor Interface Signals

The processor interface signals are:

■ reset_l (input) [R1] — An input to the core. A low-to-high transition on this pin

resets the processor and starts the processor at address 0x00000000. The low-high

transition is asynchronous to the clock, but the high-low transition should be set

up to the clk signal. The processor can latch this signal prior to its use, which

must remain asserted for at least eight processor clocks before it is deasserted.

■ pj_reset_out (output) [R2] — An output from the core. A low-to-high

transition on this signal indicates that the processor has executed the reset

extended bytecode. The core can use this signal to execute a system-level reset

sequence.

The core asserts this signal for only one clock on encountering priv_reset . The

external agent must register it in time and reset the core with the reset_l signal.

■ clk (input) [R0] — A single clock source. In case of a need to increase the core

frequency, decouple it from the system frequency at the memory controller

interface. This step makes the core easy to design (no synchronizers) and avoids

the synchronization penalty for cores, which run in lock-step with a high-speed

memory clock. If necessary, the memory controller can use a separate clock. (The

memory controller can use wait state pins as input to accommodate DRAM access

variations, but the pins are not an input to the core.)

■ pj_clk_out (output) [R1] — The core clock to the external interface. This signal

is necessary during powerdown when the core stops the internal clock to the

system, but keeps the pj_clk_out clock running. Use this signal to refresh the

DRAMs, or leave it unconnected.

■ pj_irl <3:0> (input) — Interrupt signals to the core, which latches these

asynchronous signals with a synchronizer. A system that is based on the core can

selectively disable or mask the input combinations by setting the appropriate bits

in the core status register. A nonmaskable interrupt (pj_nmi), which consists of

asynchronous pins, inputs separately to the core.

To generate an interrupt, the system must assert the relevant input until the

processor responds by jumping to the addressed location and starts execution.

The interrupt controller register that generates the interrupt must be writable

from the core.

See picoJava-II Programmer’s Reference Manual for the exception vectors and their

addresses and priorities. All these interrupts are maskable in two ways: by setting

the PSR.PIL bit to the proper value or by setting the PSR.IE bit to 0.

■ pj_nmi (input) — An asynchronous signal and the only nonmaskable interrupt

input to the core. The timing and behavior are similar to those of the

pj_irl <3:0> lines, except that this is a nonmaskable interrupt. The trap type

value is 0x30. Disable this interrupt by setting the PSR.IE bit to 0.
100 picoJava-II Microarchitecture Guide • March 1999

■ pj_boot8 (input) [R0] — A signal that controls the instruction fetch mode during

bootup and allows the system designer to interface with the core to an 8-bit boot

PROM interface. Setting this bit to high fetches the instruction in bytes. The

location of the byte on pj_data_in <31:0> is pj_data_in <31:24>. This pin

should not change its value as reflected in the PSRonce the processor has come

out of reset. Writing 0 to the PSR.BM8 bit clears the bit, taking it out of the 8-bit

boot mode.

■ pj_su (output) [R0] — An output from the core, this signal indicates the privilege

level of the processor. A high setting indicates that the processor is in supervisor

mode; otherwise, it is in user mode.

■ pj_standby_out (output) [R1] — A signal for the standby mode. The system

can use this signal to power down other units outside the core. When the core

enters powerdown mode due to execution of a powerdown instruction, it asserts

the pj_standby_out signal.

■ pj_no_fpu (input) [R0] — A signal that disables the internal FPU of the core. It

can reduce the area and power in certain implementations. The value of this pin,

as reflected in the processor status register, should not change once the processor

has come out of reset.

If the clk signal is accessible, the core can provide basic scan facility with the

three other signals: si , so , and sm. A JTAG controller connects to the core with

these signals.

■ so (output) [R0] — With this signal, the scan chain is split due to JTAG

limitations. The tester or an external JTAG test access port control can drive the

input pins.

■ sm (input) [R1] — This signal switches the scannable flip-flops in the core into a

serial shift register.

■ si (input) [R1] — This signal is the input to the scan chain of the processor core.

9.1.2 Memory Interface Signals

The memory interface signals are:

■ pj_data_in <31:0> (input) [R1] — A 32-bit wide, unidirectional data bus to the

core uses for read-type transactions. Typically, the memory controller drives this

bus and arbitrates for more than two masters since core interface allows the

memory controller to define multiple bus masters. Data on this bus are valid

when the bus drive (usually the memory controller) asserts the signal

pj_ack <1:0>.

■ pj_data_out <31:0> (output) [R1] — A 32-bit wide, unidirectional data bus for

the write-type transaction.

■ pj_addr <29:0> (output) [R1] — A 30-bit address bus for the core memory

interface.
Chapter 9 External Interface 101

■ pj_size <1:0> (output) [R1] — A signal that indicates the data size in the request

phase, as defined in TABLE 9-2. picoJava-II Transactions on page 105 explains the

request phase.

Note – When pj_type equals 2 and pj_size equals 0, the instruction fetch is in 8-

bit boot mode, a mode not allowed with the instruction cache on.

■ pj_type <3:0> (output) [R1] — A signal that indicates the data type requested by

the IU in the request phase, as defined in TABLE 9-3. picoJava-II Transactions on page

105 explains the request phase.

1This field is irrelevant.

■ pj_tv (output) [R1] — A signal the core asserts to start a new transaction to the

memory controller. This signal also indicates that the pj_addr , pj_type , and

pj_size signals are valid. The core keeps this signal on until the cycle in which

it samples the pj_ack signal is active.

TABLE 9-2 Transaction Sizes

pj_size <1:0> Transaction Size

0x0 1 byte

0x1 2 bytes (half-word)

0x2 4 bytes (word)

0x3 Reserved

TABLE 9-3 Transaction Types

pj_type <3:0> Transaction Type
Transaction Size
pj_size <1:0>

0x2 Noncached instruction fetch request 0x0 - 8-bit boot,
0x2 - 32-bit boot

0x0 Instruction cache fill request (16 bytes) See footnote 1

0x4 Data cache fill request (16 bytes) See footnote 1

0x5 Data cache writeback See footnote 1

0x6 Noncached data cache load request 0x0, 0x1, 0x2

0x7 Noncached data cache store request 0x0, 0x1, 0x2

0xc SMU-initiated cache fill request See footnote 1

0xd SMU-initiated writeback See footnote 1

0xe Noncacheable SMU load request 0x2

0xf Noncacheable SMU store request 0x2
102 picoJava-II Microarchitecture Guide • March 1999

■ pj_ale (output) [R1] — A signal that stands for “address latch enable,” which

the core asserts to start a new transaction to the memory controller. This signal

also indicates that the pj_addr , pj_type , and pj_size signals are valid. A low

pulse on this signal indicates that the memory controller can latch the pj_addr ,

pj_type , and pj_size signals in that cycle.

■ pj_ack <1:0> (input) [R0] — A signal that the memory controller uses to indicate

to the core that data are driven in the same cycle as that on pj_data_in <31:0> in

the case of a read cycle.

The core must understand how many ack s follow and then wait for the requisite

number of ack s. In a write cycle, this signal indicates that the core should switch

the data bus to the next portion of a burst write request. See TABLE 9-4 for the four

types of ack s.

There is no retry mechanism. Since the core uses pj_ack as a timing-critical

signal in many places directly without prior registration, it should drive it from a

flip-flop in the external system. The memory controller can indicate an error ack
in any part of a burst request.

Note – When an error occurs in a burst transaction, the memory controller

terminates the transaction.

9.1.3 Trace and Debug Signals

Following are the trace and debug signals.

■ pj_halt (input) [R0] — An external agent uses this signal to stop the processor

from fetching instructions.

■ pj_resume (input) [R0] — An external agent uses this signal to start the

processor in fetching instructions.

■ pj_brk1_sync (output) [R2] — An external agent uses this signal to indicate that

the core has detected breakpoint1 .

■ pj_brk2_sync (output) [R2] — An external agent uses this signal to indicate that

the core has detected breakpoint2 .

TABLE 9-4 ack s

Operation pj_ack <1:0>

Idle cycle 0x0

Valid data 0x1

ERROR1(memory error) 0x2

ERROR2(I/O error) 0x3
Chapter 9 External Interface 103

■ pj_in_halt (output) [R0 — An external agent uses this signal to indicate that

the processor is in halt mode and is not fetching instructions.

■ pj_inst_complete (output) [R2] — An external agent uses this signal to

indicate the retrieval of an instruction.

FIGURE 9-2 is an example of a system based on the core.

FIGURE 9-2 An Example of a System Based on the picoJava-II Core

DRAM

MEMC

I/O Bus, such as PCI

32 + 4 + 2

reset _l, pj_clk_out , pj_irl , pj_no_fpu
sm, si , so , clk , pj_nmi

pj_data_in <31:00>

Core interface signals

32

arb

pj_tv

Memory interface signals

pj_ack <1:0>

RAS/CAS

= Datapath

= Address path

2

PROM

Memory

R/W

User-defined interface

Debug interface signals

I/O

pj_data_out <31:00>32

+ pj_type + pj_size}
{pj_addr <29:0>

picoJava-II core
104 picoJava-II Microarchitecture Guide • March 1999

9.2 picoJava-II Transactions
The core can interface with various memory controllers, such as SDRAM, EDO,

SRAM, DRAM, and FLASH, as well as I/O controllers like PCI, USB, and PCMCIA.

To achieve this flexibility without loss in memory latency, the core memory interface

is a virtual memory controller.

There are two main transaction types. See Read-Type Transactions and Write-Type
Transactions on page 108.

Note – There is no provision for the memory controller to snoop into the core to

probe the caches or to access the internal registers.

The transaction protocol, one of request and accept, eases the design of the memory

controller, which can be done by a third party. This protocol also achieves the

minimum possible latency for reads and enables the memory controller to add more

ports to itself while supporting a high-bandwidth memory, such as synchronous

DRAMs.

The memory bus is a 32-bit wide bus with sub-32-bit accesses in big-endian

ordering. There are no byte-enables; instead, the core exports the address and the

access size. Sub-32-bit devices must incorporate swap logic at their end for reads and

writes. Accesses to devices greater than 32-bits must also buffer and route the data

to the proper memory module. The picoJava-II bus is optimized for 32-bit transfers.

9.2.1 Boot Mode

During bootup, the pj_boot8 signal controls the instruction fetch mode and allows

the software to interface with the core with an 8-bit boot PROM interface. Setting

this signal to high at boot time causes instruction fetches to be in single-byte sizes, as

reflected in the PSR.BM8bit of the PSR.

While the processor is in boot mode, the location of the byte on pj_data_in <31:0>

is pj_data_in <31:24>. This signal should not change its value (as reflected in the

PSR) once the processor comes out of reset.

To perform boot mode correctly, do the following:

1. Use the priv_write_psr instruction after the branch to the nonboot memory
location has occurred; the execution of this instruction disables the boot mode.

2. Issue priv_read_psr prior to priv_write_psr if you wish to execute
priv_write_psr without modifying the contents.
Chapter 9 External Interface 105

3. Start the pair at word boundary.

4. Insert four nops after priv_write_psr to recover from boot mode to word access.

5. Tie the pj_boot8 pin to high.

CODE EXAMPLE 9-1 summarizes the above steps.

CODE EXAMPLE 9-1 Sample Boot Sequence Code

9.2.2 Read-Type Transactions

The instruction cache, data cache, and the SMU use read-type transactions to read

from either the memory or from I/O space and further classify these transactions,

depending on the pj_type <2:0> pins of the core, as shown in TABLE 9-3 on page 102.

FIGURE 9-1 shows a read-type transaction.

(8-bit PROM)
 Boot_Start: Instruction_1
 Instruction_2
 ...
 goto Application // Application program must
 // begin at word boundary.

(Nonboot memory)
Application: // At word boundary

priv_read_reg_psr // To avoid modifying PSR, push
 // its content.

 sipush 0xBFFF // Zero bit 14 (PSR.BM8).
 iand
 priv_write_reg_psr // Disable boot mode by

 // popping the content to PSR.

 nop // Insert four nops to recover
 nop // from boot mode to word access.
 nop // Word access.
 nop
106 picoJava-II Microarchitecture Guide • March 1999

FIGURE 9-3 A Cached Read Transaction Followed by a Noncached Read Transaction

In the request phase of the transaction, the core makes a request to the memory

controller by asserting the pj_tv signal along with the pj_type , pj_size , and

pj_addr signals. It then waits for acceptance from the memory controller and

samples its pj_ack signal for the timing of the acceptance.

Assertion of the pj_ack signal to the core indicates that the memory controller has

accepted the transaction from the picoJava-II port for a write-type instruction.

In a read-type transaction, the core waits until it detects the assertion of the

pj_ack <1:0> signals after an arbitrary length of clock cycles. Afterward, if there are

no outstanding transactions, deassertion of the pj_tv signal occurs.

Note – On a burst-type request, pj_tv need not be deasserted if there is a pending

request.

Continuous assertion of pj_tv occurs on back-to-back transactions on the same

device, but it must put the values for the next transaction on the pj_type , pj_size ,

and pj_addr lines. pj_ale has a pulse that indicates the start of a new transaction.

Next, the memory controller responds to the data by driving the bus pj_data_in in

the same cycles as the assertion of the pj_ack <1:0> signals. The pj_ack signal is a

type R0 signal. The read-type transaction is now complete and the next transaction

can begin immediately.

CLK
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

pj_tv

 pj_addr

 pj_type 0x0

 pj_size 0x3

 pj_ack 0x10x10x1

 pj_data_in D0D0 D1

pj_data_out

pj_ale

Read-type transaction 1 Read-type transaction 2

Can be spaced any number of clocks

Flow control and arbitration signals

0x1 0x1

D2 D3
Chapter 9 External Interface 107

The arrows in FIGURE 9-3 indicate the transactions. Also shown in this figure are the

cause-and-effect relationships between the read-type transaction signals at various

times.

Note – Continuous assertion of the pj_tv signal occurs on back-to-back pending

transactions from different devices. No deassertion takes place.

9.2.3 Write-Type Transactions

The data cache and the SMU use write-type transactions to store data to memory or

to I/O space and further classify these transactions, depending on the

pj_type <2:0> pins of the core, as shown in TABLE 9-3 on page 102.

FIGURE 9-4 shows a write-type transaction.

FIGURE 9-4 A Cached Write Transaction Followed by a Noncached Write Transaction

The core makes a request to the memory controller by asserting the pj_tv ,
pj_type , pj_size , pj_data_out, and pj_addr signals. After the pj_ack signal

to the core is active, the core switches the data on the pj_data_out bus in the case

of a burst transaction. (The memory controller uses the pj_ack signal for flow

control.) No turnaround time is necessary because the data bus is a point-to-point

bus, not a tri-state bus.

CLK
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

pj_tv

pj_ale

 pj_addr

 pj_type 0x5 0x7

 pj_size 0x1 0x2

 pj_ack 0x10x10x1

pj_data_out D0 D3 D0

pj_data_in
Can be any number of clocks from 1-n.

Maximum

Write-type transaction 1 Write-type transaction 2

Can be any number of clocks

pj_tv to be deasserted one clock after accept (pj_ack) is sampled active.

0x1 0x1

D2D1
108 picoJava-II Microarchitecture Guide • March 1999

With this scheme, the core achieves near-optimal read-write bandwidth. The core

bus is an on-chip bus only, hence these simplifications.

Note – Continuous assertion of the pj_tv signal occurs on back-to-back pending

transactions from different devices. No deassertion takes place.

The memory controller scans pj_size and returns only one ack to fulfill the

original load-store request. It ignores the pj_type field for this transaction. In all

cases, as soon as a transaction is complete, a new one starts, thus utilizing almost the

full bandwidth of the 32-bit data bus.

FIGURE 9-5, FIGURE 9-6, FIGURE 9-7 illustrate three types of write transactions.

FIGURE 9-5 A Cached Load Miss

CLK

pj_tv

 pj_addr 00000034

 pj_size 2

 pj_type 4

 pj_data_out

 pj_data_in 8* 8* 8* 8*

 pj_ack 0 0 0 01 1 1 1

 pj_irl 0

 reset_l

pj_standy_out
Chapter 9 External Interface 109

FIGURE 9-6 A Noncached Write

FIGURE 9-7 A Writeback and Cached Read Miss

CLK

pj_tv

 pj_addr 00000000 00000004

 pj_size 0 12

 pj_type 0 7

 pj_data_out 89ABCE00 0000CE44

 pj_data_in

 pj_ack 010

 pj_irl 0

 1eyc

pj_standby_out

CLK

pj_tv

 pj_addr 0* 00000050 00000030

 pj_size 2

 pj_type 5 4

 pj_data_out * 89ABD350 89ABD361 89ABD372 89ABD383

 pj_data_in * * *

 pj_ack 1 1 1 1 1 10 0 0 0 0 1 100

 pj_irl 0

 reset_l

pj_standby_out
110 picoJava-II Microarchitecture Guide • March 1999

9.3 Endianness and Cacheability
The core supports little-endian and big-endian transactions as well as cacheable and

noncacheable transactions with either of the following:

■ Special instructions

■ Normal instructions that access a special address space

For details, refer to picoJava-II Programmer’s Reference Manual.

9.4 Customizable Features
You can use the core in various applications, from network computers to low-power

embedded mechanisms. The core is flexible and can meet the needs of different

designs.

FIGURE 9-8 shows an example.

FIGURE 9-8 An Example of How To Use the picoJava-II Core

picoJava-II core
pic

oJa
va-

II
 c
hipMemory

control

I/O core
(USB and

ROM

Interrupt timers Power
management

C
lo

ck
Serial portsE

xt
er

na
lD

R
A

M

so on)
Chapter 9 External Interface 111

During implementation, you can configure the following three features of the core:

■ Instruction cache sizes: 0 Kbytes, 1 Kbytes, 2 Kbytes, 4 Kbytes, 8 Kbytes, and 16

Kbytes.

■ Data cache sizes: 0 Kbytes, 1 Kbytes, two Kbytes, 4 Kbytes, 8 Kbytes, and 16

Kbytes.

■ FPU: You can include or exclude the FPU from your design. If you exclude the

FPU, you must use software trap handlers to emulate floating-point instructions.

This requirement allows a modular design for the core—you can add or remove

modules and save chip area, power, or both.
112 picoJava-II Microarchitecture Guide • March 1999

CHAPTER 10

Traps and Interrupts

This chapter describes the trap and interrupt control mechanism in the picoJava-II

core. It contains the following sections:

■ Definitions on page 113

■ Traps on page 114

■ Trap Control on page 114

■ Interrupts on page 114

■ Interrupt Control on page 116

10.1 Definitions
Traps and interrupts are vectored transfers of control to the supervisor state through

a trap table. The trap table’s base address resides in the TRAPBASEregister.

The offset within the trap table to which TRAPBASEpoints is determined by the trap

type (TT). For details, see picoJava-II Programmer’s Reference Manual.

When the core takes a trap, it creates a trap frame in which to save its current state.

It then branches to the location of the trap handler and resumes execution. Trap

execution continues on the stack and, when complete, returns to the interrupted

method.
113

10.2 Traps
Three types of events can interrupt an operation in the core:

■ Emulation traps, which are a subset of the Java virtual machine instructions (see

Appendix A, Opcodes, in picoJava-II Programmer’s Reference Manual)

■ Traps that are generated during execution of instructions, such as runtime errors,

exceptions, and hardware errors

■ Interrupts that occur outside of the core

10.3 Trap Control
All traps are resolved and executed by the Integer Unit (IU) in the C stage of the

pipeline. The IU prioritizes trap conditions, including trapping instructions,

exceptions, and interrupts.

If multiple trap conditions occur in the same clock cycle, the core takes only the

highest-priority trap. Priority is not relevant for trap conditions that occur at

different times.

Since there is a clean interface through the stack mechanism for trap invocations, the

core supports nested trap levels. There is no hardware limit to the number of nested

levels; however, software must keep track of these levels.

10.4 Interrupts
There are two types of external interrupts: nonmaskable interrupts and maskable

interrupts.

All interrupts are taken in the C stage of the pipeline. The PCof the next unexecuted

instruction is saved on the stack.
114 picoJava-II Microarchitecture Guide • March 1999

10.4.1 Nonmaskable Interrupts (NMI)

A nonmaskable interrupt (pj_nmi) signals an event requiring immediate service.

This interrupt can be disabled by setting the IE bit to 0; however, the core ignores

the PIL check when servicing this interrupt. From the time the NMI pulse begins

until the NMI handler is activated, the core ignores all other pulses on the NMI line.

Once the core calls the NMI handler, another NMI can occur.

The core creates a trap frame to handle the NMI, the priority for which is higher

than that of the highest maskable interrupt. It generates a trap frame similar to that

of a trap call. If the software needs to access additional machine registers, it must use

the extended bytecode instructions.

Using the NMI handler for debugging purposes to re-create a failure depends on the

implementation. Optionally, the NMI handler can generate a reset with the

priv_reset instruction.

Note – NMI is a level-sensitive, asynchronous signal. The period in which the core

accepts NMI is directly related to the time in which the IE bit is not asserted.

10.4.2 Maskable Interrupts

A level-sensitive, encoded external maskable interrupt is presented to the core on

the pj_irl <3:0> signal; the core accepts it if PSR.IE =1 and IRL > PSR.PIL .

Interrupts can occur when the core is in either user mode or privilege mode.

When the core invokes a trap, the PSR.IE bit is set to 0, disabling further interrupts.

The processor then performs the normal operations for a trap, that is, it sets up the

trap frame, enters privilege mode, fetches the location of the interrupt handler from

the trap table, and jumps to the first instruction of the interrupt handler. The

interrupt handler can turn the PSR.IE bit back on if it wishes to enable further

interrupts.

Interrupt servicing is a functionality of the software-defined interrupt service

routines.
Chapter 10 Traps and Interrupts 115

10.5 Interrupt Control
Interrupts conceptually enter the pipeline in the D stage of the pipeline, which the

IU resolves and executes in the C stage like all other traps. The values of the

Interrupt Enable (IE) and the Processor Interrupt Level (PIL) bits in the PSR
determine if an interrupt has occurred.

An interrupt occurs if the following conditions are met:

■ The PSR.IE bit is set to 1. When it is set to 0, the core ignores all interrupts,

including the nonmaskable interrupt on the pj_nmi signal.

■ With PSR.IE = 1, the interrupt request level (IRL) on the pj_irl signals is

greater than the value in the PSR.PIL field, or the pj_nmi signal is asserted.

FIGURE 10-1 illustrates the mechanism for interrupt control.

FIGURE 10-1 Interrupt Control Mechanism

AND

AND

OR

Compare

IE

PIL

pj_nmi

Encoded IRL
(pj_irl)

PSR

To IU

Priority
encoder

All other
synchronous
and asynchronous traps

>

116 picoJava-II Microarchitecture Guide • March 1999

CHAPTER 11

Megacells

The picoJava-II core has several megacells that you can customize for improved

timing. This chapter describes the specifications for these megacells.

The timing statistics in this chapter assume a 200-MHz core with a 16-Kbyte data

cache and a 16-Kbyte instruction cache. You can derive from these statistics

corresponding timing statistics for other frequency and cache sizes.

This chapter contains the following sections:

■ Instruction Cache Data RAM on page 117

■ Instruction Cache Tag RAM on page 125

■ Data Cache Data RAM on page 134

■ Data Cache Tag RAM on page 141

■ Stack Cache RAM on page 150

■ Floating Point Unit (FPU) ROM on page 154

■ Integer Unit (IU) ROM on page 161

11.1 Instruction Cache Data RAM
The instruction cache (icram) is logically organized as 2,048 entries by 64 bits. The

cache line size is four words.

An 11-bit address bus (icu_addr) accesses the RAM for reading or writing data. All

input to the RAM is internally latched to provide synchronous reads and writes.

In any given cycle, 64 bits of data (icram_dout) are read out or 32 bits of input data

(icu_din) are written in from or to the cache. A 2-bit write enable (icu_ram_we)

provides control to write data into the upper 32 bits or lower 32 bits position. Input

for built-in self-test (bist*) is required at the pinout. A test mode pin (test_mode)

is used for the cache to select taking either the normal data, address, and enable

input (icu_din , icu_addr , and icu_ram_we) or BIST address, data, and enable
117

input (bist_icu_din , bist_icu_addr , and bist_icu_ram_we). The enable pin

(enable) puts the instruction cache in disable mode when it is at low to conserve

dynamic power consumption.

When the instruction cache is disabled, the value of output data (icram_dout)

should remain unchanged as before regardless of address input and write enable

changes. All input should be synchronously latched at the block boundary.

TABLE 11-1 lists and describes test_mode and the enable signals.

FIGURE 11-1 illustrates the instruction cache block.

TABLE 11-1 test_mode and Enable Signals (Instruction Cache Data RAM)

Pin enable = 0 enable = 1

test_mode = 0 The instruction cache is disabled.

The value of the output data is

maintained as before regardless of

the address input and write enable

changes.

The instruction cache is enabled. The

normal address, data, and write enable

input (icu_addr , icu_din , and

icu_ram_we) are passed to the RAM.

test_mode = 1 Same as above. The instruction cache is enabled and

enters built-in test mode. The BIST

address, data, and write enable input

(bist_icu_addr , bist_icu_din , and

bist_icu_ram_we) are passed to the

RAM.
118 picoJava-II Microarchitecture Guide • March 1999

FIGURE 11-1 Instruction Cache Block (icram)

icu_din <31:0>

RAM
2,048 x 64

clk

64

322

icu_ram_we <1:0>

icu_addr <13:3>

enable

icram_dout <63:0>

(2.0 ns)

11

11
bist_icu_addr <13:3>

64

bist_enable

2

32

bist_icu_ram_we <1:0>

bist_icu_din <31:0>

test_mode
Chapter 11 Megacells 119

11.1.1 I/O Pins

TABLE 11-2 lists and describes the I/O pins.

TABLE 11-2 Input Pins (Instruction Cache Data RAM)

Pin Description

clk Clock input pin.

icu_addr <13:3> Instruction cache address input. The word at the location

addressed by icu_addr is accessed for either reading or writing

its contents. icu_addr is 11 bits wide.

icu_din <31:0> Instruction cache data input. The value of icu_din is written to

the higher or lower 32 bits of the location addressed by the

contents of icu_addr , depending on the value of

icu_ram_we <1:0>.
icu_ram_we <1:0> Instruction cache RAM write enable. The RAM performs a read-

write from or to the location addressed by icu_addr , depending

on the value of icu_ram_we <1:0>. Read access is performed when

icu_ram_we <1:0> = 00. When icu_ram_we <1:0> = 10, the value

of icu_din is written to the higher 32 bits of the location addressed

by the contents of icu_addr . When icu_ram_we <1:0> = 01, the

value of icu_din is written to the lower 32 bits of the location

addressed by the contents of icu_addr .

enable Megacell enable. This signal enables or disables the RAM to

conserve dynamic power consumption when it is not being used.

When enable = 0, the RAM is disabled and the value of all data

output (icram_dout <63:0>) is maintained as it was before

regardless of address input and write enable changes. Normal

operations are performed when enable = 1.

bist_icu_addr <13:3> The instruction cache address input for built-in self-test (BIST). The

word at the location addressed by bist_icu_addr is accessed for

either reading or writing its contents.

bist_icu_din <31:0> The instruction cache data input for BIST. The value of

bist_icu_din is written to the higher or lower 32 bits of the

location addressed by the contents of bist_icu_addr , depending

on the value of bist_icu_ram_we <1:0>.
120 picoJava-II Microarchitecture Guide • March 1999

The output pin is icram_dout <63:0>, which is accessed using the address

icu_addr (or bist_icu_addr if test_mode = 1).

11.1.2 I/O Signals

TABLE 11-3 describes the input and output pins of the instruction cache (icram) and

their input loading and output drive strengths.

bist_icu_ram_we <1:0> The instruction cache RAM write enable for BIST. The RAM

performs a read-write from or to the location addressed by

bist_icu_addr , depending on the value of

bist_icu_ram_we <1:0>. Read access is performed when

bist_icu_ram_we <1:0> = 00. When bist_icu_ram_we <1:0> =

10, the value of bist_icu_din is written to the higher 32 bits of

the location addressed by the contents of bist_icu_addr . When

bist_icu_ram_we <1:0> = 01, the value of bist_icu_din is

written to the lower 32 bits of the location addressed by the

contents of bist_icu_addr .

bist_enable Megacell enable pin for BIST. When bist_enable = 0, the RAM is

disabled and the value of all data output (icram_dout <63:0>) is

maintained as before regardless of address input and write enable

changes. Normal operations are performed when bist_enable =

1.

test_mode Megacell test mode enable pin. When this pin is high, the megacell

test mode is entered and BIST address, data, and write enable

input (bist_icu_addr , bist_icu_din and

bist_icu_ram_we) are taken to the RAM. The normal data,

address, and write enable input (icu_din , icu_addr , and

icu_ram_we) are passed to the RAM when this pin is low.

TABLE 11-3 I/O Signals (Instruction Cache Data RAM)

Signal Description I/O
Cin/Cload
200 MHz

clk Clock input pin Input 0.3 pf

icu_addr <13:3> Address input for read/write access Input 0.02 pf

icu_din <31:0> Data input for write access Input 0.02 pf

icu_ram_we <1:0> Instruction cache RAM write enable Input 0.02 pf

enable RAM enable Input 0.02 pf

TABLE 11-2 Input Pins (Instruction Cache Data RAM) (Continued)

Pin Description
Chapter 11 Megacells 121

11.1.3 Timing

The specifications are listed below and in TABLE 11-4.

bist_icu_addr <13:3> Address input for BIST Input 0.02 pf

bist_icu_din <31:0> Data input for BIST Input 0.02 pf

bist_icu_ram_we <1:0> Instruction cache RAM write enable for BIST Input 0.02 pf

bist_enable RAM enable for BIST Input 0.02 pf

test_mode Megacell test mode enable Input 0.02 pf

icram_dout <63:0> Data output Output 0.35 pf

Process Slow

Temperature 105 degrees C junction

Operating voltage 2.20v

TABLE 11-4 Timing Specifications (Instruction Cache Data RAM)

Symbol Description Condition
Spec
200 MHz

Tcyc clk cycle time Minimum 4.9 ns

Tpwh clk high- level pulse width Minimum 2.1 ns

Tpwl clk low-level pulse width Minimum 2.1 ns

Tads icu_addr setup to clk high Minimum 0.5 ns

Tadh icu_addr hold from clk high Minimum 0.3 ns

Twes icu_ram_we setup to clk high Minimum 0.3 ns

Tweh icu_ram_we hold from clk high Minimum 0.3 ns

Tdis icu_din setup to clk high Minimum 0.3 ns

Tdih icu_din hold from clk high Minimum 0.3 ns

Tdxor clk high to read icram_dout valid Maximum 2.0 ns1

TABLE 11-3 I/O Signals (Instruction Cache Data RAM) (Continued)

Signal Description I/O
Cin/Cload
200 MHz
122 picoJava-II Microarchitecture Guide • March 1999

1Critical path.
2Timing requirement for writing data into the RAM (cells), measured from the rising edge of the clk from icu_din .

FIGURE 11-2 and FIGURE 11-3 illustrate the timing.

FIGURE 11-2 Timing Diagram A (Instruction Cache Data RAM)

Tdow clk high to data written into the RAM Maximum 1.8 ns2

Tens Setup time for enable to powerdown Minimum 1.0 ns

Tenh Hold time for enable to powerdown Minimum 0.3 ns

TABLE 11-4 Timing Specifications (Instruction Cache Data RAM) (Continued)

Symbol Description Condition
Spec
200 MHz

clk

Tpwh Tpwl

Tcyc

Tads Tadh

Tdis Tdih

Twes Tweh

icu_din <31:0>

Tdxor

icu_addr <13:3>

icu_ram_we <1:0>

 icram_dout <63:0>
Chapter 11 Megacells 123

FIGURE 11-3 Timing Diagram B (Instruction Cache Data RAM)

11.1.4 RAM Redundancy

No redundancy is required for this block due to its relatively small RAMs.

11.1.5 Testing

Built-in Self-Test (BIST) is used for testing in this block.

The instruction cache RAM block is tested as embedded memory along with the rest

of the chip silicon. There are no plans to test the block individually. A Verilog test

bench and test pattern are available for verification.

Note the following:

■ All timing specifications are for the Sun® SSLH corner operation conditions:

■ Process: Slow

■ Temperature: 105 degrees C junction

■ Vdd: 2.20v

■ The test conditions for all timing specifications are:

■ Input Vil/Vih switching levels: 0.0v/2.20v

■ Input rise/fall times: 0.2 ns (10%~90% Vdd)

■ Input output timing reference levels: 2.20v/2

clk

Tpwh Tpwl

Tcyc

enable

Tens

Tenh
124 picoJava-II Microarchitecture Guide • March 1999

11.2 Instruction Cache Tag RAM
The instruction cache tag (itag.v) is logically organized as 1,024 entries by 19-bit

RAM. Each entry corresponds to its associated line of four words in the instruction

cache data RAM.

The instruction cache tag (itag) has one 10-bit address input (icu_tag_addr), one

tag_in bus of 18 bits (icu_tag_in), and one valid bit (icu_tag_vld). A 19-bit

comparator (cmp19_e) is included inside the block to provide faster hit or miss

result. The 18-bit tag data output along with the a 1-bit valid output (itag_vld)

from the RAM (tag RAM bit [0]) are compared internally against the 18 bits latched

in tag data input (icu_tag_in) and a 1-bit logic “1” (at the 19th bit position) to

produce the tag hit output (itag_hit).

The tag data output (itag_dout) and the valid bit output (itag_vld) should be

buffered to ensure adequate drive strength to accommodate the heavy wire loading.

Input for built-in self-test (bist *) is provided at the pinout. A test mode pin

(test_mode) is used for the RAM to select taking either the normal data, address,

and enable input (icu_tag_in , icu_tag_vld , icu_tag_we , and icu_tag_addr)

or the BIST address, data, and enable input (bist_icu_tag_in ,
bist_icu_tag_vld , bist_icu_tag_we , and bist_icu_tag_addr).

The enable pin (enable) puts the instruction cache tag in disable mode when it is at

low to conserve dynamic power consumption.

When the instruction cache tag is disabled, the value of the output data

(itag_dout , itag_vld , and itag_hit) should remain unchanged as they were

before, regardless of address input and write enable changes. All input should be

synchronously latched at the block boundary.
Chapter 11 Megacells 125

TABLE 11-5 lists and describes test_mode and the enable signals.

FIGURE 11-4 illustrates the instruction cache tag.

TABLE 11-5 test_mode and Enable Signals (Instruction Cache Tag RAM)

Pin enable = 0 enable = 1

test_mode = 0 The instruction tag RAM is
disabled. The value of the
output data is maintained as
before regardless of the
address input and write
enable changes.

The instruction tag is enabled. The normal
address, data, and write enable input
(icu_tag_in , icu_tag_vld ,
icu_tag_addr , and icu_tag_we) are
passed to the RAM.

test_mode = 1 Same as above. The instruction tag is enabled and enters
built-in test mode. The BIST address, data,
and write enable input
(bist_icu_tag_in , bist_icu_tag_vld ,
bist_icu_tag_addr, and
bist_icu_tag_we) are passed to the
RAM.
126 picoJava-II Microarchitecture Guide • March 1999

FIGURE 11-4 Instruction Cache Tag (itag)

clk

Tag RAM
1024 x 19

icu_tag_vld

v

18

(1.5 ns)

icu_tag_we

icu_tag_addr <13:4>

 enable
19-bit comparator

(2.2 ns)

1

itag_dout <17:0> itag_vld itag_hit

 “1’b1”

bist_icu_tag_we

 bist_icu_tag_in <17:0>

bist_icu_tag_vld

bist_enable

bist_icu_tag_addr <13:4>

18

18

18

10

10

 test_mode

icu_tag_in <17:0>
Chapter 11 Megacells 127

11.2.1 I/O Pins

TABLE 11-6 and TABLE 11-7 list and describe the input and output pins, respectively.

TABLE 11-6 Input Pins (Instruction Cache Tag RAM)

Pin Description

clk Clock input pin.

icu_tag_addr <13:4> Instruction tag address input. The word at the location

addressed by icu_tag_addr is accessed for either reading

or writing its contents. icu_tag_addr is 10 bits wide.

icu_tag_in <17:0> Instruction tag data input. The value of icu_tag_din is

written to the location addressed by icu_tag_addr .

icu_tag_vld Instruction tag valid bit input. The value of icu_tag_vld is

written to the location addressed by icu_tag_addr .

icu_tag_we Instruction tag RAM write enable. The RAM performs a

read-write from or to the location addressed by

icu_tag_addr .

enable Megacell enable. This signal is used to enable or disable the

RAM to conserve dynamic power consumption when it is

not being used. When enable = 0, the RAM is disabled and

the value of all data output (itag_dout and itag_vld) is

maintained as it was before regardless of address input and

write enable changes. Normal operations are performed

when enable = 1.

bist_icu_tag_addr <13:4> Instruction tag address input for BIST. The word at the

location addressed by bist_icu_tag_addr is accessed for

either reading or writing.

bist_icu_tag_in <17:0> Instruction tag data input for BIST. The value of

bist_icu_din is written to the location addressed by

bist_icu_tag_addr .

bist_icu_tag_vld Instruction tag valid bit input for BIST. The value of

bist_icu_tag_vld is written to the location addressed by

bist_icu_tag_addr .

bist_icu_tag_we Instruction tag RAM write enable for BIST. The RAM

performs a read-write from or to the location addressed by

bist_icu_tag_addr .
128 picoJava-II Microarchitecture Guide • March 1999

bist_enable Megacell enable pin for BIST. When bist_enable = 0, the

RAM is disabled and the value of all data output

(itag_dout and itag_vld) is maintained as it was before

regardless of the address input and write enable changes.

Normal operations are performed when bist_enable = 1.

test_mode Megacell test mode enable pin. When this pin is high, the

megacell test mode is entered; the BIST address, data, and

write enable input (bist_icu_tag_addr ,

bist_icu_tag_in , and bist_icu_tag_we) is taken to

the RAM. When this pin is low, normal data, address, and

write enable input (icu_tag_addr , icu_tag_in , and

icu_tag_we) are passed to the RAM.

TABLE 11-7 Output Pins (Instruction Cache Tag RAM)

Pin Description

itag_dout <17:0> Instruction tag data output, accessed by the icu_tag_addr
address (or bist_icu_tag_addr if test_mode = 1). This

signal should be buffered up to drive the output loading

specified in TABLE 11-6.

itag_vld Instruction tag valid bit output accessed by icu_tag_addr
(or bist_icu_tag_addr if test_mode = 1). This signal

should be buffered up to drive the output loading specified

in TABLE 11-6.

itag_hit Instruction tag hit output, which is the result from an equal

tag comparator that compares the RAM output data and the

valid bit with the latched data input (icu_tag_in).

TABLE 11-6 Input Pins (Instruction Cache Tag RAM) (Continued)

Pin Description
Chapter 11 Megacells 129

11.2.2 I/O Signals

TABLE 11-8 summarizes the input and output pins of the instruction tag and their

input loading and output drive strengths.

11.2.3 Timing

The specifications are listed below and in TABLE 11-9.

TABLE 11-8 I/O Signals (Instruction Cache Tag RAM)

Signal Description I/O
Cin/Cload
200 MHz

clk Clock input pin Input 0.3 pf

icu_tag_addr <13:4> Address input for read and write accesses Input 0.02 pf

icu_tag_in <17:0> Tag data input for write access Input 0.02 pf

icu_tag_vld Valid data input for write access Input 0.02 pf

icu_tag_we Instruction tag RAM write enable Input 0.02 pf

enable RAM enable Input 0.02 pf

bist_icu_tag_addr <13:4> Address input for BIST Input 0.02 pf

bist_icu_tag_in <17:0> Tag data input for BIST Input 0.02 pf

bist_icu_tag_vld Valid bit input for BIST Input 0.02 pf

bist_icu_tag_we Instruction tag RAM write enable for BIST Input 0.02 pf

bist_enable RAM enable for BIST Input 0.02 pf

test_mode Megacell test mode enable Input 0.02 pf

itag_dout <17:0> Tag data output Output 0.3 pf

itag_vld Tag valid bit output Output 0.3 pf

itag_hit Tag hit output Output 0.5 pf

Process Slow (G11p)

Temperature 105 degrees C junction

Operating voltage 2.20v
130 picoJava-II Microarchitecture Guide • March 1999

1Critical path

TABLE 11-9 Timing Specifications (Instruction Cache Tag RAM)

Symbol Description Condition
Spec
200 MHz

Tcyc clk cycle time Minimum 4.9 ns

Tpwh clk high-level pulse width Minimum 2.1 ns

Tpwl clk low-level pulse width Minimum 2.1 ns

Tads icu_tag_addr set up to clk high Minimum 0.5 ns

Tadh icu_tag_addr hold from clk high Minimum 0.3 ns

Twes icu_tag_we set up to clk high Minimum 0.3 ns

Tweh iu_tag_we hold from clk high Minimum 0.3 ns

Tdis icu_tag_in /icu_tag_vld set up to clk high Minimum 0.3 ns

Tdih icu_tag_in /icu_tag_vld hold from clk high Minimum 0.3 ns

Ttag clk high to itag_dout <17:0> Maximum 1.5 ns

Thit clk high to itag_hit valid Maximum 2.2 ns1

Tvldor clk high to itag_vld Maximum 1.5 ns

Tens Setup time for enable to power down Minimum 1.0 ns

Tenh Hold time for enable to power down Minimum 0.3 ns
Chapter 11 Megacells 131

FIGURE 11-5 and FIGURE 11-6 illustrate the timing.

FIGURE 11-5 Timing Diagram A (Instruction Cache Tag RAM)

clk

Tpwh Tpwl

Tcyc

Tads Tadh

Tdis Tdih

Twes Tweh

Tvldor

Ttag

Thit

icu_tag_addr <13:4>

icu_tag_in <17:0>

icu_tag_vld

itag_dout <17:0>

icu_tag_we

itag_vld

itag_hit
132 picoJava-II Microarchitecture Guide • March 1999

FIGURE 11-6 Timing Diagram B (Instruction Cache Tag RAM)

11.2.4 Implementation

The critical path of the instruction tag (itag) is from clk to tag RAM data output

itag_dout through the 19-bit comparator to generate the itag_hit signal. The

goal is to design and place the tag RAM and its comparator such that the itag_hit
signal becomes valid within the timing specifications.

The icu_tag_in register is used for both RAM write and tag hit comparisons.

Circuit design must ensure that the different kinds of logic do not interfere with each

other. The nomenclature of the module (icram) and its input and output pins must

be the same as that in FIGURE 11-4 on page 127.

11.2.5 RAM Redundancy

No redundancy is required for this block due to its relatively small RAMs.

11.2.6 Testing

Built-in Self-Test (BIST) is used for testing in this block.

The tag RAM block is tested as embedded memory along with the rest of the chip

silicon. There are no plans to test the block individually. A Verilog test bench and

test patterns are provided for verification.

Note the following:

■ All timing specifications are for the Sun SSLH corner operation conditions:

■ Process: Slow

■ Temperature: 105 degrees C junction

■ Vdd: 2.20v

clk

Tpwh Tpwl

Tcyc

enable

Tens

Tenh
Chapter 11 Megacells 133

■ The test conditions for all timing specifications are:

■ Input Vil/Vih switching levels: 0.0v/2.20v

■ Input rise/fall times: 0.2 ns (10%~90% Vdd)

■ Input output timing reference levels: 2.20v/2

11.3 Data Cache Data RAM
The data cache block is logically organized as two RAMs with 2,048 entries of 32 bits

each. Since the data cache line size is four words, each line occupies four entries in

the RAMs. The lines are organized such that alternate entries in the same cache line

are mapped to different RAM blocks to allow simultaneous access to two

consecutive words in a single line as well as simultaneous access to the same word

in both ways of a set.

Way select is determined by the addr [2] bit, as follows:

■ For even-word addresses, addr [2] = 0; RAM bank A contains data for Way 0 and

bank B for Way 1.

■ For odd-word addresses, addr [2] = 1; RAM bank A contains data for Way 1 and

bank B for Way 0.

The RAMs are addressed with one 10-bit address bus and two 2-bit address buses.

A bypass function is built in to route incoming data directly to the output mux when

a bypass signal is asserted. Bypass data override both data output ports. One 64-bit

data_out bus is provided for reading out data from both RAM banks in the event

of a writeback and flush cache. All input is synchronously latched in at block

boundary.

A test_mode pin is used to select between normal input and BIST input to the

RAM. A powerdown pin (enable) is asserted to shut off the sense amplifier to save

power if feasible.

When the data cache is disabled, the value of the output data should remain

unchanged regardless of address input and write enable changes.

TABLE 11-10 lists and describes test_mode and the enable signals.
134 picoJava-II Microarchitecture Guide • March 1999

FIGURE 11-7 illustrates the timing.

FIGURE 11-7 Data Cache Data RAM (dcram)

TABLE 11-10 test_mode and Enable Signals (Data Cache Data RAM)

Pin enable = 0 enable = 1

test_mode = 0 The data cache is disabled. The

value of the output data is

maintained as before regardless of

address input and write enable

changes. data_out is valid only

if bypass is asserted.

The data cache is enabled. The

normal address, data, and write

enable input are passed to the

RAM.

test_mode = 1 Same as above. The data cache is enabled and

enters built-in test mode. The BIST

address, data, and write enable

input are passed to the RAM.

we<3:0>

addr <12:2>

addr <1:0>

bypass

clk

bank_sel <1:0>

enable

data_out <63:0>

&&

bank1
2,048 x 32

bank0
2,048 x 32

0 1 1 0
addr_q [2] addr_q [2]

data_in <63:0>

0 1 0 1

addr_q <12:2>

addr_q <12:4>,addr_q <1:0>

bank_sel [1] bank_sel [0]

<1:0>

data_in <63:32> data_in <31:0>

<63:32> <31:0>

bist_data_in <63:0>

bist_we

bist_addr <10:0>

test_mode

<3:0>

bist_enable

sin

sm

sodcache_ram0_dodcache_ram1_do
Chapter 11 Megacells 135

11.3.1 I/O Pins

TABLE 11-11 and TABLE 11-12 list and describe the input and output pins, respectively.

TABLE 11-11 Input Pins (Data Cache Data RAM)

Pin Description

clk Clock input pin

addr <12:2> Address input for data RAM bank 1 reads and writes. Clocked into

RAM with the rising edge of clk .

addr {<12:4><1:0>} Address input for data RAM bank 0 reads and writes. Replaces

addr <3:2>. Clocked into RAM with rising edge of clk .

data_in <63:32> Cache data bank 1 input clocked into RAM with rising edge of clk

data_in <31:0> Cache data bank 0 input clocked into RAM with rising edge of clk

we<3:0> Byte write enable control input for cache RAM. Active high. Writes

data_in data into selected set. Clocked in with rising edge of clk .

bank_sel <1:0> Sets select enable control input asserted high selects, asserted low

not selects. Clocked in with rising edge of clk .

bypass Bypasses function enable input. The data on data_in bypasses the

RAM and is available at the output. This functionality is valid even

if the enable signal is 0.

enable Powerdown mode input pin. Megacell enable. Active high. This

signal is used to enable or disable the RAM to conserve dynamic

power consumption when it is not being used. When enable =0, the

RAM is disabled and the value of all data output is maintained as

before regardless of address input and write enable changes.

bist_addr <10:0> Pin for BIST. Same for the rest of the input. All bist_* signals are

selected when the test_mode pin is high.

bist_data_in <63:0>

bist_we <3:0>

bist_enable This signal has the same functionality as the enable signal when

the test_mode pin is asserted (BIST mode).

test_mode Test mode enable pin. When this pin is high, the megacell test mode

is entered and the bist_* input is taken into the RAM. The normal

address, data, and write_enable input are passed to the RAM

when the test_mode = 0.

sin , sm Scan in and scan mode signals
136 picoJava-II Microarchitecture Guide • March 1999

11.3.2 I/O Signals

TABLE 11-13 summarizes the input and output pins of the data cache block and their

input loading and output drive strengths.

TABLE 11-12 Output Pins (Data Cache Data RAM)

Pin Description

data_out <63:32> Cache data output of set_1 (bank 1). Latched between read

and write operations.

data_out <31:0> Cache data output of set_0 (bank 0). Latched between read

and write operations.

dcache_ram0_do <31:0> Raw data out from Bank 0 RAM

dcache_ram1_do <31:0> Raw data out from Bank 2 RAM

so Scan-out signal

TABLE 11-13 I/O Signals (Data Cache Data RAM)

Signal Description I/O
Cin/Cload
200 MHz

clk Clock input pin Input 0.30 pf

addr <12:2> Address input for RAM bank 1 Input 0.02 pf

addr <1:0> Address input for RAM bank 0 in place

of addr <3:2>

Input 0.02 pf

data_in <63:0> data_bus input for data cache writes Input 0.02 pf

we<3:0> Data cache RAM write enable signal,

byte writable

Input 0.02 pf

bank_sel <1:0> Selects which bank to write Input 0.02 pf

bypass Bypasses the function enable signal Input 0.02 pf

enable Powerdown mode input active low Input 0.02 pf

test_mode BIST enable input (test input is selected) Input 0.02 pf

bist_addr <10:0> bist_addr <10:0> pin for BIST Input 0.02 pf

bist_data_in <63:0> data_in <63:0> for BIST Input 0.02 pf

bist_we <3:0> we<3:0> for BIST Input 0.02 pf

bist_enable enable signal for BIST Input 0.02 pf
Chapter 11 Megacells 137

11.3.3 Timing

The specifications are listed below and in FIGURE 11-14.

data_out <63:0> Data output Output 0.25 pf

dcache_ram0_do <31:0> Bank 0 data out Output 0.25 pf

dcache_ram1_do <31:0> Bank 1 data out Output 0.25 pf

Process Slow

Temperature 105 degrees C junction

Operating voltage 2.20v

TABLE 11-14 Timing Specifications (Data Cache Data RAM)

Symbol Description Condition
Spec
200 MHz

Tcyc clk cycle time Minimum 4.9 ns

Tpwh clk high-level pulse width Minimum 2.1 ns

Tpwl clk low-level pulse width Minimum 2.1 ns

Tads Address setup to clk high Minimum 0.5 ns

Tadh Address hold from clk high Minimum 0.3 ns

Tbps Bypass setup to clk high Minimum 0.4 ns

Tbph Bypass hold from clk high Minimum 0.3 ns

Tstsls bank_sel setup to clk high Minimum 0.4 ns

Tstslh bank_sel hold from clk high Minimum 0.3 ns

Twes we setup to clk high Minimum 0.5 ns

Tweh we hold from clk high Minimum 0.3 ns

Tdis di setup to clk high Minimum 0.25 ns

Tdih di hold from clk high Minimum 0.4 ns

Tidor clk high to internal read data valid Maximum 1.9ns

TABLE 11-13 I/O Signals (Data Cache Data RAM) (Continued)

Signal Description I/O
Cin/Cload
200 MHz
138 picoJava-II Microarchitecture Guide • March 1999

1Cache RAM data output; critical path

FIGURE 11-8 and FIGURE 11-9 illustrate the timing.

FIGURE 11-8 Timing Diagram A (Data Cache Data RAM)

Tdxor clk high to data_out valid Maximum 2.2 ns1

Tens Setup time for enable to power down the SRAM Minimum 1.0 ns

Tenh Hold time for enable to power down the SRAM Minimum 0.3 ns

TABLE 11-14 Timing Specifications (Data Cache Data RAM) (Continued)

Symbol Description Condition
Spec
200 MHz

clk

addr1 <12:0>

data_in <63:0>

Tpwh Tpwl

Tcyc

Tads Tadh

Tdis Tdih

Twes Tweh

we<3:0>

data_out <63:0>

Tdxor

Tbps Tbph

Tstsls Tstslh

bypass
bank_sel <1:0>
Chapter 11 Megacells 139

FIGURE 11-9 Timing Diagram B (Data Cache Data RAM)

11.3.4 Implementation

The critical path of this block is data_out through the bypass and swap muxes.

Consider the layout of this group first to ensure that all 32-bit data have even delay

numbers.

RAM 1 and RAM 0 should be symmetrical to ensure that both banks have the same

delay numbers.

Note – data_in registers are used for both RAM writes and for data bypassing.

11.3.5 RAM Redundancy

No redundancy is required for this block due to its relatively small RAMs.

11.3.6 Testing

Built-in Self-Test (BIST) is used for testing in this block.

The data cache RAM block is tested as embedded memory along with the rest of the

chip silicon. There are no plans to test the block individually. A Verilog test bench

and test pattern are available for verification.

Note the following:

■ All timing specifications are for the Sun SSLH corner operation conditions:

■ Process: Slow

■ Temperature: 105 degrees C junction

■ Vdd: 2.20v

enable Tens Tenh

clk
140 picoJava-II Microarchitecture Guide • March 1999

■ The test conditions for all timing specifications are:

■ Input Vil/Vih switching levels: 0.0v/2.20v

■ Input rise/fall times: 0.2 ns (10%~90% Vdd)

■ Input output timing reference levels: 2.20v/2

11.4 Data Cache Tag RAM
The data cache tag block is logically organized as a two-way associative set, with

each tag RAM set consisting of 512 entries by 19 bits plus a status RAM of 512

entries by 5 bits. Each entry corresponds to its associated set of one line of four

words in the data cache.

The status RAM is dual ported; both ports can be accessed simultaneously for reads

and writes.

All input to RAMs is internally latched to have synchronized reads and writes.

One 9-bit address bus drives all three RAMs for read. A second 9-bit address bus

drives the status RAM’s write port to update its contents. One tag_data_in bus of

19 bits is used for both sets of tag RAM for data input in write tag mode and for tag

comparison in tag read mode. All input is registered internally.

A set_select line selects a set to write to and to read out the tag_data for

diagnostic reads and write_back mode. Internally, a 2:1 mux is built in to select

tag_out from one of the two sets of tag RAMs.

Two 20-bit comparators are included in the block to provide faster hit or miss

results. Both tag_data outputs are compared internally against the latched

cmp_addr_in bits along with valid 1 and valid 0 to get fast hit 1 and hit 0. An MSB

of the compare operand is used for valid bit comparisons—it is compared with logic

1 to determine hit or miss of each set. The hit 1 and hit 0 output is internally

buffered individually to give strong drives.

Status RAM read address1[addr] shares the same address as tag RAMs internally

and uses address2 [stat_addr] as its write port address. These two ports are totally

independent of each other and can be accessed simultaneously.

Reading and writing into the same location (and the same field within the address)

can result in undefined read data. However, you can be writing to one field (dirty)

and reading from the other (valid) at the same address at the same time. The written

data are valid. The status RAM has only one read port and one write port.
Chapter 11 Megacells 141

All the input is synchronously latched in at a block boundary. The same enable

signal (pin) drives the status RAM and both banks of the tag RAM. The enable signal

is latched on the falling edge of the clock before going to the status RAM. However,

the enable pin is clocked with a flip-flop before going to the tag RAMs. This pin is

asserted to shut off the sense amplifier to save power when needed.

When the data cache is disabled, the value of output data remains unchanged as

before regardless of address input and write enable changes.

TABLE 11-15 lists and describes test_mode and the enable signals.

FIGURE 11-10 illustrates the data cache tag RAM.

TABLE 11-15 test_mode and Enable Signals (Data Cache Tag RAM)

Pin enable = 0 enable = 1

test_mode = 0 The data tag is disabled. The value

of the output data is maintained

as before regardless of address

input and write enable changes.

The data tag is enabled. The

normal address, data, and write

enable input are passed to the

RAM.

test_mode = 1 Same as above. The data tag is enabled and enters

built-in test mode. The BIST

address, data, and write enable

input are passed to the RAM.
142 picoJava-II Microarchitecture Guide • March 1999

FIGURE 11-10 Data Cache Tag RAM (dtag)

tag_we
tag_in stat_in

stat_we

stat_addr <12:4>

addr <12:4>

set_sel

clk

Tag RAM 1 Tag RAM 0
512 x 19 512 x 19 512 x 5

Status
RAM

20-bit eq comp. 20-bit eq comp.

dtag_dout hit1_out hit0_out stat_out <4:0>

enable

wb_set_sel

1 0
bit [2]

bit [0]

1’b1

1’b1

&&

bist_tag_we1

bist_tag_in <18:0>

bist_stat_in

bist_stat_we <4:0>

bist_addr <8:0>

bist_enable

bist_wb_set_sel

bist_stat_addr <8.0>

test_mode

<18:0> <4:0>
<4:0>

cmp_addr_in <18:0>

<18:0>

<4:0>

in0 in1 in2 in3

in0 <19:0> = {dou1 <18:0>, l’bl }
in1 <19:0> = {cmp_addr_q<18:0> , stat_out [2]}
in2 <19:0> = {dou1 <18:0>, l’bl }
in3 <19:0> = {comp_addr_q <18:0>, stat_out [2]}

(write)

clk

Latch

enable (for status RAM)

bist_tag_we0
Chapter 11 Megacells 143

11.4.1 I/O Pins

TABLE 11-16 and TABLE 11-17 list and describe the input and output pins, respectively.

TABLE 11-16 Input Pins (Data Cache Tag RAM)

Pin Description

clk Clock input pin

addr <12:4> Address input for tag RAM reads and writes and status reads.

clocked into RAM with rising edge of clk .

stat_addr <12:4> Address input for status RAM writes. Clocked into RAM with

rising edge of clk .

tag_in <18:0> Tag data input clocked into RAM with rising edge of clk .

cmp_addr_in <18:0> Address to compare against for the generation of hit or miss

signals. Clocked into RAM with the rising edge of clk .

stat_in <4:0> Status data input clocked into RAM with the rising edge of clk .

set_sel Sets select enable control input to select which tag RAM to write

to. Asserted high, selects set 1; asserted low, selects set0.

wb_set_sel Selects which tag RAM output comes on the dtag_dout pin.

High selects set 1 tag; low selects set 0 tag.

tag_we Write enable control input for tag RAM. Active high. Writes

tag_in data into selected set.

stat_we <4:0> Write enable control input for status RAM. Active high. Writes

status_in data into status RAM. Each bit is a write_enable
for the corresponding stat_in bits.

enable Powerdown mode input pin. Megacell enable. High for regular

operation; low for powerdown mode. This signal is used to

enable or disable the RAM to conserve dynamic power

consumption when it is not being used. When enable = 0, the

RAM is disabled and the value of all data output is maintained

as before regardless of address input and write enable changes.

For the status RAM, the enable is taken through a negative edge-

triggered latch. The clock is the input to the latch_enable .

bist_addr <8:0> Pins for BIST. Same for the rest of input pins. All bist_* signals

are selected when the test_mode pin is asserted.

bist_stat_addr <8:0>

bist_tag_in <18:0>

bist_stat_in <4:0>

bist_enable

bist_wb_set_sel
144 picoJava-II Microarchitecture Guide • March 1999

11.4.2 I/O Signals

TABLE 11-18 summarizes the input and output pins of the data cache tag block and

their input loading and output drive strengths.

bist_tag_we0

bist_tag_we1

bist_stat_we <4:0>

test_mode Selects between regular and BIST mode signals. When this pin is

high, the megacell test mode is entered and the bist_* input is

taken into the RAM. The normal address, data, and

write_enable input are passed to the RAM when

test_mode = 0.

TABLE 11-17 Output Pins (Data Cache Tag RAM)

Pin Description

dtag_dout <18:0> Tag data output of selected set

stat_out <4:0> Status data output

hit1_out Output of tag 1 equals to compare_address input; active high signal

hit0_out Output of tag 0 equals to compare_address input; active high signal

bist_tag_dout1 BIST data out

bist_tag_dout2 BIST data out

TABLE 11-18 I/O Signals (Data Cache Tag RAM)

Signal Description I/O
Cin/Cload
200 MHz

clk Clock input pin Input 0.34 pf

addr <12:4> Address input for tag reads and status reads Input 0.02 pf

stat_addr <12:4> Address input for status writes Input 0.02 pf

tag_in <18:0> tag_data input for writes and comparisons Input 0.02 pf

cmp_addr_in <18:0> Address for comparison with tag output Input 0.02 pf

stat_in <4:0> tag_status data input Input 0.02 pf

TABLE 11-16 Input Pins (Data Cache Tag RAM) (Continued)

Pin Description
Chapter 11 Megacells 145

11.4.3 Timing

The specifications are listed below and in FIGURE 11-19.

tag_we Tag RAM write enable signal Input 0.02 pf

stat_we <4:0> Status RAM write enable signal Input 0.02 pf

set_sel Sets select signal Input 0.02 pf

wb_set_sel Selects tag address to wb_address_reg Input 0.02 pf

enable Powerdown mode input active low for

powerdown

Input 0.02 pf

dtag_dout <18:0> Sets selected tag data output Output 0.15 pf

stat_out <4:0> Status data output Output 0.45 pf

hit1_out Tag1 compare equals active high Output 0.50 pf

hit0_out Tag0 compare equals active high Output 0.50 pf

test_mode BIST enable input. Test input is selected when

high.

Input 0.02 pf

bist_tag_in <18:0> Pin for BIST. Same for the following signals. Input 0.02 pf

bist_stat_in <4:0> stat_in <4:0> for BIST Input 0.02 pf

bist_tag_we0 tag_we for BIST Input 0.02 pf

bist_tag_we1 tag_we for BIST Input 0.02 pf

bist_stat_we <4:0> stat_we <4:0> for BIST Input 0.02 pf

bist_enable enable for BIST Input 0.02 pf

bist_wb_set_sel wb_set_sel for BIST Input 0.02 pf

bist_addr <8:0> addr <12:4> for BIST Input 0.02 pf

bist_stat_addr <8:0> stat_addr <12:4> for BIST Input 0.02 pf

Process Slow

Temperature 105 degrees C junction

Operating voltage 2.20v

TABLE 11-18 I/O Signals (Data Cache Tag RAM) (Continued)

Signal Description I/O
Cin/Cload
200 MHz
146 picoJava-II Microarchitecture Guide • March 1999

1Internal tag RAM data output valid point. Use this number only as a reference to measure the tag RAM speed.
2Critical path. This path should have a higher priority over other paths.
3Internally, valid 1 and valid 0 should be available by 1.85 ns at comparator input.

FIGURE 11-11 and FIGURE 11-12 illustrate the timing.

TABLE 11-19 Timing Specifications (Data Cache Tag RAM)

Symbol Description Condition
Spec
200 MHz

Tcyc clk cycle time Minimum 4.9 ns

Tpwh clk high-level pulse width Minimum 2.1 ns

Tpwl clk low-level pulse width Minimum 2.1 ns

Tads Address setup to clk high Minimum 0.5 ns

Tadh Address hold from clk high Minimum 0.3 ns

Tstsls set_sel setup to clk high Minimum 0.4 ns

Tstslh set_sel hold from clk high Minimum 0.3 ns

Twes we setup to clk high Minimum 0.3 ns

Tweh we hold from clk high Minimum 0.3 ns

Tdis di setup to clk high Minimum 0.25 ns

Tdih di hold from clk high Minimum 0.4 ns

Ttgor clk high to internal tag read data valid Maximum 1.6 ns1

Ttag clk high to tag_out valid Maximum 2.3 ns

Thit clk high to hit1_out /hit0_out valid Maximum 2.3 ns2

Tstor clk high to status_out valid Maximum 1.8 ns3

Twb_set clk high to wb_set_sel valid Maximum 2.0 ns

Tcmp_addr_val clk high to cmp_addr_in valid Maximum 1.2 ns

Tens enable setup to clk high Minimum 1.0 ns

Tenh enable hold from clk high Minimum 0.3 ns

Tcmps Setup time for cmp_addr_in Minimum 0.25 ns

Tcmph Hold time for cmp_addr_in Minimum 0.4 ns
Chapter 11 Megacells 147

FIGURE 11-11 Timing Diagram A (Data Cache Tag RAM)

clk

addr <12:4>

tag_in <18:0>

tag_we

stat_out <4:0>

Tpwh Tpwl

Tcyc

Tads Tadh

Tdis Tdih

Twes Tweh

Tstor

stat_addr <12:4>

stat_in <4:0>

stat_we <4:0>

dtag_dout <18:0>

Ttag

Thit
hit1_out
hit0_out

Tstsls Tstslh

set_sel

wb_set_sel

Twb_set

cmp_addr_in <18:0>

Tcmp_addr_val
148 picoJava-II Microarchitecture Guide • March 1999

FIGURE 11-12 Timing Diagram B (Data Cache Tag RAM)

11.4.4 Implementation

The critical path of the data cache tag block is through the tag RAM and the 20-bit

comparator to generate hit1_out or hit0_out signals. The goal is to design and

place the tag RAMs and the comparator of both sets such that both hit1_out and

hit0_out signals can meet the timing specifications.

11.4.5 RAM Redundancy

No redundancy is required for this block due to its relatively small RAMs.

11.4.6 Testing

Built-in Self-Test (BIST) is used for testing in this block.

Note the following:

■ All timing specifications are for the Sun SSLH corner operation conditions:

■ Process: Slow

■ Temperature: 105 degrees C junction

■ Vdd: 2.20v

■ The test conditions for all timing specifications are:

■ Input Vil/Vih switching levels: 0.0v/2.20v

■ Input rise/fall times: 0.2 ns (10%~90% Vdd)

■ Input output timing reference levels: 2.20v/2

enable

Tens Tenh

clk
Chapter 11 Megacells 149

11.5 Stack Cache RAM
The stack cache RAM (rf.v) is a five-port asynchronous RAM or register file. All

five ports, three for reads and two for writes, can be accessed independently.

The stack cache RAM (rf) is used for the IU, which gets data from the stack and

stores them back into the stack through two read ports and one write port. Writing

into the same location of reading has a higher priority; write data are valid and read

data are undefined during writes. Writing into the same location through both write

ports at the same time is not defined. FIGURE 11-13 illustrates the interface.

FIGURE 11-13 Stack Cache RAM Interface

11.5.1 I/O Pins

TABLE 11-20 and TABLE 11-21 list and describe the input and output pins, respectively.

TABLE 11-20 Input Pins (Stack Cache RAM)

Pin Description

add_a <5:0> Address input, port A (read only)

add_b <5:0> Address input, port B (read only)

add_c <5:0> Address input, port C (read only)

add_d <5:0> Address input, port D (write only)

add_e <5:0> Address input, port E (write only)

add_a <5:0>

add_b <5:0>

add_c <5:0>

add_d <5:0>

add_e <5:0>

di_d <31:0>

di_e <31:0>

we_d

we_e

do_a <31:0>

do_b <31:0>RAM

(rf) do_c <31:0>

64 x 32
150 picoJava-II Microarchitecture Guide • March 1999

11.5.2 I/O Signals

TABLE 11-22 summarizes the input and output pins of the stack cache RAM and their

input loading and output drive strengths.

di_d <31:0> Data input, port D

di_e <31:0> Data input, port E

we_d Write enable control input, port D, active high

we_e Write enable control input, port E, active high

TABLE 11-21 Output Pins (Stack Cache RAM)

Pin Description

do_a <31:0> Data output, port A

do_b <31:0> Data output, port B

do_c <31:0> Data output, port C

TABLE 11-22 I/O Signals (Stack Cache RAM)

Signal Description I/O

Cin/
Cload
200 MHz

add_a <5:0> Address input for read port A Input 0.02 pf

add_b <5:0> Address input for read port B Input 0.02 pf

add_c <5:0> Address input for read port C Input 0.02 pf

add_d <5:0> Address input for write port D Input 0.02 pf

add_e <5:0> Address input for write port E Input 0.02 pf

di_d <31:0> Data input for write port D Input 0.02 pf

di_e <31:0> Data input for write port E Input 0.02 pf

we_d Write enable input for port D Input 0.06 pf

we_e Write enable input for port E Input 0.06 pf

do_a <31:0> Read port A data output Output 0.25 pf

TABLE 11-20 Input Pins (Stack Cache RAM) (Continued)

Pin Description
Chapter 11 Megacells 151

11.5.3 Timing

The specifications are listed below and in TABLE 11-23.

1Critical path. This path should have the highest timing priority over other paths.
2No write-throughs.

do_b <31:0> Read port B data output Output 0.25 pf

do_c <31:0> Read port C data output Output 0.25 pf

Process Slow

Temperature 105 degrees C junction

Operating voltage 2.20v

TABLE 11-23 Timing Specifications (Stack Cache RAM)

Symbol Description Condition
Spec
200 MHz

Trc Read cycle time Minimum 2.9 ns

Taa Read address access time Maximum 1.7 ns1

Toh Output hold time from address change Minimum 0.2 ns

Twc Write cycle time Minimum 3.2 ns

Taw Address valid to end of write Minimum 1.1 ns

Tasw Address valid to start of write Minimum 0.2 ns

Twp Write minimum pulse width Minimum 0.9 ns

Twr Write recovery time Minimum 0.1 ns

Tdw Data valid to end of write Maximum 0.6 ns

Tdh Data hold time Maximum 0.2 ns

Twd Data output delay time from write Maximum 2.6 ns2

Twh Data output hold time from write Maximum 1.7 ns

Twdd Data input to data output access time Maximum 2.1 ns2

Twdh Data input to data output hold time Minimum 1.4 ns

TABLE 11-22 I/O Signals (Stack Cache RAM) (Continued)

Signal Description I/O

Cin/
Cload
200 MHz
152 picoJava-II Microarchitecture Guide • March 1999

FIGURE 11-14 and FIGURE 11-15 illustrate the timing.

FIGURE 11-14 Timing Diagram A (Read Cycle, Stack Cache RAM)

FIGURE 11-15 Timing Diagram B (Write Cycle, Stack Cache RAM)

add_* <5:0>

do_* <31:0>

Trc

Taa

Toh

add_* <5:0>

do_* <31:0>

Tasw

di_* <31:0>

we_*

Twc
Taw Twr

Tdw Tdh

Twp

Twd

Twh

Twdd

Twdh
Chapter 11 Megacells 153

11.5.4 Testing

All timing specifications are for the Sun SSLH corner operation conditions:

■ Process: Slow

■ Temperature: 105 degrees C junction

■ Vdd: 2.20v

The test conditions for all timing specifications are:

■ Input Vil/Vih switching levels: 0.0v/2.20v

■ Input rise/fall times: 0.2 ns (10%~90% Vdd)

■ Input output timing reference levels: 2.20v/2

Writing into the same location through both ports at the same time is not defined.

11.6 Floating Point Unit (FPU) ROM
The fp_roms module (fp_roms.v) contains two ROMs (192 x 64 each). Both ROMs

have the same design and configurations, but they store different data.

The microcode ROM is a low-power, high-density, synchronous, read-only memory.

An 8-bit address selects one of the memory entries and the value is output on the

ROM output. Input registers should be built in to latch the address on the rising

edge of the clock.

FIGURE 11-16 illustrates the FPU ROM.
154 picoJava-II Microarchitecture Guide • March 1999

FIGURE 11-16 Floating Point Unit (FPU) ROM

Rom0 Rom1
adr <7:0>

do0<63:0> do1<63:0>

64 64

me

clk

192 x 64192 x 64

(Taa = 1.5 ns) (1.5 ns)

tadr <7:0>

te

rom_en

Generation of internal me (rom enable) and enable

tm

tm

rom_en

me

adr

tadr
Internal address

Internal enable
te

fp_roms
Chapter 11 Megacells 155

FIGURE 11-17 illustrates the FPU ROM interface.

FIGURE 11-17 FPU ROM Interface

11.6.1 I/O Pins

TABLE 11-24 and TABLE 11-25 list and describe the input and output pins, respectively.

TABLE 11-24 Input Pins (FPU ROM)

Pin Description

adr <7:0> Address input.

clk Clock input.

tadr <7:0> Test address input.

tm Test model; overrides rom_en and me input.

te Test enable input.

rom_en When deasserted (rom_en = 0), the output do0 and do1 remain unchanged

regardless of address changes.

me When deasserted (me= 0), the output do0 and do1 remain unchanged

regardless of address changes.

TABLE 11-25 Output Pins (FPU ROM)

Pin Description

do0<63:0> Data output

do1<63:0> Data output

>
do0<63:0>

me

fp_roms

te

rom_en

tm do1<63:0>

>

156 picoJava-II Microarchitecture Guide • March 1999

TABLE 11-26 is the truth table for the ROM output.

11.6.2 I/O Signals

TABLE 11-27 summarizes the input and output pins of the FPU ROM and their input

loading and output drive strengths.

TABLE 11-26 Truth Table for ROM Output

te tm rom_en me ROM Output

X 0 0 0 Disabled

X 0 0 1 Disabled

X 0 1 0 Disabled

X 0 1 1 Enabled

1 1 X X Enabled

0 1 X X Disabled

TABLE 11-27 I/O Signals (FPU ROM)

Signal Description Type C in/Cload

adr <7:0> Address input for ROM. Input 0.074 pf

clk Clock input. Input 0.076 pf

do0<63:0> Addressed data output from rom0 . Output 0.25 pf

do1<63:0> Addressed data output from rom1 . Output 0.25 pf

me When deasserted (me= 0), the do0 and do1 output

remains unchanged.

Input 0.029 pf

rom_en When deasserted (when rom_en = 0), do0 and do1
output remains unchanged.

Input 0.029 pf

te Test enable input. Input 0.022 pf

tadr <7:0> Test address input. Input 0.008 pf

tm Test mode input. Input 0.015 pf
Chapter 11 Megacells 157

11.6.3 Timing

The specifications are listed below and in TABLE 11-28.

Note – As long as Tmeh and Tmes are met, rom_en and mecan be asserted and

deasserted in adjacent cycles, as shown in FIGURE 11-18.

Process Slow

Temperature 105 degrees C junction

Operating voltage 2.20v

TABLE 11-28 Timing Specifications (FPU ROM)

Symbol Description Condition
Spec
200 MHz

Trc Read cycle time Minimum 4.9 ns

Tpwh clk high-level pulse width Minimum 2.1 ns

Tpwl clk low-level pulse width Minimum 2.1 ns

Tads Read address setup time Maximum 0.35 ns

Tadh Read address hold time Minimum 0.2 ns

Taa Data read access time from clk high Maximum 1.5 ns

Toh Output hold time from clk high Minimum 0.5 ns

Tmes Setup time for rom_en and mesignals Maximum 0.4 ns

Tmeh Hold time for rom_en and mesignals Minimum 0.3 ns

Ttes Setup time for te Maximum 0.6 ns

Tteh Hold time for te Minimum 0.65 ns

Ttms Setup time for tm Maximum 0.6 ns

Ttmh Hold time for tm Minimum 0.65 ns
158 picoJava-II Microarchitecture Guide • March 1999

FIGURE 11-18 Assertion and Deassertion of rom_en and me

FIGURE 11-19 and FIGURE 11-20 illustrate the timing.

FIGURE 11-19 Timing Diagram A (FPU ROM) (Read Cycle, Normal Operation, Enabled,
Nontest Mode)

clk

rom_en , me

Tmes Tmeh Tmes Tmeh Tmes Tmeh Tmes Tmeh

(Disabled) (Disabled)(Enabled) (Enabled)

adr <7:0>

clk

Taa

Toh

Tads Tadh

do0 <63:0>,

Trc

rom_en and me

Tmes

Tmeh

do1 <63:0>
Chapter 11 Megacells 159

FIGURE 11-20 Timing Diagram B (FPU ROM) (Read Cycle, Normal Operation, Disabled,
Nontest Mode)

11.6.4 Implementation

See FIGURE 11-16 on page 155 for details of the implementation.

11.6.5 ROM Contents

ROM contents are programmed at the time of manufacturing. See the Verilog model

fp_roms.v for details.

11.6.6 RAM Redundancy

No redundancy is required for this block due to its relatively small ROM.

11.6.7 Testing

The ROM block is tested as embedded memory along with the rest of the chip

silicon.

adr <7:0>

clk

Tads Tadh

do1 <63:0>

Trc

rom_en or me

Tmes
Tmeh

do0 <63:0>
160 picoJava-II Microarchitecture Guide • March 1999

Note the following:

■ All timing specifications are for the Sun SSLH corner operation conditions:

■ Process: Slow

■ Temperature: 105 degrees C junction

■ Vdd: 2.20v

■ The test conditions for all timing specifications are:

■ Input Vil/Vih switching levels: 0.0v/2.20v

■ Input rise/fall times: 0.2 ns (10%~90% Vdd)

■ Input output timing reference levels: 2.20v/2

11.7 Integer Unit (IU) ROM
The IU ROM (ieu_rom.v) is a low-power, asynchronous, read-only memory (284

entries by 80 bits). A 9-bit address selects one of the memory entries, and the value

is output on the do bus.

FIGURE 11-21 illustrates the IU ROM.

FIGURE 11-21 Integer Unit (IU) ROM

do<79:0>

 (Taa = 2.0 ns)

adr <8:0>

80

ieu_rom

ROM
300 x 80
Chapter 11 Megacells 161

11.7.1 I/O Signals

TABLE 11-29 summarizes the input and output pins of the IU ROM and their input

loading and output drive strengths.

11.7.2 Timing

The specifications are listed below and in TABLE 11-30.

TABLE 11-22 illustrates the timing.

FIGURE 11-22 Timing Diagram (IU ROM)

TABLE 11-29 I/O Signals (IU ROM)

Signal Description Type C in/Cload

adr <8:0> Address input for ROM Input 0.02 pf

do<79:0> Addressed data output Output 0.25 pf

Process Slow

Temperature 105 degrees C junction

Operating voltage 2.20v

TABLE 11-30 Timing Specifications (IU ROM)

Symbol Description Condition
Spec
200 MHz

Taa Data read access time from the negative edge of clk Maximum 2.0 ns

adr

do

Taa
162 picoJava-II Microarchitecture Guide • March 1999

11.7.3 Implementation

There are no special requirements for the IU ROM, except for meeting the timing

specifications. See FIGURE 11-21 on page 161 for details of the implementation.

11.7.4 ROM Contents

ROM contents are programmed at the time of manufacturing.

For the format of the ieu_rom bit pattern, you can choose one of the following in

ieu_rom.v :

■ The Verilog case statement, which is the default

■ The megacell format, which uses ieu_rom.data

11.7.5 RAM Redundancy

No redundancy is required for this block due to its relatively small ROM.

11.7.6 Testing

The ROM block is tested as embedded memory along with the rest of the chip

silicon.

Note the following:

■ All timing specifications are for the Sun SSLH corner operation conditions:

■ Process: Slow

■ Temperature: 105 degrees C junction

■ Vdd: 2.20v

■ The test conditions for all timing specifications are:

■ Input Vil/Vih switching levels: 0.0v/2.20v

■ Input rise/fall times: 0.2 ns (10%~90% Vdd)

■ Input output timing reference levels: 2.20v/2
Chapter 11 Megacells 163

164 picoJava-II Microarchitecture Guide • March 1999

Index
A
add_a 150, 151

add_b 150, 151

add_c 150, 151

add_d 150, 151

add_e 150

addr 136, 137, 144, 145

adr 156, 157, 162

alu_out 38

alu_out_w 32

arch_optop 34

arch_pc 34

archi_data 38

areturn 76

B
bank_sel 136, 137

BIST hooks 90

bist_addr 136, 137, 144, 146

bist_data_in 136, 137

bist_enable 121, 122, 129, 130, 136, 137, 144, 146

bist_icu_addr 120, 122

bist_icu_din 120, 122

bist_icu_ram_we 121, 122

bist_icu_tag_addr 128, 130

bist_icu_tag_in 128, 130

bist_icu_tag_vld 128, 130

bist_icu_tag_we 128, 130

bist_stat_addr 144, 146

bist_stat_in 144, 146

bist_stat_we 145, 146

bist_tag_dout1 145

bist_tag_dout2 145

bist_tag_in 144, 146

bist_tag_we0 145, 146

bist_tag_we1 145, 146

bist_wb_set_sel 144, 146

bist_we 136, 137

BIU

arbitration 80

error transactions 81

interface 82

description 81

pins 83

overview 79

power management 82

biu_data 16, 66, 83

biu_dcu_ack 67, 83

biu_icu_ack 16, 83

boot mode 105

BRK12C 92

Bus Interface Unit, See BIU

bypass 136, 137

C
C stage, See cache stage

cache

flushing, ICU 14

line invalidating 65

read hits, ICU 12

read misses, ICU 13

stage (C stage) 21

cacheability of transactions 111

carry_out_e 32
165

clk 68, 89, 91, 93, 98, 100, 120, 121, 128, 130, 136,

137, 144, 145, 156, 157

clock management 88

cmp_addr_in 144, 145

control logic in microcode 37

customizable features 111

D
D stage, See decode stage

data breakpoint traps 92

Data Cache Unit, See DCU

data_in 136, 137

data_out 137, 138

datapath

FPU 42

microcode 38

RCU 25

dcache_ram0_do 137

dcache_ram1_do 137

DCU

address control 57

aligner control 57

arbiter 57

arbitration of requests 64

cache

description 55

fills 60

flushing 65

invalidate flushing 65

line zeroing 65

reads 59

transactions 64

writes 59

critical timing path 68

data RAMS 56

D-Cache datapath 58

dependencies 55

diagnostic reads and writes 66

interactions with other units 53

interface pins 66

miss control 58

nonallocating writes 66

noncacheable (NC)

loads 63

stores 63

nonfetching allocates 66

overview 53

power management 68

replacements 64

writeback

buffer 56

control 58

transactions 62

zeroing of cache lines 65

dcu_addr 83

dcu_addr_out 66

dcu_biu_data 66

dcu_data 68, 78

dcu_data_c 31

dcu_dataout 83

dcu_diag_data_c 31

dcu_in_powerdown 91

dcu_req 67, 83

dcu_si 68

dcu_size 66, 83

dcu_so 68

dcu_type 67, 83

decode (D) stage 21

dest_addr_w 29

di_d 151

di_e 151

diag_ld_cache_c 15

do 162

do_a 151

do_b 151

do_c 151

do0 156, 157

do1 156, 157

dreg 38

dreturn 76

dtag_dout 145, 146

E
E stage, See execution stage

enable 120, 121, 128, 130, 136, 137, 144, 146

endianness of transactions 111

execution (E) stage 21

F
F stage, See fetch stage

features, customizable 111

fetch (F) stage 21
166 picoJava-II Microarchitecture Guide • March 1999

Floating Point Unit, See FPU

folded_r 34

folding

groups, IFU 23

logic, IFU 22

fpain 52

fpbin 52

fpbusyn 43, 50, 52

fphold 50, 52

fpkill 50, 52

fpop 52

fpop_valid 50, 52

fpout 52

FPU

add and subtract 44

ALU 43

critical paths 51

data forwarding 51

datapath 42

double precision 42

FADD/FSUB operations 47

FConvert operations 47

FDIV/FREM/DDIV/DREM operations 47

floating point

adder-ALU 42

multiply/divide unit 42

FMUL/DMUL operations 47

gradual underflow 45

IEEE 754 compliance 45

INaN 46

input

buses 48

operations 48

registers 42

interface 48

invalid combinations in NAN 46

MDIV 43

microcode sequencer 42, 43

multiply and divide 45

NAN 46

opcodes 47

output

operations 50

registers 42

overview 41

pipeline 43

power management 48

quiet NANs 46

signals 52

single precision 42

structure 41

fpu_data_e 31

freturn 76

G
group_1_r 27

group_2_r 27

group_3_r 27

group_4_r 27

group_5_r 27

group_6_r 27

group_7_r 27

group_8_r 28

group_9_r 28

H
high watermark 75

high_mark 78

hit0_out 145, 146

hit1_out 145, 146

hold_c 28

hold_e 28

I
ialu_a 38

ibuf_cntl 12

ibuf_oplen 15

I-Buffer

control 12

interface in IFU 22

ic_cntl 10

ic_hit 16

I-Cache datapath 12

icram_dout 16, 122

icram_powerdown 16

ICU

cache

flushing 14

read hits and misses 12

transactions 12

diagnostic reads and writes 14

error transactions 14
Index 167

functionalities 10

I-Cache control 10

interaction with other units 8

interface pins 15

noncacheable reads 14

overview 7

power management 15

structure 10

icu_addr 16, 83, 120, 121

icu_biu__addr 16

icu_diag_data_c 31

icu_din 16, 120, 121

icu_dout_d 15

icu_dpath 12

icu_drty_d 15

icu_hold 15

icu_in_powerdown 17, 91

icu_lvd_d 15

icu_pc_d 15, 34

icu_ram_we 16, 120, 121

icu_req 16, 83

icu_size 83

icu_tag_addr 16, 128, 130

icu_tag_in 16, 128, 130

icu_tag_vld 16, 128, 130

icu_tag_we 16, 128, 130

icu_tsize 16

icu_type 16, 83

IE field 116

ie_alu_cryout 38

ie_comp_a_eq0 38

ie_kill_ucode 38

ie_stall_ucode 38

imdr_data_e 31

inst_vld 28

inst_vld_r 34

instruction

breakpoint traps 92

buffer (I-Buffer) 11

pipeline 20

Instruction Cache Unit, See ICU

Instruction Folding Unit (IFU) 21

Integer Unit, See IU

interface

protocol in microcode 36

signals

core 97

IFU, IU, pipeline control, and SMU 27

IU datapath 31

memory 101

Interrupt Enable (IE) bit 116

interrupts

control of 116

definitions 114

maskable 115

nonmaskable

ireturn 76

itag_dout 16, 129

itag_hit 129

itag_vld 16, 129

IU

datapath

functional units 29

interface signals 31

functional descriptions 30

interface signals 34

overview 19

Pipe Control Unit (PCU) 32

ROM size 35, 37

stalls in the PCU 33

iu_addr_e 15, 32, 67

iu_address 78

iu_br_pc 15

iu_br_pc_e 32

iu_brtaken_e 15

iu_data 78

iu_data_e 32, 34, 67

iu_data_in 77

iu_data_w 28

iu_diag_e 67

iu_flush_e 15

iu_hold_e 37, 38

iu_inst_e 67

iu_int 77

iu_lvars 28

iu_optop 38

iu_optop_in 77

iu_optop_int_we 77

iu_powerdown_e 91

iu_pse_dre 77

iu_psr_bm8 15

iu_psr_dce 67
168 picoJava-II Microarchitecture Guide • March 1999

iu_psr_gce 37, 38

iu_psr_ice 15

iu_rf_dout 77

iu_sbase_we 77

iu_shift_d 15

iu_smiss 78

iu_smu_data 29

iu_smu_flush 78

iu_stall 67

iu_test_rw_e 15

iu_trap_c 34, 67
iu_trap_r 28, 37

iu_zero_e 67

J
JTAG support 93

K
kill_inst_e 67

L
latency, read 105

Least Recently Used (LRU)

bit 56, 65

replacement policy 64

low watermark 75

low_mark 77

low-power modes 85

lreturn 76

LRU, See Least Recently Used (LRU)

lvars_acc_rs1_r 27

M
m_adder_sum 39

maskable interrupts 115

me 156, 157

megacells

data cache

data RAM 134–141

tag RAM 141–149

FPU ROM 154–161

instruction cache

data RAM 117–124

tag RAM 125–134

IU ROM 161–163

stack cache RAM 150–154

timing statistics 117

types 117

memory

controllers 105

interface signals 101

microcode 35

misc_din 15

misc_dout 15

N
nastore_word_index 66

NMI, See nonmaskable interrupts

no_fold_r 28

nonmaskable interrupts (NMI) 115

nop 106

O
offset_1_rs1_r 27

offset_1_rs2_r 27

offset_2_rs1_r 27

offset_2_rs2_r 27

opcode_1_op_r 27, 37

opcode_1_rs1_r 27

opcode_1_rs2_r 27

opcode_1_rsd_r 27

opcode_2_op_r 27, 37

opcode_2_rs1_r 27

opcode_2_rs2_r 27

opcode_2_rsd_r 27

opcode_3_op_r 37

OPTOP 75

optop_offset 28

P
pc_c 31

pc_e 31

pc_offset_r 34
Index 169

PCSU

cache flushing 87

clock management 88

dcu_in_powerdown signal 87

dcu_pwrdown signal 86

debug and trace features 92

exit from standby mode 87

icram_powerdown signal 85

icu_in_powerdown signal 87

normal mode 85

pj_irl signal 87

pj_nmi signal 87

pj_standby_out signal 88

reset management 88

scan and test features 89

signals 91

standby mode 86

pcsu_powerdown 17, 68, 91

PCU stalls 33

picoJava-II

core diagram 2

overview 1

PIL field 116

Pipe Control Unit (PCU) 32

pj_ack 60, 84, 99, 103, 107

pj_addr 99, 101, 107

pj_address 83

pj_ale 84, 99, 103

pj_boot8 99, 101, 105, 106

pj_brk1_sync 94, 99, 103

pj_brk2_sync 94, 99, 103

pj_clk 83

pj_clk_out 91, 98, 100

pj_data_in 83, 99, 101

pj_data_out 83, 99, 101

pj_halt 93, 99, 103

pj_in_halt 93, 99, 104

pj_inst_complete 93, 99, 104

pj_irl 91, 99, 100, 116

pj_irl_sync 91

pj_nmi 91, 99, 100, 115, 116

pj_nmi_sync 91

pj_no_fpu 99, 101

pj_reset 83, 88, 91

pj_reset_out 98, 100

pj_resume 94, 99, 103

pj_size 83, 99, 102, 107

pj_standby_out 88, 91, 99, 101

pj_su 99, 101

pj_tv 83, 99, 102, 107

pj_type 84, 99, 102, 106, 107

powerdown 52

Powerdown, Clock, Reset, and Scan Unit, See PCSU

priv_read_psr 105

priv_reset 89, 115

priv_ret_from_trap 76

priv_write_psr 105

Processor Interrupt Level (PIL) bit 116

PROM interface 105

PSR.BM8 105

PSR.IE 100

PSR.PIL 100

R
R stage, See register stage

read latency 105

read-type transactions 106

register (R) stage 21

Register Control Unit (RCU) 25

reissue_c 34

reset_l 52, 98, 100

ret_optop_update 78

return 76

return0 76

return1 76

return2 76

ROM size, IU 35, 37

rom_en 156, 157

rs1 38

rs1_data_e 28

rs1_forward_mux_sel 28

rs1_foward_mux_sel 28

rs2 38

rs2_data_e 28

rs2_forward_mux_sel 28

ru_rs1_e 31

ru_rs2_e 31

S
SC_BOTTOM 74, 75

scache_miss_addr_e 31

scache_wr_miss_w 29

set_sel 144, 146

si 89, 91, 93, 99, 101
170 picoJava-II Microarchitecture Guide • March 1999

sin 136

sm 89, 91, 93, 99, 101, 136

SMU

datapath 74

dribbling operations 74

fill transactions 75

functionalities 73

interaction with other units 72

interface pins 77

overview 71

spill transactions 75

stack

cache

structure 73

write misses 76

overflow 75

underflow 76

smu_addr 67, 78

smu_data 29, 67, 78

smu_data_vld 67, 78

smu_hold 77

smu_ld 67, 78

smu_na_st 78

smu_prty 67

smu_rf_addr 29, 77

smu_rf_din 77

smu_sbase 77

smu_sbase_we 77

smu_st 67, 78

smu_st_c 78

smu_stall 67, 78

smu_we 29, 77

so 89, 91, 93, 99, 101, 137

squash_fold 34

stack

overflow 75

underflow 76

Stack Manager Unit, See SMU

stat_addr 144, 145

stat_in 144, 145

stat_out 145, 146

stat_we 144, 146

T
Taa 152, 158, 162

Tadh 122, 131, 138, 147, 158

tadr 156, 157

Tads 122, 131, 138, 147, 158

tag_in 144, 145

tag_we 144, 146

Tasw 152

Taw 152

Tbph 138

Tbps 138

Tcmp_addr_val 147

Tcmph 147

Tcmps 147

Tcyc 122, 131, 138, 147

Tdh 152

Tdih 122, 131, 138, 147

Tdis 122, 131, 138, 147

Tdow 123

Tdw 152

Tdxor 122, 139

te 156, 157

Tenh 123, 131, 139, 147

Tens 123, 131, 139, 147

test_mode 118, 121, 122, 126, 129, 130, 135, 136,

137, 142, 145, 146

Thit 131, 147

Tidor 138

tm 156, 157

Tmeh 158

Tmes 158

Toh 152, 158

Tpwh 122, 131, 138, 147, 158

Tpwl 122, 131, 138, 147, 158

traps

control of 114

definitions 113

types of 114

Trc 152, 158

Tstor 147

Tstslh 138, 147

Tstsls 138, 147

TT (trap type) 113

Ttag 131, 147

Tteh 158

Ttes 158

Ttgor 147

Ttmh 158

Ttms 158

Tvldor 131

Twb_set 147

Twc 152

Twd 152
Index 171

Twdd 152

Twdh 152

Tweh 122, 131, 138, 147

Twes 122, 131, 138, 147

Twh 152

Twp 152

Twr 152

type_rs1_r 27

U
u_abt_rdwt 39

u_addr_st_rd 38

u_areg0 38

u_ary_ovf 38

u_done 37

u_f01_wt_stk 39

u_f02_rd_stk 39

u_f23~00 37

u_gc_notify 38

u_m_adder_porta 39

u_m_adder_porta_e 31

u_m_adder_portb 39

u_m_adder_portb_e 31

u_ptr_un_eq 38

u_ref_null 38

ucode_addr_s 28

ucode_areg0 28

ucode_porta 38

ucode_porta_e 31

ucode_portb 38

ucode_portc 38

ucode_portc_e 31

V
valid_op_r 37

valid_rs1_r 27

valid_rs2_r 27

valid_rsd_r 27

W
W stage, See write stage

watermarks 75

wb_set_sel 144, 146

we 136, 137

we_d 151

we_e 151

wr_optop_e 34

write

stage (W stage) 21

type transactions 108

Z
zero_line 65, 86

ZeroLineEmulationTrap 65
172 picoJava-II Microarchitecture Guide • March 1999

	1
	Overview

	1.1 Purpose
	1.2 Components
	1.2.1 Instruction Cache Unit (ICU)
	1.2.2 Integer Unit (IU)
	1.2.3 Floating Point Unit (FPU)
	1.2.4 Data Cache Unit (DCU)
	1.2.5 Stack Manager Unit (SMU)
	1.2.6 Bus Interface Unit (BIU)
	1.2.7 Powerdown, Clock, and Scan Unit (PCSU)
	2
	Instruction Cache Unit (ICU)

	2.1 Structure
	2.2 Functionalities
	2.2.1 Instruction Cache Control (ic_cntl)
	2.2.2 Instruction Buffer (I-Buffer)
	2.2.3 I-Buffer Control (ibuf_cntl)
	2.2.4 Instruction Cache Datapath (icu_dpath)

	2.3 Cache Transactions
	2.3.1 Cache Read Hits
	2.3.2 Cache Read Misses
	2.3.3 Noncacheable (NC) Reads
	2.3.4 Cache Indexed Flushing
	2.3.5 Error Transactions
	2.3.6 Diagnostic Accesses

	2.4 Power Management
	2.5 Interface Signals
	3
	Integer Unit (IU)

	3.1 Instruction Pipeline
	3.2 Instruction Folding Unit (IFU)
	3.2.1 I-Buffer Interface
	3.2.2 Folding Logic
	3.2.3 Folding Groups

	3.3 Register Control Unit (RCU)
	3.3.1 RCU Datapath
	3.3.2 Interface Signals

	3.4 Datapath
	3.4.1 Functionalities
	3.4.2 Interface Signals

	3.5 Pipe Control Unit
	3.5.1 Stall Types
	3.5.2 Interface Signals

	3.6 Microcode
	3.6.1 Interface Protocol
	3.6.2 Control Logic
	3.6.3 Datapath
	4
	Floating Point Unit (FPU)

	4.1 Structure
	4.1.1 ALU
	4.1.2 Multiply/Divide (MDIV)
	4.1.3 Microcode Sequencer

	4.2 Pipeline
	4.3 Add and Subtract
	4.4 Multiply and Divide
	4.5 IEEE 754 Compliance
	4.5.1 Deviation From IEEE 754 Specification
	4.5.2 NaN Operations

	4.6 Opcodes
	4.6.1 FADD and FSUB Operations
	4.6.2 FMUL and DMUL Operations
	4.6.3 FDIV, FREM, DDIV, and DREM Operations
	4.6.4 FConvert Operations

	4.7 Power Management
	4.8 Interface
	4.8.1 Input Operations
	4.8.2 Output Operations
	4.8.3 Data Forwarding

	4.9 Critical Paths
	4.10 Signals
	5
	Data Cache Unit (DCU)

	5.1 Dependencies
	5.2 Data Cache
	5.3 Functionalities
	5.3.1 Arbiter
	5.3.2 Address Control
	5.3.3 Aligner Control
	5.3.4 Miss Control
	5.3.5 Writeback Control
	5.3.6 Data Cache Datapath

	5.4 Pipeline
	5.4.1 Cache Reads
	5.4.2 Cache Writes
	5.4.3 Cache Fills
	5.4.4 Writebacks
	5.4.5 Noncacheable (NC) Loads
	5.4.6 Noncacheable (NC) Stores

	5.5 Cache Transactions
	5.5.1 Arbitration of Requests
	5.5.2 Replacements
	5.5.3 Cache Compare Flushing
	5.5.4 Cache Indexed Flushing
	5.5.5 Cache Invalidate Flushing
	5.5.6 Zeroing of Cache Lines
	5.5.7 Nonallocating Writes
	5.5.8 Nonfetching Allocates
	5.5.9 Diagnostic Accesses

	5.6 Interface Signals
	5.7 Power Management
	5.8 Critical Timing Path
	6
	Stack Manager Unit (SMU)

	6.1 Functionalities
	6.2 Dribbling Operations
	6.2.1 Spills and Fills
	6.2.2 Stack Overflow
	6.2.3 Stack Underflow
	6.2.4 Stack Cache Write Misses

	6.3 Pipeline
	6.4 Interface Signals
	7
	Bus Interface Unit (BIU)

	7.1 Functionalities
	7.2 Arbitration
	7.3 Interfaces
	7.4 Power Management
	7.5 Interface Signals
	8
	Powerdown, Clock, Reset, and Scan Unit (PCSU)

	8.1 Power Management
	8.1.1 Normal Mode
	8.1.2 Standby Mode

	8.2 Clock Management
	8.3 Reset Management
	8.4 Scan and Test Features
	8.5 Interface Signals
	8.6 Debug and Trace Features
	8.7 JTAG Support
	8.7.1 Full Internal Scan
	8.7.2 Breakpoints and External Halt Mode
	8.7.3 Single-Stepping
	8.7.4 Nonscannable Arrays
	9
	External Interface

	9.1 Core Interface Signals
	9.1.1 Processor Interface Signals
	9.1.2 Memory Interface Signals
	9.1.3 Trace and Debug Signals

	9.2 picoJava-II Transactions
	9.2.1 Boot Mode
	9.2.2 Read-Type Transactions
	9.2.3 Write-Type Transactions

	9.3 Endianness and Cacheability
	9.4 Customizable Features
	10
	Traps and Interrupts

	10.1 Definitions
	10.2 Traps
	10.3 Trap Control
	10.4 Interrupts
	10.4.1 Nonmaskable Interrupts (NMI)
	10.4.2 Maskable Interrupts

	10.5 Interrupt Control
	11
	Megacells

	11.1 Instruction Cache Data RAM
	11.1.1 I/O Pins
	11.1.2 I/O Signals
	11.1.3 Timing
	11.1.4 RAM Redundancy
	11.1.5 Testing

	11.2 Instruction Cache Tag RAM
	11.2.1 I/O Pins
	11.2.2 I/O Signals
	11.2.3 Timing
	11.2.4 Implementation
	11.2.5 RAM Redundancy
	11.2.6 Testing

	11.3 Data Cache Data RAM
	11.3.1 I/O Pins
	11.3.2 I/O Signals
	11.3.3 Timing
	11.3.4 Implementation
	11.3.5 RAM Redundancy
	11.3.6 Testing

	11.4 Data Cache Tag RAM
	11.4.1 I/O Pins
	11.4.2 I/O Signals
	11.4.3 Timing
	11.4.4 Implementation
	11.4.5 RAM Redundancy
	11.4.6 Testing

	11.5 Stack Cache RAM
	11.5.1 I/O Pins
	11.5.2 I/O Signals
	11.5.3 Timing
	11.5.4 Testing

	11.6 Floating Point Unit (FPU) ROM
	11.6.1 I/O Pins
	11.6.2 I/O Signals
	11.6.3 Timing
	11.6.4 Implementation
	11.6.5 ROM Contents
	11.6.6 RAM Redundancy
	11.6.7 Testing

	11.7 Integer Unit (IU) ROM
	11.7.1 I/O Signals
	11.7.2 Timing
	11.7.3 Implementation
	11.7.4 ROM Contents
	11.7.5 RAM Redundancy
	11.7.6 Testing
	Index

